Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Mol Cell ; 81(22): 4663-4676.e8, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34637754

RESUMEN

The heterogeneous family of complexes comprising Polycomb repressive complex 1 (PRC1) is instrumental for establishing facultative heterochromatin that is repressive to transcription. However, two PRC1 species, ncPRC1.3 and ncPRC1.5, are known to comprise novel components, AUTS2, P300, and CK2, that convert this repressive function to that of transcription activation. Here, we report that individuals harboring mutations in the HX repeat domain of AUTS2 exhibit defects in AUTS2 and P300 interaction as well as a developmental disorder reflective of Rubinstein-Taybi syndrome, which is mainly associated with a heterozygous pathogenic variant in CREBBP/EP300. Moreover, the absence of AUTS2 or mutation in its HX repeat domain gives rise to misregulation of a subset of developmental genes and curtails motor neuron differentiation of mouse embryonic stem cells. The transcription factor nuclear respiratory factor 1 (NRF1) has a novel and integral role in this neurodevelopmental process, being required for ncPRC1.3 recruitment to chromatin.


Asunto(s)
Encéfalo/metabolismo , Proteína de Unión a CREB/genética , Proteínas del Citoesqueleto/metabolismo , Proteína p300 Asociada a E1A/genética , Células Madre Embrionarias/metabolismo , Factor Nuclear 1 de Respiración/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Cromatina/química , Femenino , Genómica , Células HEK293 , Heterocigoto , Humanos , Masculino , Ratones , Neuronas/metabolismo , Unión Proteica , Dominios Proteicos , Proteómica , Activación Transcripcional
2.
Am J Hum Genet ; 110(4): 681-690, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36996813

RESUMEN

The blood-brain barrier (BBB) is an essential gatekeeper for the central nervous system and incidence of neurodevelopmental disorders (NDDs) is higher in infants with a history of intracerebral hemorrhage (ICH). We discovered a rare disease trait in thirteen individuals, including four fetuses, from eight unrelated families associated with homozygous loss-of-function variant alleles of ESAM which encodes an endothelial cell adhesion molecule. The c.115del (p.Arg39Glyfs∗33) variant, identified in six individuals from four independent families of Southeastern Anatolia, severely impaired the in vitro tubulogenic process of endothelial colony-forming cells, recapitulating previous evidence in null mice, and caused lack of ESAM expression in the capillary endothelial cells of damaged brain. Affected individuals with bi-allelic ESAM variants showed profound global developmental delay/unspecified intellectual disability, epilepsy, absent or severely delayed speech, varying degrees of spasticity, ventriculomegaly, and ICH/cerebral calcifications, the latter being also observed in the fetuses. Phenotypic traits observed in individuals with bi-allelic ESAM variants overlap very closely with other known conditions characterized by endothelial dysfunction due to mutation of genes encoding tight junction molecules. Our findings emphasize the role of brain endothelial dysfunction in NDDs and contribute to the expansion of an emerging group of diseases that we propose to rename as "tightjunctionopathies."


Asunto(s)
Encefalopatías , Moléculas de Adhesión Celular , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo , Animales , Ratones , Alelos , Encefalopatías/genética , Moléculas de Adhesión Celular/genética , Células Endoteliales/metabolismo , Hemorragias Intracraneales/genética , Malformaciones del Sistema Nervioso/genética , Trastornos del Neurodesarrollo/genética , Uniones Estrechas/genética , Humanos
4.
Nature ; 538(7624): 265-269, 2016 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-27706140

RESUMEN

Chromosome conformation capture methods have identified subchromosomal structures of higher-order chromatin interactions called topologically associated domains (TADs) that are separated from each other by boundary regions. By subdividing the genome into discrete regulatory units, TADs restrict the contacts that enhancers establish with their target genes. However, the mechanisms that underlie partitioning of the genome into TADs remain poorly understood. Here we show by chromosome conformation capture (capture Hi-C and 4C-seq methods) that genomic duplications in patient cells and genetically modified mice can result in the formation of new chromatin domains (neo-TADs) and that this process determines their molecular pathology. Duplications of non-coding DNA within the mouse Sox9 TAD (intra-TAD) that cause female to male sex reversal in humans, showed increased contact of the duplicated regions within the TAD, but no change in the overall TAD structure. In contrast, overlapping duplications that extended over the next boundary into the neighbouring TAD (inter-TAD), resulted in the formation of a new chromatin domain (neo-TAD) that was isolated from the rest of the genome. As a consequence of this insulation, inter-TAD duplications had no phenotypic effect. However, incorporation of the next flanking gene, Kcnj2, in the neo-TAD resulted in ectopic contacts of Kcnj2 with the duplicated part of the Sox9 regulatory region, consecutive misexpression of Kcnj2, and a limb malformation phenotype. Our findings provide evidence that TADs are genomic regulatory units with a high degree of internal stability that can be sculptured by structural genomic variations. This process is important for the interpretation of copy number variations, as these variations are routinely detected in diagnostic tests for genetic disease and cancer. This finding also has relevance in an evolutionary setting because copy-number differences are thought to have a crucial role in the evolution of genome complexity.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Variaciones en el Número de Copia de ADN/genética , Enfermedad/genética , Duplicación de Gen/genética , Animales , ADN/genética , Facies , Femenino , Fibroblastos , Dedos/anomalías , Deformidades Congénitas del Pie/genética , Expresión Génica , Genómica , Deformidades Congénitas de la Mano/genética , Masculino , Ratones , Fenotipo , Factor de Transcripción SOX9/genética
5.
Neurogenetics ; 22(1): 19-25, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32816121

RESUMEN

Basel-Vanagaite-Smirin-Yosef syndrome (BVSYS) is an extremely rare autosomal recessive genetic disorder caused by variants in the MED25 gene. It is characterized by severe developmental delay and variable craniofacial, neurological, ocular, and cardiac anomalies. Since 2015, through whole exome sequencing, 20 patients have been described with common clinical features and biallelic variants in MED25, leading to a better definition of the phenotype associated with BVSYS. We report two young sisters, born to consanguineous parents, presenting with intellectual disability, neurological findings, and dysmorphic features typical of BVSYS, and also with bilateral perisylvian polymicrogyria. The younger sister died at the age of 1 year without autoptic examination. Whole exome sequencing detected a homozygous frameshift variant in the MED25 gene: NM_030973.3:c.1778_1779delAG, p.(Gln593Argfs). This report further delineates the most common clinical features of BVSYS and points to polymicrogyria as a distinctive neuroradiological feature of this syndrome.


Asunto(s)
Anomalías Múltiples/genética , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Malformaciones del Desarrollo Cortical/genética , Complejo Mediador/genética , Mutación/genética , Polimicrogiria/genética , Niño , Hibridación Genómica Comparativa , Femenino , Humanos , Masculino , Linaje , Fenotipo , Polimicrogiria/diagnóstico
6.
Hum Genet ; 140(4): 625-647, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33337535

RESUMEN

Type 1 Chiari malformation (C1M) is characterized by cerebellar tonsillar herniation of 3-5 mm or more, the frequency of which is presumably much higher than one in 1000 births, as previously believed. Its etiology remains undefined, although a genetic basis is strongly supported by C1M presence in numerous genetic syndromes associated with different genes. Whole-exome sequencing (WES) in 51 between isolated and syndromic pediatric cases and their relatives was performed after confirmation of the defect by brain magnetic resonance image (MRI). Moreover, in all the cases showing an inherited candidate variant, brain MRI was performed in both parents and not only in the carrier one to investigate whether the defect segregated with the variant. More than half of the variants were Missense and belonged to the same chromatin-remodeling genes whose protein truncation variants are associated with severe neurodevelopmental syndromes. In the remaining cases, variants have been detected in genes with a role in cranial bone sutures, microcephaly, neural tube defects, and RASopathy. This study shows that the frequency of C1M is widely underestimated, in fact many of the variants, in particular those in the chromatin-remodeling genes, were inherited from a parent with C1M, either asymptomatic or with mild symptoms. In addition, C1M is a Mendelian trait, in most cases inherited as dominant. Finally, we demonstrate that modifications of the genes that regulate chromatin architecture can cause localized anatomical alterations, with symptoms of varying degrees.


Asunto(s)
Malformación de Arnold-Chiari/genética , Ensamble y Desensamble de Cromatina/genética , Secuenciación del Exoma , Mutación Missense , Adolescente , Malformación de Arnold-Chiari/diagnóstico por imagen , Malformación de Arnold-Chiari/epidemiología , Niño , Preescolar , Femenino , Humanos , Lactante , Sistema de Señalización de MAP Quinasas/genética , Imagen por Resonancia Magnética , Masculino , Microcefalia/genética , Adulto Joven
7.
J Hum Genet ; 65(12): 1135-1141, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32651480

RESUMEN

TDP2 encodes a 5'-tyrosyl DNA phosphodiesterase required for the efficient repair of double-strand breaks (DSBs) induced by the abortive activity of DNA topoisomerase II (TOP2). To date, only three homozygous variants in TDP2 have been reported in six patients from four unrelated pedigrees with spinocerebellar ataxia 23 (SCAR23). By whole-exome sequencing, we identified a novel TDP2 splice-site variant (c.636 + 3_636 + 6del) in two Italian siblings (aged 40 and 45) showing progressive ataxia, intellectual disability, speech delay, refractory seizures, and various physical anomalies. The variant caused exon 5 skipping with consequent nonsense-mediated mRNA decay and defective repair of TOP2-induced DSBs, as demonstrated by the functional assays on the patients' fibroblasts. Our findings further demonstrate the pathogenic role of TDP2 biallelic loss-of-function variants in SCAR23 pathogenesis. Considering the age of our patients, the oldest reported to date, and their extensive follow-up, our study delineates in more detail the clinical phenotype related to the loss of TDP2 activity.


Asunto(s)
Proteínas de Unión al ADN/genética , Discapacidad Intelectual/genética , Hidrolasas Diéster Fosfóricas/genética , Ataxias Espinocerebelosas/genética , Adulto , Femenino , Genes Recesivos/genética , Humanos , Discapacidad Intelectual/patología , Mutación con Pérdida de Función/genética , Masculino , Persona de Mediana Edad , Ataxias Espinocerebelosas/fisiopatología
8.
J Hum Genet ; 65(2): 133-141, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31656314

RESUMEN

Alazami syndrome (MIM#615071) is a rare developmental disorder caused by biallelic variants in the LARP7 gene. Hallmark features include short stature, global developmental delay, and distinctive facial features. To date, 23 patients from 11 families have been reported in the literature. Here we describe a 19-year-old man who, in association with the typical features of Alazami syndrome, was diagnosed at the age of 14 years with papillary thyroid carcinoma, harboring the somatic BRAF V600E mutation. Whole exome sequencing revealed two novel LARP7 variants in compound heterozygosity, whereas only common variants were detected in genes associated with familial nonmedullary thyroid cancer (MIM#188550). LARP7 acts as a tumor suppressor in breast and gastric cancer, and possibly, according to recent studies, in thyroid tumors. Since thyroid cancer is rare among children and adolescents, we hypothesize that the LARP7 variants identified in our patient are responsible for both Alazami syndrome and tumor susceptibility. We also provide an overview of the clinical findings in all Alazami syndrome patients reported to date and discuss the possible pathogenetic mechanism that may underlie this condition, including the role of LARP7 in tumor susceptibility.


Asunto(s)
Discapacidades del Desarrollo/genética , Enanismo/genética , Discapacidad Intelectual/genética , Proteínas Proto-Oncogénicas B-raf/genética , Ribonucleoproteínas/genética , Cáncer Papilar Tiroideo/genética , Neoplasias de la Tiroides/genética , Mutación del Sistema de Lectura , Predisposición Genética a la Enfermedad , Heterocigoto , Humanos , Italia , Masculino , Fenotipo , Cáncer Papilar Tiroideo/diagnóstico por imagen , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/diagnóstico por imagen , Neoplasias de la Tiroides/patología , Secuenciación del Exoma , Adulto Joven
9.
Am J Med Genet A ; 182(12): 2877-2886, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33043602

RESUMEN

Wiedemann-Steiner syndrome (WDSTS) is a rare autosomal dominant condition caused by heterozygous loss of function variants in the KMT2A (MLL) gene, encoding a lysine N-methyltransferase that mediates a histone methylation pattern specific for epigenetic transcriptional activation. WDSTS is characterized by a distinctive facial phenotype, hypertrichosis, short stature, developmental delay, intellectual disability, congenital malformations, and skeletal anomalies. Recently, a few patients have been reported having abnormal skeletal development of the cervical spine. Here we describe 11 such individuals, all with KMT2A de novo loss-of-function variants: 10 showed craniovertebral junction anomalies, while an 11th patient had a cervical abnormality in C7. By evaluating clinical and diagnostic imaging data we characterized these anomalies, which consist primarily of fused cervical vertebrae, C1 and C2 abnormalities, small foramen magnum and Chiari malformation type I. Craniovertebral anomalies in WDSTS patients have been largely disregarded so far, but the increasing number of reports suggests that they may be an intrinsic feature of this syndrome. Specific investigation strategies should be considered for early identification and prevention of craniovertebral junction complications in WDSTS patients.


Asunto(s)
Anomalías Múltiples/patología , Vértebras Cervicales/patología , Contractura/patología , Trastornos del Crecimiento/patología , N-Metiltransferasa de Histona-Lisina/genética , Discapacidad Intelectual/patología , Microcefalia/patología , Mutación , Proteína de la Leucemia Mieloide-Linfoide/genética , Anomalías Múltiples/genética , Adolescente , Adulto , Vértebras Cervicales/metabolismo , Niño , Preescolar , Contractura/genética , Facies , Femenino , Trastornos del Crecimiento/genética , Humanos , Discapacidad Intelectual/genética , Masculino , Microcefalia/genética , Fenotipo , Síndrome , Adulto Joven
10.
Proc Natl Acad Sci U S A ; 114(4): E514-E523, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28069966

RESUMEN

Most members of the Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) families transduce signals via a canonical pathway involving the MyD88 adapter and the interleukin-1 receptor-associated kinase (IRAK) complex. This complex contains four molecules, including at least two (IRAK-1 and IRAK-4) active kinases. In mice and humans, deficiencies of IRAK-4 or MyD88 abolish most TLR (except for TLR3 and some TLR4) and IL-1R signaling in both leukocytes and fibroblasts. TLR and IL-1R responses are weak but not abolished in mice lacking IRAK-1, whereas the role of IRAK-1 in humans remains unclear. We describe here a boy with X-linked MECP2 deficiency-related syndrome due to a large de novo Xq28 chromosomal deletion encompassing both MECP2 and IRAK1 Like many boys with MECP2 null mutations, this child died very early, at the age of 7 mo. Unlike most IRAK-4- or MyD88-deficient patients, he did not suffer from invasive bacterial diseases during his short life. The IRAK-1 protein was completely absent from the patient's fibroblasts, which responded very poorly to all TLR2/6 (PAM2CSK4, LTA, FSL-1), TLR1/2 (PAM3CSK4), and TLR4 (LPS, MPLA) agonists tested but had almost unimpaired responses to IL-1ß. By contrast, the patient's peripheral blood mononuclear cells responded normally to all TLR1/2, TLR2/6, TLR4, TLR7, and TLR8 (R848) agonists tested, and to IL-1ß. The death of this child precluded long-term evaluations of the clinical consequences of inherited IRAK-1 deficiency. However, these findings suggest that human IRAK-1 is essential downstream from TLRs but not IL-1Rs in fibroblasts, whereas it plays a redundant role downstream from both TLRs and IL-1Rs in leukocytes.


Asunto(s)
Fibroblastos/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/deficiencia , Receptores Toll-Like/metabolismo , Deleción Cromosómica , Cromosomas Humanos X/genética , Humanos , Lactante , Quinasas Asociadas a Receptores de Interleucina-1/genética , Leucocitos/metabolismo , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Receptores de Interleucina-1/metabolismo , Transducción de Señal , Receptores Toll-Like/genética
11.
Hum Mutat ; 40(2): 193-200, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30412329

RESUMEN

We studied by a whole genomic approach and trios genotyping, 12 de novo, nonrecurrent small supernumerary marker chromosomes (sSMC), detected as mosaics during pre- or postnatal diagnosis and associated with increased maternal age. Four sSMCs contained pericentromeric portions only, whereas eight had additional non-contiguous portions of the same chromosome, assembled together in a disordered fashion by repair-based mechanisms in a chromothriptic event. Maternal hetero/isodisomy was detected with a paternal origin of the sSMC in some cases, whereas in others two maternal alleles in the sSMC region and biparental haplotypes of the homologs were detected. In other cases, the homologs were biparental while the sSMC had the same haplotype of the maternally inherited chromosome. These findings strongly suggest that most sSMCs are the result of a multiple-step mechanism, initiated by maternal meiotic nondisjunction followed by postzygotic anaphase lagging of the supernumerary chromosome and its subsequent chromothripsis.


Asunto(s)
Aberraciones Cromosómicas , Cromosomas/genética , Herencia Materna/genética , Trisomía/genética , Alelos , Cromotripsis , Hibridación Genómica Comparativa , Femenino , Haplotipos/genética , Humanos , Hibridación Fluorescente in Situ , Edad Materna , Mosaicismo , Fenotipo , Diagnóstico Prenatal , Trisomía/patología
12.
J Med Genet ; 55(4): 269-277, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29378768

RESUMEN

INTRODUCTION: Phelan-McDermid syndrome (PMS) is caused by SHANK3 haploinsufficiency. Its wide phenotypic variation is attributed partly to the type and size of 22q13 genomic lesion (deletion, unbalanced translocation, ring chromosome), partly to additional undefined factors. We investigated a child with severe global neurodevelopmental delay (NDD) compatible with her distal 22q13 deletion, complicated by bilateral perisylvian polymicrogyria (BPP) and urticarial rashes, unreported in PMS. METHODS: Following the cytogenetic and array-comparative genomic hybridization (CGH) detection of a r(22) with SHANK3 deletion and two upstream duplications, whole-genome sequencing (WGS) in blood and whole-exome sequencing (WES) in blood and saliva were performed to highlight potential chromothripsis/chromoanagenesis events and any possible BPP-associated variants, even in low-level mosaicism. RESULTS: WGS confirmed the deletion and highlighted inversion and displaced order of eight fragments, three of them duplicated. The microhomology-mediated insertion of partial Alu-elements at one breakpoint junction disrupted the topological associating domain joining NFAM1 to the transcriptional coregulator TCF20. WES failed to detect BPP-associated variants. CONCLUSIONS: Although we were unable to highlight the molecular basis of BPP, our data suggest that SHANK3 haploinsufficiency and TCF20 misregulation, both associated with intellectual disability, contributed to the patient's NDD, while NFAM1 interruption likely caused her skin rashes, as previously reported. We provide the first example of chromoanasynthesis in a constitutional ring chromosome and reinforce the growing evidence that chromosomal rearrangements may be more complex than estimated by conventional diagnostic approaches and affect the phenotype by global alteration of the topological chromatin organisation rather than simply by deletion or duplication of dosage-sensitive genes.


Asunto(s)
Trastornos de los Cromosomas/genética , Cromotripsis , Translocación Genética , Cesárea , Preescolar , Deleción Cromosómica , Trastornos de los Cromosomas/epidemiología , Trastornos de los Cromosomas/patología , Cromosomas Humanos Par 22/genética , Hibridación Genómica Comparativa , Femenino , Genómica , Haploinsuficiencia/genética , Humanos , Lactante , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Embarazo , Cromosomas en Anillo , Factores de Transcripción/genética
13.
Hum Genet ; 137(10): 817-829, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30276538

RESUMEN

We investigated 52 cases of de novo unbalanced translocations, consisting in a terminally deleted or inverted-duplicated deleted (inv-dup del) 46th chromosome to which the distal portion of another chromosome or its opposite end was transposed. Array CGH, whole-genome sequencing, qPCR, FISH, and trio genotyping were applied. A biparental origin of the deletion and duplication was detected in 6 cases, whereas in 46, both imbalances have the same parental origin. Moreover, the duplicated region was of maternal origin in more than half of the cases, with 25% of them showing two maternal and one paternal haplotype. In all these cases, maternal age was increased. These findings indicate that the primary driver for the occurrence of the de novo unbalanced translocations is a maternal meiotic non-disjunction, followed by partial trisomy rescue of the supernumerary chromosome present in the trisomic zygote. In contrast, asymmetric breakage of a dicentric chromosome, originated either at the meiosis or postzygotically, in which the two resulting chromosomes, one being deleted and the other one inv-dup del, are repaired by telomere capture, appears at the basis of all inv-dup del translocations. Notably, this mechanism also fits with the origin of some simple translocations in which the duplicated region was of paternal origin. In all cases, the signature at the translocation junctions was that of non-homologous end joining (NHEJ) rather than non-allelic homologous recombination (NAHR). Our data imply that there is no risk of recurrence in the following pregnancies for any of the de novo unbalanced translocations we discuss here.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Meiosis , Reparación del ADN por Recombinación , Translocación Genética/genética , Femenino , Humanos , Masculino
14.
J Pathol ; 243(1): 9-15, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28608987

RESUMEN

SMARCA4 chromatin remodelling factor is mutated in 11% of Coffin-Siris syndrome (CSS) patients and in almost all small-cell carcinoma of the ovary hypercalcaemic type (SCCOHT) tumours. Missense mutations with gain-of-function or dominant-negative effects are associated with CSS, whereas inactivating mutations, leading to loss of SMARCA4 expression, have been exclusively found in SCCOHT. We applied whole-exome sequencing to study a 15-year-old patient with mild CSS who concomitantly developed SCCOHT at age 13 years. Interestingly, our patient also showed congenital microphthalmia, which has never previously been reported in CSS patients. We detected a de novo germline heterozygous nonsense mutation in exon 19 of SMARCA4 (c.2935C > T;p.Arg979*), and a somatic frameshift mutation in exon 6 (c.1236_1236delC;p.Gln413Argfs*88), causing complete loss of SMARCA4 immunostaining in the tumour. The immunohistochemical findings are supported by the observation that the c.2935C > T mutant transcript was detected by reverse transcription polymerase chain reaction at a much lower level than the wild-type allele in whole blood and the lymphoblastoid cell line of the proband, confirming nonsense-mediated mRNA decay. Accordingly, immunoblotting demonstrated that there was approximately half the amount of SMARCA4 protein in the proband's cells as in controls. This study suggests that SMARCA4 constitutional mutations associated with CSS are not necessarily non-truncating, and that haploinsufficiency may explain milder CSS phenotypes, as previously reported for haploinsufficient ARID1B. In addition, our case supports the dual role of chromatin remodellers in developmental disorders and cancer, as well as the involvement of SMARCA4 in microphthalmia, confirming previous findings in mouse models and the DECIPHER database. Finally, we speculate that mild CSS might be under-recognized in a proportion of SCCOHT patients harbouring SMARCA4 mutations. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Anomalías Múltiples/genética , Biomarcadores de Tumor/genética , Carcinoma de Células Pequeñas/genética , Codón sin Sentido , ADN Helicasas/genética , Cara/anomalías , Mutación del Sistema de Lectura , Deformidades Congénitas de la Mano/genética , Hipercalcemia/genética , Discapacidad Intelectual/genética , Micrognatismo/genética , Microftalmía/genética , Cuello/anomalías , Proteínas Nucleares/genética , Neoplasias Ováricas/genética , Factores de Transcripción/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/metabolismo , Adolescente , Biomarcadores de Tumor/análisis , Western Blotting , Carcinoma de Células Pequeñas/química , Carcinoma de Células Pequeñas/diagnóstico , ADN Helicasas/análisis , Análisis Mutacional de ADN , Femenino , Predisposición Genética a la Enfermedad , Deformidades Congénitas de la Mano/diagnóstico , Deformidades Congénitas de la Mano/metabolismo , Heterocigoto , Humanos , Hipercalcemia/diagnóstico , Hipercalcemia/metabolismo , Inmunohistoquímica , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/metabolismo , Masculino , Micrognatismo/diagnóstico , Micrognatismo/metabolismo , Microftalmía/diagnóstico , Microftalmía/metabolismo , Persona de Mediana Edad , Proteínas Nucleares/análisis , Neoplasias Ováricas/química , Neoplasias Ováricas/diagnóstico , Linaje , Fenotipo , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/análisis
15.
Genes Chromosomes Cancer ; 56(12): 846-854, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28791770

RESUMEN

Familial adenomatous polyposis is a Mendelian syndrome in which germline loss-of-function mutations of APC are associated with multiple adenomatous polyps of the large bowel, a multiplicity of extracolonic features, and a high lifetime risk of colorectal cancer. Different APC germline mutations have been identified, including sequence changes, genomic rearrangements, and expression defects. Recently, very rare families have been associated with constitutive large deletions encompassing the APC-5' regulatory region, while leaving the remaining gene sequence intact; the regulatory region contains a proximal and a distal promoter, called 1A and 1B, respectively. We identified a novel deletion encompassing promoter 1B in a large Italian family that manifested polyposis in three of the six branches descending from a founding couple married in 1797. By combining different molecular approaches on both DNA and RNA, we precisely mapped this deletion (6858 bp in length) that proved to be associated with APC allele silencing. The finding of the same deletion in two additional polyposis families pointed to a founder mutation in Italy. Deletion carriers from the three families all showed a "classical" polyposis phenotype. To explore the molecular mechanisms underlying promoter deletions, we performed an in silico analysis of the breakpoints of 1A and 1B rearrangements so far reported in the literature; moreover, to decipher genotype-phenotype correlations, we critically reviewed current knowledge on deletions versus point mutations in the APC-5' regulatory region.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/genética , Efecto Fundador , Eliminación de Gen , Poliposis Adenomatosa del Colon/patología , Adolescente , Adulto , Femenino , Mutación de Línea Germinal , Humanos , Italia , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Regiones Promotoras Genéticas
16.
Hum Mutat ; 38(3): 260-264, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27805744

RESUMEN

Mutations in the thyroid hormone transporter SLC16A2 (MCT8) cause the Allan-Herndon-Dudley Syndrome (AHDS), characterized by severe psychomotor retardation and peripheral thyrotoxicosis. Here, we report three newly identified AHDS patients. Previously documented mutations were identified in probands 1 (p.R271H) and 2 (p.G564R), resulting in a severe clinical phenotype. A novel mutation (p.G564E) was identified in proband 3, affecting the same Gly564 residue, but resulting in a relatively mild clinical phenotype. Functional analysis in transiently transfected COS-1 and JEG-3 cells showed a near-complete inactivation of TH transport for p.G564R, whereas considerable cell-type-dependent residual transport activity was observed for p.G564E. Both mutants showed a strong decrease in protein expression levels, but differentially affected Vmax and Km values of T3 transport. Our findings illustrate that different mutations affecting the same residue may have a differential impact on SLC16A2 transporter function, which translates into differences in severity of the clinical phenotype.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X/diagnóstico , Discapacidad Intelectual Ligada al Cromosoma X/genética , Transportadores de Ácidos Monocarboxílicos/genética , Hipotonía Muscular/diagnóstico , Hipotonía Muscular/genética , Atrofia Muscular/diagnóstico , Atrofia Muscular/genética , Mutación , Fenotipo , Biomarcadores , Niño , Preescolar , Humanos , Imagen por Resonancia Magnética , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/terapia , Hipotonía Muscular/terapia , Atrofia Muscular/terapia , Linaje , Simportadores
17.
N Engl J Med ; 370(11): 1019-28, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24571724

RESUMEN

BACKGROUND: Corticotropin-independent Cushing's syndrome is caused by tumors or hyperplasia of the adrenal cortex. The molecular pathogenesis of cortisol-producing adrenal adenomas is not well understood. METHODS: We performed exome sequencing of tumor-tissue specimens from 10 patients with cortisol-producing adrenal adenomas and evaluated recurrent mutations in candidate genes in an additional 171 patients with adrenocortical tumors. We also performed genomewide copy-number analysis in 35 patients with cortisol-secreting bilateral adrenal hyperplasias. We studied the effects of these genetic defects both clinically and in vitro. RESULTS: Exome sequencing revealed somatic mutations in PRKACA, which encodes the catalytic subunit of cyclic AMP-dependent protein kinase (protein kinase A [PKA]), in 8 of 10 adenomas (c.617A→C in 7 and c.595_596insCAC in 1). Overall, PRKACA somatic mutations were identified in 22 of 59 unilateral adenomas (37%) from patients with overt Cushing's syndrome; these mutations were not detectable in 40 patients with subclinical hypercortisolism or in 82 patients with other adrenal tumors. Among 35 patients with cortisol-producing hyperplasias, 5 (including 2 first-degree relatives) carried a germline copy-number gain (duplication) of the genomic region on chromosome 19 that includes PRKACA. In vitro studies showed impaired inhibition of both PKA catalytic subunit mutants by the PKA regulatory subunit, whereas cells from patients with germline chromosomal gains showed increased protein levels of the PKA catalytic subunit; in both instances, basal PKA activity was increased. CONCLUSIONS: Genetic alterations of the catalytic subunit of PKA were found to be associated with human disease. Germline duplications of this gene resulted in bilateral adrenal hyperplasias, whereas somatic PRKACA mutations resulted in unilateral cortisol-producing adrenal adenomas. (Funded by the European Commission Seventh Framework Program and others.).


Asunto(s)
Adenoma/genética , Neoplasias de las Glándulas Suprarrenales/genética , Hiperplasia Suprarrenal Congénita/genética , Síndrome de Cushing/etiología , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Mutación de Línea Germinal , Adenoma/complicaciones , Adenoma/enzimología , Neoplasias de las Glándulas Suprarrenales/complicaciones , Neoplasias de las Glándulas Suprarrenales/enzimología , Adulto , Dominio Catalítico , Síndrome de Cushing/enzimología , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Exoma , Humanos , Hidrocortisona/biosíntesis , Persona de Mediana Edad , Mutación , Conformación Proteica , Análisis de Secuencia de ADN
18.
Blood Cells Mol Dis ; 64: 38-44, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28376382

RESUMEN

Diamond-Blackfan anemia (DBA) is a rare congenital disorder presenting remarkable phenotypic overlap with other inherited bone marrow failure syndromes, making differential diagnosis challenging and its confirmation often reached with great delay. By whole exome sequencing, we unraveled the presence of pathogenic variants affecting genes already known to be involved in DBA pathogenesis (RPL5 and RPS19) in three patients with otherwise uncertain clinical diagnosis, and provided new insights on DBA genotype-phenotype correlations. Remarkably, the RPL5 c.482del frameshift mutation has never been reported before, whereas the RPS19 c.3G>T missense mutation, although previously described in a 2-month-old DBA patient without malformations and refractory to steroid therapy, was detected here in the mosaic state in different bodily tissues for the first time in DBA patients.


Asunto(s)
Anemia de Diamond-Blackfan , Exoma , Mutación del Sistema de Lectura , Mosaicismo , Mutación Missense , Proteínas Ribosómicas/genética , Anemia de Diamond-Blackfan/diagnóstico , Anemia de Diamond-Blackfan/genética , Preescolar , Diagnóstico Diferencial , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino
19.
BMC Med Genet ; 18(1): 147, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29237418

RESUMEN

BACKGROUND: Mutations in the gene that encodes CDGSH iron sulfur domain 2 (CISD2) are causative of Wolfram syndrome type 2 (WFS2), a rare autosomal recessive neurodegenerative disorder mainly characterized by diabetes mellitus, optic atrophy, peptic ulcer bleeding and defective platelet aggregation. Four mutations in the CISD2 gene have been reported. Among these mutations, the homozygous c.103 + 1G > A substitution was identified in the donor splice site of intron 1 in two Italian sisters and was predicted to cause a exon 1 to be skipped. METHODS: Here, we employed molecular assays to characterize the c.103 + 1G > A mutation using the patient's peripheral blood mononuclear cells (PBMCs). 5'-RACE coupled with RT-PCR were used to analyse the effect of the c.103 + 1G > A mutation on mRNA splicing. Western blot analysis was used to analyse the consequences of the CISD2 mutation on the encoded protein. RESULTS: We demonstrated that the c.103 + 1G > A mutation functionally impaired mRNA splicing, producing multiple splice variants characterized by the whole or partial absence of exon 1, which introduced amino acid changes and a premature stop. The affected mRNAs resulted in either predicted targets for nonsense mRNA decay (NMD) or non-functional isoforms. CONCLUSIONS: We concluded that the c.103 + 1G > A mutation resulted in the loss of functional CISD2 protein in the two Italian WFS2 patients.


Asunto(s)
Envejecimiento Prematuro/genética , Pérdida Auditiva Sensorineural/genética , Proteínas de la Membrana/genética , Enfermedades Mitocondriales/genética , Mutación , Atrofia Óptica/genética , Sitios de Empalme de ARN/genética , Secuencia de Bases , Células Sanguíneas , Codón sin Sentido , Exones/genética , Femenino , Humanos , Intrones/genética , Leucocitos Mononucleares , Proteínas de la Membrana/química , Isoformas de Proteínas/genética , Sitios de Empalme de ARN/fisiología , Empalme del ARN , ARN Mensajero/genética , Análisis de Secuencia , Eliminación de Secuencia
20.
Eur J Pediatr ; 176(4): 455-464, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28124115

RESUMEN

Children with chromosome 14 aberrations usually show developmental delays, intellectual disability, neurological disorders and behaviour problems. The aim of the present study is to describe the developmental trajectories of the communicative skills of children with chromosome 14 aberrations, considering the possible relationships between the patterns of language development and the children's clinical characteristics (e.g., intellectual disability or autistic traits). Longitudinal data on five children (four with linear deletions and one with ring 14 syndrome) followed for 3 years are presented. Four out of five children showed profound intellectual disability, and three out of five showed autistic traits. A high individual variability was found in both vocal and gestural productions. However, only a modest increase in the children's communicative and symbolic skills was detected over time (e.g., in the quality of preverbal productions). CONCLUSION: The increase of communicative skills in children with chromosome 14 aberration is very slow. We need to consider the children's characteristics, in terms of type of chromosome aberration, level of intellectual disability and presence/absence of autistic traits, to predict their possible linguistic outcomes and to give a more realistic expectation to their parents. What is known: • The communicative skills of children with chromosome 14 aberrations are usually impaired. • The presence of autistic traits is frequent in these children. What is new: • The increase of communicative skills in children with chromosome 14 aberrations is very slow. • The level of intellectual disability and the presence/absence of autistic traits appeared to have a role in predicting the possible linguistic outcomes in children with chromosome 14 aberrations.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 14 , Trastornos del Desarrollo del Lenguaje/genética , Trastorno del Espectro Autista/diagnóstico , Encéfalo/diagnóstico por imagen , Niño , Preescolar , Cromosomas Humanos Par 14/genética , Electroencefalografía , Femenino , Humanos , Lactante , Cariotipificación , Desarrollo del Lenguaje , Trastornos del Desarrollo del Lenguaje/diagnóstico , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Cromosomas en Anillo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda