Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Entropy (Basel) ; 23(6)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072438

RESUMEN

In this paper, we investigate the multi-criteria decision-making complications under intuitionistic fuzzy hypersoft set (IFHSS) information. The IFHSS is a proper extension of the intuitionistic fuzzy soft set (IFSS) which discusses the parametrization of multi-sub attributes of considered parameters, and accommodates more hesitation comparative to IFSS utilizing the multi sub-attributes of the considered parameters. The main objective of this research is to introduce operational laws for intuitionistic fuzzy hypersoft numbers (IFHSNs). Additionally, based on developed operational laws two aggregation operators (AOs), i.e., intuitionistic fuzzy hypersoft weighted average (IFHSWA) and intuitionistic fuzzy hypersoft weighted geometric (IFHSWG), operators have been presented with their fundamental properties. Furthermore, a decision-making approach has been established utilizing our developed aggregation operators (AOs). Through the established approach, a technique for solving decision-making (DM) complications is proposed to select sustainable suppliers in sustainable supply chain management (SSCM). Moreover, a numerical description is presented to ensure the validity and usability of the proposed technique in the DM process. The practicality, effectivity, and flexibility of the current approach are demonstrated through comparative analysis with the assistance of some prevailing studies.

2.
Sci Rep ; 14(1): 7678, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561356

RESUMEN

The relationship between two variables is an essential factor in statistics, and the accuracy of the results depends on the data collected. However, the data collected for statistical analysis can be unclear and difficult to interpret. One way to predict how one variable will change about another is by using the correlation coefficient (CC), but this method is not commonly used in interval-valued Pythagorean fuzzy hypersoft set (IVPFHSS). The IVPFHSS is a more advanced and generalized form of the Pythagorean fuzzy hypersoft set (PFHSS), which allows for more precise and accurate analysis. In this research, we introduce the correlation coefficient (CC) and weighted correlation coefficient (WCC) for IVPFHSS and their essential properties. To demonstrate the applicability of these measures, we use the COVID-19 pandemic as an example and establish a prioritization technique for order preference by similarity to the ideal solution (TOPSIS) model. The technique is used to study the problem of optimizing the allocation of hospital beds during the pandemic. This study provides insights into the importance of utilizing correlation measures for decision-making in uncertain and complex situations like the COVID-19 pandemic. It is a robust multi-attribute decision-making (MADM) methodology with significant importance. Subsequently, it is planned to increase a dynamic bed allocation algorithm based on biogeography to accomplish the superlative decision-making system. Moreover, numerical investigations deliberate the best decision structures and deliver sensitivity analyses. The efficiency of our encouraged algorithm is more consistent than prevalent models, and it can effectively control and determine the optimal configurations for the study.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Pandemias , Algoritmos , Equipos y Suministros de Hospitales , Proyectos de Investigación
3.
Heliyon ; 10(11): e32145, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38912497

RESUMEN

Fuzzy hybrid models are efficient mathematical tools for managing unclear and vague data in real-world scenarios. This research explores the q-rung orthopair fuzzy soft set (q-ROFSS), which presents incomplete and ambiguous details in decision-making problems. The main intention of this study is to describe and evaluate the characteristics of the correlation coefficient (CC) and weighted correlation coefficient (WCC) for q-ROFSS. Also, the technique for order preference should be enhanced by similarity to the ideal solution (TOPSIS) with extended measures in q-ROFSS settings. Furthermore, we integrated mathematical formulations of correlation obstructions to confirm the consistency of the planned technique. It helps handle difficulties involving multi-attribute group decision-making (MAGDM). Moreover, a numerical illustration is presented to clarify how the advocated decision-making methodology can be implemented in evaluating suppliers in green supply chain management (GSCM). As a result, each alternative is assessed using multiple criteria, such as quality and reliability, capacity and scalability, compliance and certifications, and sustainability practices. The technique proposed in this study retains the selected research's specific structure more effectively than current techniques. A comparative analysis further substantiates the feasibility and effectiveness of the proposed approach over other decision-making techniques.

4.
Sci Rep ; 14(1): 1469, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233489

RESUMEN

The analysis of peristaltic-ciliary transport in the human female fallopian tube, specifically in relation to the growing embryo, is a matter of considerable physiological importance. This paper proposes a biomechanical model that incorporates a finite permeable tube consisting of two layers, where the Jeffrey fluid model characterizes the viscoelastic properties of the growing embryo and continuously secreting fluid. Jeffrey fluid entering with some negative pressure gradient forms the core fluid layer while continuously secreting Jeffrey fluid forms the peripheral fluid layer. The resulting partial differential equations are solved for closed-form solutions after employing the assumption of long wavelength. The analysis delineated that increasing the constant secretion velocity, Darcy number, and Reynolds number leads to a decrease in the appropriate residue time of the core fluid layer and a reduction in the size of the secreting fluid bolus in the peripheral fluid layer. Eventually, the boluses completely disappear when the constant secretion velocity exceeds 3.0 Progesterone ([Formula: see text]) and estradiol ([Formula: see text]) directly regulate the transportation of the growing embryo, while luteinizing hormone (LH) and follicle-stimulating hormone (FSH), prolactin, anti-mullerian hormone (AMH), and thyroid-stimulating hormone (TSH) have an indirect effects. Based on the number and size of blastomeres, the percentage of fragmentation, and the presence of multinucleated blastomeres two groups were formed in an in vitro experiment. Out of 50 patients, 26 (76.5%) were pregnant in a group of the good quality embryos, and only 8 (23.5%) were in a group of the bad quality embryos. The transport of growing embryo in the human fallopian tube and preimplantation development of human embryos in in vitro are constraint by baseline hormones FSH, LH, prolactin, [Formula: see text], AMH, and TSH.


Asunto(s)
Hormona Luteinizante , Prolactina , Embarazo , Femenino , Humanos , Hormona Folículo Estimulante , Estradiol , Progesterona , Desarrollo Embrionario , Tirotropina
5.
Sci Rep ; 13(1): 8726, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37253823

RESUMEN

Selecting a supplier for emergency medical supplies during disasters can be considered a typical multiple attribute group decision-making (MAGDM) problem. MAGDM is an intriguing common problem that is rife with ambiguity and uncertainty. It becomes much more challenging when governments and medical care enterprises adjust their priorities in response to the escalating problems and the effectiveness of the actions taken in different countries. As decision-making problems become increasingly complicated nowadays, a growing number of experts are likely to use T-spherical fuzzy sets (T-SFSs) rather than exact numbers. T-SFS is a novel extension of fuzzy sets that can fully convey ambiguous and complicated information in MAGDM. The objective of this paper is to propose a MAGDM methodology based on interaction and feedback mechanism (IFM) and T-SFS theory. In it, we first introduce T-SF partitioned Bonferroni mean (T-SFPBM) and T-SF weighted partitioned Bonferroni mean (T-SFWPBM) operators to fuse the evaluation information provided by experts. Then, an IFM is designed to achieve a consensus between multiple experts. In the meantime, we also find the weights of experts by using T-SF information. Furthermore, in light of the combination of IFM and T-SFWPBM operator, an MAGDM algorithm is designed. Finally, an example of supplier selection for emergency medical supplies is provided to demonstrate the viability of the suggested approach. The influence of parameters on decision results and comparative analysis with the existing methods confirmed the reliability and accuracy of the suggested approach.

6.
Sci Rep ; 13(1): 15551, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730700

RESUMEN

The significance of fuzzy volume percentage on the unsteady flow of MHD tangent hyperbolic fuzzy hybrid nanofluid towards an exponentially stretched surface is scrutinized. The heat transport mechanism is classified by Joule heating, nonlinear thermal radiation, boundary slippage, and convective circumstances. Ethylene glycol (EG) as a host fluid along with the nanomaterial's Cu and [Formula: see text] are used for heat transfer analysis is also considered in this investigation. The nonlinear governing PDEs are meant to be converted into ODEs employing appropriate renovations. Then, a built-in MATLAB program bvp4c is employed to acquire the outcome of the given problem. The variation of flow rate, thermal heat, drag force and Nusselt number and their influence on fluid flow with heat transfer have been scrutinized through graphs. An increase in thermal radiation, power law index and nanoparticle volume friction heightens the heat transmission rate. Skin friction is diminished by swelling the power-law index, Weissenberg number, and ratio parameters, whereas it is increased by enhancing the magnetic parameter. The heat transfer rate upsurges with an increase in Weissenberg number and nanoparticle volume fraction. Also, the nanoparticle volume percentage is expressed as a triangular fuzzy number (TFN). The triangular membership function (MF) and TFN are regulated by the [Formula: see text] parameter, which has a range of 0 to 1. In comparison to nanofluids, hybrid nanofluids have a higher heat transmission rate, according to the fuzzy analysis. This investigation has applications in the areas of paper manufacturing, metal sheet cooling and crystal growth.

7.
PLoS One ; 18(10): e0287032, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37903157

RESUMEN

Correlation is an essential statistical concept for analyzing two dissimilar variables' relationships. Although the correlation coefficient is a well-known indicator, it has not been applied to interval-valued Pythagorean fuzzy soft sets (IVPFSS) data. IVPFSS is a generalized form of interval-valued intuitionistic fuzzy soft sets and a refined extension of Pythagorean fuzzy soft sets. In this study, we propose the correlation coefficient (CC) and weighted correlation coefficient (WCC) for IVPFSS and examine their necessary properties. Based on the proposed correlation measures, we develop a prioritization technique for order preference by similarity to the ideal solution (TOPSIS). We use the Extract, Transform, and Load (ETL) software selection as an example to demonstrate the application of these measures and construct a prioritization technique for order preference by similarity to the ideal solution (TOPSIS) model. The method investigates the challenge of optimizing ETL software selection for business intelligence (BI). This study offers to illuminate the significance of using correlation measures to make decisions in uncertain and complex settings. The multi-attribute decision-making (MADM) approach is a powerful instrument with many applications. This expansion is predicted to conclude in a more reliable decision-making structure. Using a sensitivity analysis, we contributed empirical studies to determine the most significant decision processes. The proposed algorithm's productivity is more consistent than prevalent models in controlling the adequate conformations of the anticipated study. Therefore, this research is expected to contribute significantly to statistics and decision-making.


Asunto(s)
Toma de Decisiones , Lógica Difusa , Incertidumbre , Programas Informáticos , Inteligencia
8.
Sci Rep ; 13(1): 22132, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38092807

RESUMEN

The present investigation aims to use entropy analysis to analyze the unsteady Magnetohydrodynamic (MHD) flow in a second-grade fuzzy hybrid [Formula: see text] nanofluid over an exponentially shrinking/stretching surface. The model for hybridization of the mixture of alumina [Formula: see text] and copper (Cu) nanoparticles in the sodium alginate (SA) base fluid under heat source/sink, nonlinear thermal radiation, and viscous dissipation. The fundamental partial differential equations (PDEs) are simplified using an appropriate similarity conversion to generate the ordinary differential equations (ODEs). The analytical computation occurs in the MATHEMATICA program implementing the homotopy analysis method (HAM). In terms of code validity, our results are preferable to previous findings. The features of several parameters against the velocity, surface friction coefficient, entropy, temperature, and Nusselt number are described through graphs. According to our findings, the rise in the Brinkman and Reynolds numbers enhanced the total entropy of the system. Furthermore, the nanoparticle volume fraction and viscus dissipation magnifies the fluid temperature while retards the flow profile throughout the domain. Fluid velocity declined due to the Lorentz force using magnetic impact applications. The imprecision of nanofluid and hybrid nanofluid volume fractions was modelled as a triangular fuzzy number (TFN) [0%, 1%, 2%] for comparison. The double parametric approach was applied to deal with the fuzziness of the associated fuzzy parameters. The nonlinear ODEs convert into fuzzy differential equations (FDEs) and use HAM for the fuzzy solution. From our observation, the hybrid nanofluid displays the maximum heat transfer compared to nanofluids. This important contribution will support industrial growth, particularly in the processing and manufacturing sectors. The percentage increase in skin friction factor is 18.3 and 15.0 when [Formula: see text] and [Formula: see text] take input in the ranges of 0 ≤ [Formula: see text] ≤ 0.8 and 0 ≤ [Formula: see text] ≤ 1, respectively.

9.
Sci Rep ; 13(1): 18238, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880349

RESUMEN

This contribution aims to optimize nonlinear thermal flow for Darcy-Forchheimer Maxwell fuzzy [Formula: see text] tri-hybrid nanofluid flow across a Riga wedge in the context of boundary slip. Three types of nanomaterials, [Formula: see text] Cu and [Formula: see text] have been mixed into the basic fluid known as engine oil. Thermal properties with the effects of porous surface and nonlinear convection have been established for the particular combination [Formula: see text] Applying a set of appropriate variables, the set of equations that evaluated the energy and flow equations was transferred to the dimensionless form. For numerical computing, the MATLAB software's bvp4c function is used. The graphical display is used to demonstrate the influence of several influential parameters. It has been observed that flow rate decay with expansion in porosity parameter and nanoparticles volumetric fractions. In contrast, it rises with wedge angle, Grashof numbers, Darcy-Forchheimer, nonlinear Grashof numbers, and Maxwell fluid parameter. Thermal profiles increase with progress in the heat source, nanoparticles volumetric fractions, viscous dissipation, and nonlinear thermal radiation. The percentage increases in drag force for ternary hybrid nanofluid are 13.2 and 8.44 when the Modified Hartmann number takes input in the range [Formula: see text] and wedge angle parameters [Formula: see text]. For fuzzy analysis, dimensionless ODEs transformed into fuzzy differential equations and employed symmetrical triangular fuzzy numbers (TFNs). The TFN makes a triangular membership function (M.F.) that describes the fuzziness and comparison. This study compared nanofluids, hybrid nanofluids, and ternary nanofluids through triangular M.F. The boundary layer flow caused by a wedge surface plays a crucial role in heat exchanger systems and geothermal.

10.
Sci Rep ; 13(1): 6511, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081026

RESUMEN

Infrastructure development and the economy heavily rely on the construction industry. However, decision-making in construction projects can be intricate and difficult due to conflicting standards and requirements. To address this challenge, the q-rung orthopair fuzzy soft set (q-ROFSS) has emerged as a useful tool incorporating fuzzy and uncertain contractions. In many cases, further characterization of attributes is necessary as their values are not mutually exclusive. The prevalent q-ROFSS structures cannot resolve this state. The q-rung orthopair fuzzy hypersoft sets (q-ROFHSS) is a leeway of q-ROFSS that use multi-parameter approximation functions to scare the scarcities of predominant fuzzy sets structures. The fundamental objective of this research is to introduce the Einstein weighted aggregation operators (AOs) for q-rung orthopair fuzzy hypersoft sets (q-ROFHSS), such as q-rung orthopair fuzzy hypersoft Einstein weighted average and geometric operators, and discuss their fundamental properties. Mathematical explanations of decision-making (DM) contractions is present to approve the rationality of the developed approach. Einstein AOs, based on predictions, carried an animated multi-criteria group decision (MCGDM) method with the most substantial significance with the prominent MCGDM structures. Moreover, we utilize our proposed MCGDM model to select the most suitable construction company for a given construction project. The proposed method is evaluated through a statistical analysis, which helps ensure the DM process's efficiency. This analysis demonstrates that the proposed method is more realistic and reliable than other DM approaches. Overall, the research provides valuable insights for decision-makers in the construction industry who seek to optimize their DM processes and improve the outcomes of their projects.

12.
Comput Intell Neurosci ; 2021: 6608684, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34754303

RESUMEN

The present study especially concerns the investigation of the Couette flow and heat transfer with thermal radiation through an inclined channel. Single-wall carbon nanotube (SWCNT) and multiple-wall carbon nanotube (MWCNT) are nanoparticles embedded in the host fluid. The dimensionless highly nonlinear differential equations (DEs) are solved via numerical scheme bvp4c. The effects of the physical parameters on heat transfer are presented in the form of graphs. The results demonstrate that the heat transfer is enhanced by using solid particle frictions (SWCNT and MWCNT). The large estimation of a magnetic parameter declines the velocity component. The current and existing results with their comparisons are shown in the tabular form for the validation of our code. The current results are in good agreement with their existing results. Generally, fuzziness or uncertainty is inherent in modeling, analysis, and experimentation. Due to the uncertain environmental conditions, fuzziness broadly exists in various engineering heat transfer problems. In this work, the nanoparticles' volume fraction of the SWCNT and MWCNT is taken as uncertain parameters in terms of triangular fuzzy numbers (TFNs). The TFNs are controlled by the α - cut which has less computational effort for analyzing the fuzziness or uncertainties. Also, a comparison between the SWCNT and MWCNT through the membership function and the variability of the uncertainty is studied.


Asunto(s)
Hidrodinámica , Nanotubos de Carbono , Simulación por Computador , Calor
13.
Comput Intell Neurosci ; 2021: 2036506, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603426

RESUMEN

The Pythagorean fuzzy hypersoft set (PFHSS) is the most advanced extension of the intuitionistic fuzzy hypersoft set (IFHSS) and a suitable extension of the Pythagorean fuzzy soft set. In it, we discuss the parameterized family that contracts with the multi-subattributes of the parameters. The PFHSS is used to correctly assess insufficiencies, anxiety, and hesitancy in decision-making (DM). It is the most substantial notion for relating fuzzy data in the DM procedure, which can accommodate more uncertainty compared to available techniques considering membership and nonmembership values of each subattribute of given parameters. In this paper, we will present the operational laws for Pythagorean fuzzy hypersoft numbers (PFHSNs) and also some fundamental properties such as idempotency, boundedness, shift-invariance, and homogeneity for Pythagorean fuzzy hypersoft weighted average (PFHSWA) and Pythagorean fuzzy hypersoft weighted geometric (PFHSWG) operators. Furthermore, a novel multicriteria decision-making (MCDM) approach has been established utilizing presented aggregation operators (AOs) to resolve decision-making complications. To validate the useability and pragmatism of the settled technique, a brief comparative analysis has been conducted with some existing approaches.


Asunto(s)
Ansiedad , Incertidumbre
14.
Comput Intell Neurosci ; 2021: 7211399, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34804149

RESUMEN

Similarity measures (SM) and correlation coefficients (CC) are used to solve many problems. These problems include vague and imprecise information, excluding the inability to deal with general vagueness and numerous information problems. The main purpose of this research is to propose an m-polar interval-valued neutrosophic soft set (mPIVNSS) by merging the m-polar fuzzy set and interval-valued neutrosophic soft set and then study various operations based on the proposed notion, such as AND operator, OR operator, truth-favorite, and false-favorite operators with their properties. This research also puts forward the concept of the necessity and possibility operations of mPIVNSS and also the m-polar interval-valued neutrosophic soft weighted average operator (mPIVNSWA) with its desirable properties. Cosine and set-theoretic similarity measures have been proposed for mPIVNSS using Bhattacharya distance and discussed their fundamental properties. Furthermore, we extend the concept of CC and weighted correlation coefficient (WCC) for mPIVNSS and presented their necessary characteristics. Moreover, utilizing the mPIVNSWA operator, CC, and SM developed three novel algorithms for mPIVNSS to solve the multicriteria decision-making problem. Finally, the advantages, effectiveness, flexibility, and comparative analysis of the developed algorithms are given with the prevailing techniques.


Asunto(s)
Algoritmos , Lógica Difusa
15.
Comput Intell Neurosci ; 2021: 2195922, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712316

RESUMEN

The electrocardiogram (ECG) is one of the most widely used diagnostic instruments in medicine and healthcare. Deep learning methods have shown promise in healthcare prediction challenges involving ECG data. This paper aims to apply deep learning techniques on the publicly available dataset to classify arrhythmia. We have used two kinds of the dataset in our research paper. One dataset is the MIT-BIH arrhythmia database, with a sampling frequency of 125 Hz with 1,09,446 ECG beats. The classes included in this first dataset are N, S, V, F, and Q. The second database is PTB Diagnostic ECG Database. The second database has two classes. The techniques used in these two datasets are the CNN model, CNN + LSTM, and CNN + LSTM + Attention Model. 80% of the data is used for the training, and the remaining 20% is used for testing. The result achieved by using these three techniques shows the accuracy of 99.12% for the CNN model, 99.3% for CNN + LSTM, and 99.29% for CNN + LSTM + Attention Model.


Asunto(s)
Aprendizaje Profundo , Algoritmos , Arritmias Cardíacas/diagnóstico , Electrocardiografía , Frecuencia Cardíaca , Humanos , Redes Neurales de la Computación
16.
Comput Intell Neurosci ; 2021: 1912859, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956343

RESUMEN

The nonlinear transformation concedes as S-box which is responsible for the certainty of contemporary block ciphers. Many kinds of S-boxes are planned by various authors in the literature. Construction of S-box with a powerful cryptographic analysis is the vital step in scheming block cipher. Through this paper, we give more powerful and worthy S-boxes and compare their characteristics with some previous S-boxes employed in cryptography. The algorithm program planned in this paper applies the action of projective general linear group PGL(2, GF(28)) on Galois field GF(28). The proposed S-boxes are constructed by using Mobius transformation and elements of Galois field. By using this approach, we will encrypt an image which is the preeminent application of S-boxes. These S-boxes offer a strong algebraic quality and powerful confusion capability. We have tested the strength of the proposed S-boxes by using different tests, BIC, SAC, DP, LP, and nonlinearity. Furthermore, we have applied these S-boxes in image encryption scheme. To check the strength of image encryption scheme, we have calculated contrast, entropy, correlation, energy, and homogeneity. The results assured that the proposed scheme is better. The advantage of this scheme is that we can secure our confidential image data during transmission.


Asunto(s)
Algoritmos , Seguridad Computacional , Entropía
17.
Comput Intell Neurosci ; 2021: 5447422, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745248

RESUMEN

Pythagorean fuzzy soft set (PFSS) is the most powerful and effective extension of Pythagorean fuzzy sets (PFS) which deals with the parametrized values of the alternatives. It is also a generalization of intuitionistic fuzzy soft set (IFSS) which provides us better and precise information in the decision-making process comparative to IFSS. The core objective of this work is to construct some algebraic operations for PFSS such as OR-operation, AND-operation, and necessity and possibility operations. Furthermore, some fundamental properties have been established for PFSS utilizing the developed operations. Moreover, a decision-making technique has been offered for PFSS based on a score matrix. To demonstrate the validity of the proposed approach, a numerical example has been presented. Finally, to ensure the practicality of the established approach, a comprehensive comparative analysis has been presented. The obtained results show that our developed approach is most effective and delivers better information comparative to prevailing techniques.


Asunto(s)
Lógica Difusa
18.
Comput Intell Neurosci ; 2021: 3678335, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34804139

RESUMEN

The prime objective of the current study is to examine the effects of third-grade hybrid nanofluid with natural convection utilizing the ferro-particle (Fe3O4) and titanium dioxide (TiO2) and sodium alginate (SA) as a host fluid, flowing through vertical parallel plates, under the fuzzy atmosphere. The dimensionless highly nonlinear coupled ordinary differential equations are computed adopting the bvp4c numerical approach. This is an extremely effective technique with a low computational cost. For validation, it is found that as the volume fraction of (Fe3O4+TiO2) hybrid nanoparticles rises, so does the heat transfer rate. The current and existing results with their comparisons are shown in the form of the tables. The present findings are in good agreement with their previous numerical and analytical results in a crisp atmosphere. The nanoparticles volume fraction of Fe3O4 and TiO2 is taken as uncertain parameters in terms of triangular fuzzy numbers (TFNs) [0, 0.05, 0.1]. The TFNs are controlled by α - cut and the variability of the uncertainty is studied through triangular membership function (MF).


Asunto(s)
Convección , Calor
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda