Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Chemistry ; 29(6): e202203101, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36287191

RESUMEN

A novel, benign synthetic strategy towards soluble tetra(peri-naphthylene)anthracene (TPNA) decorated with triisopropylsilylethynyl substituents has been established. The compound is perfectly stable under ambient conditions in air and features intense and strongly bathochromically shifted UV/vis absorption and emission bands reaching to near-IR region beyond 900 nm. Cyclic voltammetry measurements revealed four facilitated reversible redox events comprising two oxidations and two reductions. These remarkable experimental findings were corroborated by theoretical studies to identify the TPNA platform a particularly useful candidate for the development of functional near-IR fluorophores upon appropriate functionalization.

2.
Angew Chem Int Ed Engl ; 61(13): e202117735, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35076154

RESUMEN

Nucleosidic diarylethenes (DAEs) are an emerging class of photochromes but have rarely been used in materials science. Here, we have developed doubly methylated DAEs derived from 2'-deoxyuridine with high thermal stability and fatigue resistance. These new photoswitches not only outperform their predecessors but also rival classical non-nucleosidic DAEs. To demonstrate the utility of these new DAEs, we have designed an all-optical excitonic switch consisting of two oligonucleotides: one strand containing a fluorogenic double-methylated 2'-deoxyuridine as a fluorescence donor and the other a tricyclic cytidine (tC) as acceptor, which together form a highly efficient conditional Förster-Resonance-Energy-Transfer (FRET) pair. The system was operated in liquid and solid phases and showed both strong distance- and orientation-dependent photochromic FRET. The superior ON/OFF contrast was maintained over up to 100 switching cycles, with no detectable fatigue.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Oligonucleótidos , ADN , Desoxiuridina , Nucleósidos
3.
Nanoscale ; 16(33): 15835, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39139073

RESUMEN

Correction for 'Chitosan-gated organic transistors printed on ethyl cellulose as a versatile platform for edible electronics and bioelectronics' by Alina S. Sharova et al., Nanoscale, 2023, 15, 10808-10819, https://doi.org/10.1039/D3NR01051A.

4.
ACS Appl Opt Mater ; 1(10): 1706-1714, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37915970

RESUMEN

Near-infrared electroluminescence from carbon-based emitters, especially in the second biological window (NIR-II) or at telecommunication wavelengths, is difficult to achieve. Single-walled carbon nanotubes (SWCNTs) have been proposed as a possible solution due to their tunable and narrowband emission in the near-infrared region and high charge carrier mobilities. Furthermore, the covalent functionalization of SWCNTs with a controlled number of luminescent sp3 defects leads to even more red-shifted photoluminescence with enhanced quantum yields. Here, we demonstrate that by tailoring the binding configuration of the introduced sp3 defects and hence tuning their optical trap depth, we can generate emission from polymer-sorted (6,5) and (7,5) nanotubes that is mainly located in the telecommunication O-band (1260-1360 nm). Networks of these functionalized nanotubes are integrated in ambipolar, light-emitting field-effect transistors to yield the corresponding narrowband near-infrared electroluminescence. Further investigation of the current- and carrier density-dependent electro- and photoluminescence spectra enables insights into the impact of different sp3 defects on charge transport in networks of functionalized SWCNTs.

5.
ACS Nano ; 17(18): 18240-18252, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37695780

RESUMEN

Graphene nanoribbons are one-dimensional stripes of graphene with width- and edge-structure-dependent electronic properties. They can be synthesized bottom-up in solution to obtain precise ribbon geometries. Here we investigate the optical properties of solution-synthesized 9-armchair graphene nanoribbons (9-aGNRs) that are stabilized as dispersions in organic solvents and further fractionated by liquid cascade centrifugation (LCC). Absorption and photoluminescence spectroscopy reveal two near-infrared absorption and emission peaks whose ratios depend on the LCC fraction. Low-temperature single-nanoribbon photoluminescence spectra suggest the presence of two different nanoribbon species. Based on density functional theory (DFT) and time-dependent DFT calculations, the lowest energy transition can be assigned to pristine 9-aGNRs, while 9-aGNRs with edge-defects, caused by incomplete graphitization, result in more blue-shifted transitions and higher Raman D/G-mode ratios. Hole doping of 9-aGNR dispersions with the electron acceptor F4TCNQ leads to concentration dependent bleaching and quenching of the main absorption and emission bands and the appearance of red-shifted, charge-induced absorption features but no additional emission peaks, thus indicating the formation of polarons instead of the predicted trions (charged excitons) in doped 9-aGNRs.

6.
Nanoscale ; 15(25): 10808-10819, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37334549

RESUMEN

Edible electronics is an emerging research field targeting electronic devices that can be safely ingested and directly digested or metabolized by the human body. As such, it paves the way to a whole new family of applications, ranging from ingestible medical devices and biosensors to smart labelling for food quality monitoring and anti-counterfeiting. Being a newborn research field, many challenges need to be addressed to realize fully edible electronic components. In particular, an extended library of edible electronic materials is required, with suitable electronic properties depending on the target device and compatible with large-area printing processes, to allow scalable and cost-effective manufacturing. In this work, we propose a platform for future low-voltage edible transistors and circuits that comprises an edible chitosan gating medium and inkjet-printed inert gold electrodes, compatible with low thermal budget edible substrates, such as ethylcellulose. We report the compatibility of the platform, characterized by critical channel features as low as 10 µm, with different inkjet-printed carbon-based semiconductors, including biocompatible polymers present in the picogram range per device. A complementary organic inverter is also demonstrated with the same platform as a proof-of-principle logic gate. The presented results offer a promising approach to future low-voltage edible active circuitry, as well as a testbed for non-toxic printable semiconductors.


Asunto(s)
Quitosano , Recién Nacido , Humanos , Semiconductores , Celulosa , Electrónica
7.
ACS Photonics ; 9(5): 1567-1576, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35607642

RESUMEN

Strong coupling of excitonic resonances with a cavity gives rise to exciton-polaritons which possess a modified energy landscape compared to the uncoupled emitter. However, due to the femtosecond lifetime of the so-called bright polariton states and transient changes of the cavity reflectivity under excitation, it is challenging to directly measure the polariton excited state dynamics. Here, near-infrared pump-probe spectroscopy is used to investigate the ultrafast dynamics of exciton-polaritons based on strongly coupled (6,5) single-walled carbon nanotubes in metal-clad microcavities. We present a protocol for fitting the reflectivity-associated response of the cavity using genetic algorithm-assisted transfer-matrix simulations. With this approach, we are able to identify an absorptive exciton-polariton feature in the transient transmission data. This feature appears instantaneously under resonant excitation of the upper polariton but is delayed for off-resonant excitation. The observed transition energy and detuning dependence point toward a direct upper polariton-to-biexciton transition. Our results provide direct evidence for exciton-polariton intrinsic transitions beyond the bright polariton lifetime in strongly coupled microcavities.

8.
ACS Nano ; 16(6): 9401-9409, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35709437

RESUMEN

The controlled introduction of covalent sp3 defects into semiconducting single-walled carbon nanotubes (SWCNTs) gives rise to exciton localization and red-shifted near-infrared luminescence. The single-photon emission characteristics of these functionalized SWCNTs make them interesting candidates for electrically driven quantum light sources. However, the impact of sp3 defects on the carrier dynamics and charge transport in carbon nanotubes remains an open question. Here, we use ultrafast, time-resolved optical-pump terahertz-probe spectroscopy as a direct and quantitative technique to investigate the microscopic and temperature-dependent charge transport properties of pristine and functionalized (6,5) SWCNTs in dispersions and thin films. We find that sp3 functionalization increases charge carrier scattering, thus reducing the intra-nanotube carrier mobility. In combination with electrical measurements of SWCNT network field-effect transistors, these data enable us to distinguish between contributions of intra-nanotube band transport, sp3 defect scattering and inter-nanotube carrier hopping to the overall charge transport properties of nanotube networks.

9.
J Phys Chem Lett ; 13(16): 3542-3548, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35420437

RESUMEN

The functionalization of semiconducting single-wall carbon nanotubes (SWCNTs) with luminescent sp3 defects creates red-shifted emission features in the near-infrared and boosts their photoluminescence quantum yields (PLQYs). While multiple synthetic routes for the selective introduction of sp3 defects have been developed, a convenient metric to precisely quantify the number of defects on a SWCNT lattice is not available. Here, we present a direct and simple quantification protocol based on a linear correlation of the integrated Raman D/G+ signal ratios and defect densities as extracted from PLQY measurements. Corroborated by a statistical analysis of single-nanotube emission spectra at cryogenic temperature, this method enables the quantitative evaluation of sp3 defect densities in (6,5) SWCNTs with an error of ±3 defects per micrometer and the determination of oscillator strengths for different defect types. The developed protocol requires only standard Raman spectroscopy and is independent of the defect configuration, dispersion solvent, and nanotube length.

10.
ACS Nano ; 15(6): 10451-10463, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34048654

RESUMEN

The controlled covalent functionalization of semiconducting single-walled carbon nanotubes (SWCNTs) with luminescent sp3 defects leads to additional narrow and tunable photoluminescence features in the near-infrared and even enables single-photon emission at room temperature, thus strongly expanding their application potential. However, the successful integration of sp3-functionalized SWCNTs in optoelectronic devices with efficient defect state electroluminescence not only requires control over their emission properties but also a detailed understanding of the impact of functionalization on their electrical performance, especially in dense networks. Here, we demonstrate ambipolar, light-emitting field-effect transistors based on networks of pristine and functionalized polymer-sorted (6,5) SWCNTs. We investigate the influence of sp3 defects on charge transport by employing electroluminescence and (charge-modulated) photoluminescence spectroscopy combined with temperature-dependent current-voltage measurements. We find that sp3-functionalized SWCNTs actively participate in charge transport within the network as mobile carriers efficiently sample the sp3 defects, which act as shallow trap states. While both hole and electron mobilities decrease with increasing degree of functionalization, the transistors remain fully operational, showing electroluminescence from the defect states that can be tuned by the defect density.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda