Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
PLoS Pathog ; 14(7): e1007125, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30001425

RESUMEN

Several arenaviruses cause hemorrhagic fever (HF) diseases that are associated with high morbidity and mortality in humans. Accordingly, HF arenaviruses have been listed as top-priority emerging diseases for which countermeasures are urgently needed. Because arenavirus nucleoprotein (NP) plays critical roles in both virus multiplication and immune-evasion, we used an unbiased proteomic approach to identify NP-interacting proteins in human cells. DDX3, a DEAD-box ATP-dependent-RNA-helicase, interacted with NP in both NP-transfected and virus-infected cells. Importantly, DDX3 deficiency compromised the propagation of both Old and New World arenaviruses, including the HF arenaviruses Lassa and Junin viruses. The DDX3 role in promoting arenavirus multiplication associated with both a previously un-recognized DDX3 inhibitory role in type I interferon production in arenavirus infected cells and a positive DDX3 effect on arenavirus RNA synthesis that was dependent on its ATPase and Helicase activities. Our results uncover novel mechanisms used by arenaviruses to exploit the host machinery and subvert immunity, singling out DDX3 as a potential host target for developing new therapies against highly pathogenic arenaviruses.


Asunto(s)
Infecciones por Arenaviridae/metabolismo , ARN Helicasas DEAD-box/metabolismo , Interacciones Huésped-Patógeno/fisiología , Evasión Inmune/inmunología , Replicación Viral/fisiología , Infecciones por Arenaviridae/inmunología , Arenavirus , Línea Celular , ARN Helicasas DEAD-box/inmunología , Humanos , Interferón Tipo I/biosíntesis , Interferón Tipo I/inmunología , Proteínas del Núcleo Viral/inmunología , Proteínas del Núcleo Viral/metabolismo
2.
Langmuir ; 31(44): 12111-9, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26488670

RESUMEN

A deeper understanding of the role of sialic/desialylated groups during TgMIC4-glycoproteins interactions has importance to better clarify the odd process of host cell invasion by members of the apicomplexan phylum. Within this context, we evaluated the interaction established by recombinant TgMIC4 (the whole molecule) with sialylated (bovine fetuin) and desialylated (asialofetuin) glycoproteins by using functionalized quartz crystal microbalance with dissipation monitoring (QCM-D). A suitable receptive surface containing recombinant TgMIC4 for monitoring ß-galactose-containing carbohydrate ligand (limit of quantification ∼ 40 µM) was designed and used as biomolecular recognition platform to study the binding and conformational mechanisms of TgMIC4 during the interaction with glycoprotein containing (fetuin), or not, terminal sialic group (asialofetuin). It was inferred that the binding/interaction monitoring depends on the presence/absence of sialic groups in target protein and is possible to be differentiated through a slower binding kinetic step using QCM-D approach (which we are inferring to be thus associated with ß-galactose ligand). This slower binding/interaction step is likely supposed (from mechanical energetic analysis obtained in QCM-D measurements) to be involved with Toxoplasma gondii (the causative agent of toxoplasmosis) parasitic invasion accompanied by ligand (galactose) induced binding conformational change (i.e., cell internalization process can be additionally dependent on structural conformational changes, controlled by the absence of sialic groups and to the specific binding with galactose), in addition to TgMIC4-glycoprotein solely recognition binding process.


Asunto(s)
Carbohidratos/química , Galactosa/química , Proteínas Protozoarias/química , Toxoplasma/química , Adsorción , Ligandos , Conformación Molecular , Unión Proteica , Tecnicas de Microbalanza del Cristal de Cuarzo
3.
Int J Biol Macromol ; 82: 22-30, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26433176

RESUMEN

Recent advances in glycobiology have revealed the essential role of lectins in deciphering the glycocodes at the cell surface to generate important biological signaling responses. ArtinM, a d-mannose-binding lectin isolated from the seeds of jackfruit (Artocarpus heterophyllus), is composed of 16 kDa subunits that are associated to form a homotetramer. Native ArtinM (n-ArtinM) exerts immunomodulatory and regenerative effects, but the potential pharmaceutical applicability of the lectin is highly limited by the fact that its production is expensive, laborious, and impossible to be scaled up. This led us to characterize a recombinant form of the lectin obtained by expression in Saccharomyces cerevisiae (y-ArtinM). In the present study, we demonstrated that y-ArtinM is similar to n-ArtinM in subunit arrangement, oligomerization and carbohydrate binding specificity. We showed that y-ArtinM can exert n-ArtinM biological activities such as erythrocyte agglutination, stimulation of neutrophil migration and degranulation, mast cell degranulation, and induction of interleukin-12 and interleukin-10 production by macrophages. In summary, the expression of ArtinM in yeast resulted in successful production of an active, recombinant form of ArtinM that is potentially useful for pharmaceutical application.


Asunto(s)
Carbohidratos/química , Lectinas de Unión a Manosa/química , Estructura Molecular , Proteínas Recombinantes , Animales , Degranulación de la Célula/efectos de los fármacos , Degranulación de la Célula/inmunología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/inmunología , Citocinas/biosíntesis , Hemaglutinación , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Lectinas de Unión a Manosa/metabolismo , Lectinas de Unión a Manosa/farmacología , Mastocitos/efectos de los fármacos , Mastocitos/inmunología , Mastocitos/metabolismo , Ratones , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Polisacáridos/química , Unión Proteica , Receptor Toll-Like 2 , Levaduras/genética , Levaduras/metabolismo
4.
PLoS One ; 9(6): e98512, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24892697

RESUMEN

TLR2 plays a critical role in the protection against Paracoccidioides brasiliensis conferred by ArtinM administration. ArtinM, a D-mannose-binding lectin from Artocarpus heterophyllus, induces IL-12 production in macrophages and dendritic cells, which accounts for the T helper1 immunity that results from ArtinM administration. We examined the direct interaction of ArtinM with TLR2using HEK293A cells transfected with TLR2, alone or in combination with TLR1 or TLR6, together with accessory proteins. Stimulation with ArtinM induced NF-κB activation and interleukin (IL)-8 production in cells transfected with TLR2, TLR2/1, or TLR2/6. Murine macrophages that were stimulated with ArtinM had augmented TLR2 mRNA expression. Furthermore, pre-incubation of unstimulated macrophages with an anti-TLR2 antibody reduced the cell labeling with ArtinM. In addition, a microplate assay revealed that ArtinM bound to TLR2 molecules that had been captured by specific antibodies from a macrophages lysate. Notably,ArtinM binding to TLR2 was selectively inhibited when the lectin was pre-incubated with mannotriose. The biological relevance of the direct interaction of ArtinM with TLR2 glycans was assessed using macrophages from TLR2-KOmice, which produced significantly lower levels of IL-12 and IL-10 in response to ArtinM than macrophages from wild-type mice. Pre-treatment of murine macrophages with pharmacological inhibitors of signaling molecules demonstrated the involvement of p38 MAPK and JNK in the IL-12 production induced by ArtinM and the involvement ofPI3K in IL-10 production. Thus, ArtinM interacts directly with TLR2 or TLR2 heterodimers in a carbohydrate recognition-dependent manner and functions as a TLR2 agonist with immunomodulatory properties.


Asunto(s)
Polisacáridos/metabolismo , Receptor Toll-Like 2/metabolismo , Animales , Humanos , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Ratones , FN-kappa B/metabolismo , Receptor Toll-Like 1/metabolismo , Receptor Toll-Like 6/metabolismo , Trisacáridos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda