RESUMEN
Nonselective glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists are efficacious in chronic pain but have significant tolerability issues, likely arising from the ubiquitous expression of AMPA receptors in the central nervous system (CNS). Recently, LY3130481 has been shown to selectively block AMPA receptors coassembled with the auxiliary protein, transmembrane AMPA receptor regulatory protein (TARP) γ8, which is highly expressed in the hippocampus but also in pain pathways, including anterior cingulate (ACC) and somatosensory cortices and the spinal cord, suggesting that selective blockade of γ8/AMPA receptors may suppress nociceptive signaling with fewer CNS side effects. The potency of LY3130481 on recombinant γ8-containing AMPA receptors was modulated by coexpression with other TARPs; γ2 subunits affected activity more than γ3 subunits. Consistent with these findings, LY3130481 had decreasing potency on receptors from rat hippocampal, cortical, spinal cord, and cerebellar neurons that was replicated in tissue from human brain. LY3130481 partially suppressed, whereas the nonselective AMPA antagonist GYKI53784 completely blocked, AMPA receptor-dependent excitatory postsynaptic potentials in ACC and spinal neurons in vitro. Similarly, LY3130481 attenuated short-term synaptic plasticity in spinal sensory neurons in vivo in response to stimulation of peripheral afferents. LY3130481 also significantly reduced nocifensive behaviors after intraplantar formalin that was correlated with occupancy of CNS γ8-containing AMPA receptors. In addition, LY3130481 dose-dependently attenuated established gait impairment after joint damage and tactile allodynia after spinal nerve ligation, all in the absence of motor side effects. Collectively, these data demonstrate that LY3130481 can suppress excitatory synaptic transmission and plasticity in pain pathways containing γ8/AMPA receptors and significantly reduce nocifensive behaviors, suggesting a novel, effective, and safer therapy for chronic pain conditions.
Asunto(s)
Canales de Calcio/metabolismo , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/metabolismo , Terapia Molecular Dirigida , Receptores AMPA/metabolismo , Animales , Benzotiazoles/farmacología , Benzotiazoles/uso terapéutico , Dolor Crónico/fisiopatología , Masculino , Plasticidad Neuronal/efectos de los fármacos , Nocicepción/efectos de los fármacos , Pirazoles/farmacología , Pirazoles/uso terapéutico , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/efectos de los fármacos , Distribución TisularRESUMEN
Muscarinic acetylcholine M1 receptors play an important role in synaptic plasticity in the hippocampus and cortex. Potentiation of NMDA receptors as a consequence of muscarinic acetylcholine M1 receptor activation is a crucial event mediating the cholinergic modulation of synaptic plasticity, which is a cellular mechanism for learning and memory. In Alzheimer's disease, the cholinergic input to the hippocampus and cortex is severely degenerated, and agonists or positive allosteric modulators of M1 receptors are therefore thought to be of potential use to treat the deficits in cognitive functions in Alzheimer's disease. In this study we developed a simple system in which muscarinic modulation of NMDA receptors can be studied in vitro. Human M1 receptors and NR1/2B NMDA receptors were co-expressed in Xenopus oocytes and various muscarinic agonists were assessed for their modulatory effects on NMDA receptor-mediated responses. As expected, NMDA receptor-mediated responses were potentiated by oxotremorine-M, oxotremorine or xanomeline when the drugs were applied between subsequent NMDA responses, an effect which was fully blocked by the muscarinic receptor antagonist atropine. However, in oocytes expressing NR1/2B NMDA receptors but not muscarinic M1 receptors, oxotremorine-M co-applied with NMDA also resulted in a potentiation of NMDA currents and this effect was not blocked by atropine, demonstrating that oxotremorine-M is able to directly potentiate NMDA receptors. Oxotremorine, which is a close analogue of oxotremorine-M, and xanomeline, a chemically distinct muscarinic agonist, did not potentiate NMDA receptors by this direct mechanism. Comparing the chemical structures of the three different muscarinic agonists used in this study suggests that the tri-methyl ammonium moiety present in oxotremorine-M is important for the compound's interaction with NMDA receptors.
Asunto(s)
Agonistas Muscarínicos/farmacología , Oxotremorina/análogos & derivados , Receptores de N-Metil-D-Aspartato/agonistas , Animales , Humanos , Agonistas Muscarínicos/química , Oxotremorina/química , Oxotremorina/farmacología , Fosforilación/efectos de los fármacos , Proteína Quinasa C/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , XenopusRESUMEN
Disruption in the expression and function of synaptic proteins, and ion channels in particular, is critical in the pathophysiology of human neuropsychiatric and neurodegenerative diseases. However, very little is known regarding the functional and pharmacological properties of native synaptic human ion channels, and their potential changes in pathological conditions. Recently, an electrophysiological technique has been enabled for studying the functional and pharmacological properties of ion channels present in crude membrane preparation obtained from post-mortem frozen brains. We here extend these studies by showing that human synaptic ion channels also can be studied in this way. Synaptosomes purified from different regions of rodent and human brain (control and Alzheimer's) were characterized biochemically for enrichment of synaptic proteins, and expression of ion channel subunits. The same synaptosomes were also reconstituted in Xenopus oocytes, in which the functional and pharmacological properties of the native synaptic ion channels were characterized using the voltage clamp technique. We show that we can detect GABA, (RS)-α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and NMDA receptors, and modulate them pharmacologically with selective agonists, antagonists, and allosteric modulators. Furthermore, changes in ion channel expression and function were detected in synaptic membranes from Alzheimer's brains. Our present results demonstrate the possibility to investigate synaptic ion channels from healthy and pathological brains. This method of synaptosomes preparation and injection into oocytes is a significant improvement over the earlier method. It opens the way to directly testing, on native ion channels, the effects of novel drugs aimed at modulating important classes of synaptic targets. Disruption in the expression and function of synaptic ion channels is critical in the pathophysiology of human neurodegenerative diseases. We here show that synaptosomes purified from rodent and human frozen brain (control and Alzheimer disease) can be studied both biochemically and functionally. This method opens the way to directly testing the effects of novel drugs on native ion channels.
Asunto(s)
Encéfalo/metabolismo , Canales Iónicos/metabolismo , Oocitos/metabolismo , Sinaptosomas/metabolismo , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/fisiología , Fenómenos Electrofisiológicos/efectos de los fármacos , Fenómenos Electrofisiológicos/fisiología , Femenino , Humanos , Técnicas de Placa-Clamp/métodos , Ratas Wistar , Receptores de GABA-A/metabolismo , Xenopus laevis , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/farmacologíaRESUMEN
The citric acid cycle intermediate citrate plays a crucial role in metabolic processes such as fatty acid synthesis, glucose metabolism, and ß-oxidation. Citrate is imported from the circulation across the plasma membrane into liver cells mainly by the sodium-dependent citrate transporter (NaCT; SLC13A5). Deletion of NaCT from mice led to metabolic changes similar to caloric restriction; therefore, NaCT has been proposed as an attractive therapeutic target for the treatment of obesity and type 2 diabetes. In this study, we expressed mouse and human NaCT into Xenopus oocytes and examined some basic functional properties of those transporters. Interestingly, striking differences were found between mouse and human NaCT with respect to their sensitivities to citric acid cycle intermediates as substrates for these transporters. Mouse NaCT had at least 20- to 800-fold higher affinity for these intermediates than human NaCT. Mouse NaCT is fully active at physiologic plasma levels of citrate, but its human counterpart is not. Replacement of extracellular sodium by other monovalent cations revealed that human NaCT was markedly less dependent on extracellular sodium than mouse NaCT. The low sensitivity of human NaCT for citrate raises questions about the translatability of this target from the mouse to the human situation and raises doubts about the validity of this transporter as a therapeutic target for the treatment of metabolic diseases in humans.
Asunto(s)
Ciclo del Ácido Cítrico , Transportadores de Ácidos Dicarboxílicos/fisiología , Simportadores/fisiología , Animales , Cationes Monovalentes , Colina/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Femenino , Humanos , Litio/metabolismo , Oocitos/metabolismo , Técnicas de Placa-Clamp , Potasio/metabolismo , Sodio/metabolismo , Especificidad por Sustrato , Simportadores/genética , Xenopus laevisRESUMEN
Conventional nicotinic acetylcholine receptor (nAChR) agonists, such as acetylcholine, act at an extracellular "orthosteric" binding site located at the interface between two adjacent subunits. Here, we present evidence of potent activation of α7 nAChRs via an allosteric transmembrane site. Previous studies have identified a series of nAChR-positive allosteric modulators (PAMs) that lack agonist activity but are able to potentiate responses to orthosteric agonists, such as acetylcholine. It has been shown, for example, that TQS acts as a conventional α7 nAChR PAM. In contrast, we have found that a compound with close chemical similarity to TQS (4BP-TQS) is a potent allosteric agonist of α7 nAChRs. Whereas the α7 nAChR antagonist metyllycaconitine acts competitively with conventional nicotinic agonists, metyllycaconitine is a noncompetitive antagonist of 4BP-TQS. Mutation of an amino acid (M253L), located in a transmembrane cavity that has been proposed as being the binding site for PAMs, completely blocks agonist activation by 4BP-TQS. In contrast, this mutation had no significant effect on agonist activation by acetylcholine. Conversely, mutation of an amino acid located within the known orthosteric binding site (W148F) has a profound effect on agonist potency of acetylcholine (resulting in a shift of â¼200-fold in the acetylcholine dose-response curve), but had little effect on the agonist dose-response curve for 4BP-TQS. Computer docking studies with an α7 homology model provides evidence that both TQS and 4BP-TQS bind within an intrasubunit transmembrane cavity. Taken together, these findings provide evidence that agonist activation of nAChRs can occur via an allosteric transmembrane site.
Asunto(s)
Moduladores del Transporte de Membrana/farmacología , Modelos Moleculares , Agonistas Nicotínicos/farmacología , Receptores Nicotínicos/metabolismo , Acetilcolina , Aconitina/análogos & derivados , Regulación Alostérica/fisiología , Animales , Sitios de Unión/genética , Sitios de Unión/fisiología , Simulación por Computador , Electrofisiología , Humanos , Ratones , Estructura Molecular , Mutación Missense/genética , Naftalenos/química , Técnicas de Placa-Clamp , Quinolinas/química , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Sulfonamidas/química , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa 7RESUMEN
Positive allosteric modulators of alpha7 nicotinic acetylcholine receptors (nAChRs) have attracted considerable interest as potential tools for the treatment of neurological and psychiatric disorders such as Alzheimer's disease and schizophrenia. However, despite the potential therapeutic usefulness of these compounds, little is known about their mechanism of action. Here, we have examined two allosteric potentiators of alpha7 nAChRs (PNU-120596 and LY-2087101). From studies with a series of subunit chimeras, we have identified the transmembrane regions of alpha7 as being critical in facilitating potentiation of agonist-evoked responses. Furthermore, we have identified five transmembrane amino acids that, when mutated, significantly reduce potentiation of alpha7 nAChRs. The amino acids we have identified are located within the alpha-helical transmembrane domains TM1 (S222 and A225), TM2 (M253), and TM4 (F455 and C459). Mutation of either A225 or M253 individually have particularly profound effects, reducing potentiation of EC(20) concentrations of acetylcholine to a tenth of the level seen with wild-type alpha7. Reference to homology models of the alpha7 nAChR, based on the 4A structure of the Torpedo nAChR, indicates that the side chains of all five amino acids point toward an intrasubunit cavity located between the four alpha-helical transmembrane domains. Computer docking simulations predict that the allosteric compounds such as PNU-120596 and LY-2087101 may bind within this intrasubunit cavity, much as neurosteroids and volatile anesthetics are thought to interact with GABA(A) and glycine receptors. Our findings suggest that this is a conserved modulatory allosteric site within neurotransmitter-gated ion channels.
Asunto(s)
Sitio Alostérico , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Regulación Alostérica/efectos de los fármacos , Aminoácidos/genética , Animales , Sitios de Unión , Pollos , Simulación por Computador , Relación Dosis-Respuesta a Droga , Humanos , Isoxazoles/farmacología , Ratones , Modelos Moleculares , Proteínas Mutantes Quiméricas/química , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Mutación , Oocitos/metabolismo , Compuestos de Fenilurea/farmacología , Estructura Terciaria de Proteína , Ratas , Receptores Nicotínicos/genética , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa 7RESUMEN
The alpha4beta2 subtype is the most abundant nicotinic acetylcholine receptor (nAChR) in the brain and possesses the high-affinity binding site for nicotine. The alpha4 and beta2 nAChR subunits assemble into two alternate stoichiometries, (alpha4)(2)(beta2)(3) and (alpha4)(3)(beta2)(2), which differ in their functional properties and sensitivity to chronic exposure to nicotine. Here, we investigated the sensitivity of both receptor stoichiometries to modulation by Zn2+. We show that Zn2+ exerts an inhibitory modulatory effect on (alpha4)(2)(beta2)(3) receptors, whereas it potentiates or inhibits, depending on its concentration, the function of (alpha4)(3)(beta2)(2) receptors. Furthermore, Zn2+ inhibition on (alpha4)(2)(beta2)(3) nAChRs is voltage-dependent, whereas it is not on (alpha4)(3)(beta2)(2) receptors. We used molecular modeling in conjunction with alanine substitution and functional studies to identify two distinct sets of residues that determine these effects and may coordinate Zn(2+). Zn(2+) inhibition is mediated by a site located on the beta2(+)/alpha4(-) subunit interfaces on both receptor stoichiometries. alpha4(H195) and beta2(D218) are key determinants of this site. Zn2+ potentiation on (alpha4)(3)(beta2)(2) nAChRs is exerted by a site that resides on the alpha4(+)/alpha4(-) of this receptor stoichiometry. alpha4(H195) on the (-) side of the ACh-binding alpha4 subunit and alpha4(E224) on the (+) side of the non-ACh-binding alpha4 subunit critically contribute to this site. We also identified residues within the beta2 subunit that confer voltage dependency to Zn2+ inhibition on (alpha4)(2)(beta2)(3), but not on (alpha4)(3)(beta2)(2) nAChRs.
Asunto(s)
Membrana Celular/metabolismo , Receptores Nicotínicos/efectos de los fármacos , Receptores Nicotínicos/metabolismo , Zinc/farmacología , Acetilcolina/química , Acetilcolina/metabolismo , Alanina/química , Alanina/metabolismo , Secuencia de Aminoácidos/fisiología , Sustitución de Aminoácidos/fisiología , Animales , Sitios de Unión/efectos de los fármacos , Sitios de Unión/fisiología , Membrana Celular/efectos de los fármacos , Femenino , Humanos , Ligandos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Modelos Moleculares , Oocitos , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/efectos de los fármacos , Subunidades de Proteína/metabolismo , Agregación de Receptores/efectos de los fármacos , Agregación de Receptores/fisiología , Receptor Cross-Talk/efectos de los fármacos , Receptor Cross-Talk/fisiología , Receptores Nicotínicos/química , Transmisión Sináptica/fisiología , Xenopus laevis , Zinc/químicaRESUMEN
It is important in drug discovery to demonstrate that activity of novel drugs found by screening on recombinant receptors translates to activity on native human receptors in brain areas affected by disease. In this review, we summarise the development and use of the microtransplantation technique. Native receptors are reconstituted from human brain tissues into oocytes from the frog Xenopus laevis where they can be functionally assessed. Oocytes microtransplanted with hippocampal tissue from an epileptic patient were used to demonstrate that new antiepileptic agents act on receptors in diseased tissue. Furthermore, frozen post-mortem human tissues were used to show that drugs are active on receptors in brain areas associated with a disease; but not in areas associated with side effects.
Asunto(s)
Encéfalo/metabolismo , Oocitos/metabolismo , Receptores de Superficie Celular/fisiología , Trasplante Heterólogo/métodos , Animales , Descubrimiento de Drogas , HumanosRESUMEN
BACKGROUND AND PURPOSE: We aimed to identify and develop novel, selective muscarinic M1 receptor agonists as potential therapeutic agents for the symptomatic treatment of Alzheimer's disease. EXPERIMENTAL APPROACH: We developed and utilized a novel M1 receptor occupancy assay to drive a structure activity relationship in a relevant brain region while simultaneously tracking drug levels in plasma and brain to optimize for central penetration. Functional activity was tracked in relevant native in vitro assays allowing translational (rat-human) benchmarking of structure-activity relationship molecules to clinical comparators. KEY RESULTS: Using this paradigm, we identified a series of M1 receptor selective molecules displaying desirable in vitro and in vivo properties and optimized key features, such as central penetration while maintaining selectivity and a partial agonist profile. From these compounds, we selected spiropiperidine 1 (SPP1). In vitro, SPP1 is a potent, partial agonist of cortical and hippocampal M1 receptors with activity conserved across species. SPP1 displays high functional selectivity for M1 receptors over native M2 and M3 receptor anti-targets and over a panel of other targets. Assessment of central target engagement by receptor occupancy reveals SPP1 significantly and dose-dependently occupies rodent cortical M1 receptors. CONCLUSIONS AND IMPLICATIONS: We report the discovery of SPP1, a novel, functionally selective, brain penetrant partial orthosteric agonist at M1 receptors, identified by a novel receptor occupancy assay. SPP1 is amenable to in vitro and in vivo study and provides a valuable research tool to further probe the role of M1 receptors in physiology and disease.
Asunto(s)
Osteopontina/agonistas , Piperidinas/farmacología , Receptor Muscarínico M1/agonistas , Compuestos de Espiro/farmacología , Animales , Células CHO , Células Cultivadas , Cricetulus , Masculino , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Piperidinas/química , Ratas , Ratas Sprague-Dawley , Compuestos de Espiro/química , Relación Estructura-Actividad , XenopusRESUMEN
Sazetidine-A has been recently proposed to be a "silent desensitizer" of alpha4beta2 nicotinic acetylcholine receptors (nAChRs), implying that it desensitizes alpha4beta2 nAChRs without first activating them. This unusual pharmacological property of sazetidine-A makes it, potentially, an excellent research tool to distinguish between the role of activation and desensitization of alpha4beta2 nAChRs in mediating the central nervous system effects of nicotine itself, as well as those of new nicotinic drugs. We were surprised to find that sazetidine-A potently and efficaciously stimulated nAChR-mediated dopamine release from rat striatal slices, which is mediated by alpha4beta2(*) and alpha6beta2(*) subtypes of nAChR. The agonist effects on native striatal nAChRs prompted us to re-examine the effects of sazetidine-A on recombinant alpha4beta2 nAChRs in more detail. We expressed the two alternative stoichiometries of alpha4beta2 nAChR in Xenopus laevis oocytes and investigated the agonist properties of sazetidine-A on both alpha4(2)beta2(3) and alpha4(3)beta2(2) nAChRs. We found that sazetidine-A potently activated both stoichiometries of alpha4beta2 nAChR: it was a full agonist on alpha4(2)beta2(3) nAChRs, whereas it had an efficacy of only 6% on alpha4(3)beta2(2) nAChRs. In contrast to what has been published before, we therefore conclude that sazetidine-A is an agonist of native and recombinant alpha4beta2 nAChRs but shows differential efficacy on alpha4beta2 nAChRs subtypes.
Asunto(s)
Azetidinas/metabolismo , Agonistas Nicotínicos/metabolismo , Piridinas/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Animales , Azetidinas/farmacología , Línea Celular , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Masculino , Agonistas Nicotínicos/farmacología , Piridinas/farmacología , Ratas , Xenopus laevisRESUMEN
The postsynaptic proteome of excitatory synapses comprises ~1,000 highly conserved proteins that control the behavioral repertoire, and mutations disrupting their function cause >130 brain diseases. Here, we document the composition of postsynaptic proteomes in human neocortical regions and integrate it with genetic, functional and structural magnetic resonance imaging, positron emission tomography imaging, and behavioral data. Neocortical regions show signatures of expression of individual proteins, protein complexes, biochemical and metabolic pathways. We characterized the compositional signatures in brain regions involved with language, emotion and memory functions. Integrating large-scale GWAS with regional proteome data identifies the same cortical region for smoking behavior as found with fMRI data. The neocortical postsynaptic proteome data resource can be used to link genetics to brain imaging and behavior, and to study the role of postsynaptic proteins in localization of brain functions.
Asunto(s)
Neocórtex/patología , Proteínas del Tejido Nervioso/metabolismo , Sinapsis/metabolismo , Sinaptosomas/metabolismo , Animales , Biología Computacional , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Potenciales de la Membrana/genética , Microinyecciones , Neocórtex/diagnóstico por imagen , Proteínas del Tejido Nervioso/genética , Oocitos , Oxígeno/sangre , Técnicas de Placa-Clamp , Tomografía de Emisión de Positrones , Proteómica , Accidente Cerebrovascular/patología , Sinapsis/ultraestructura , Xenopus laevis , Ácido gamma-Aminobutírico/farmacologíaRESUMEN
The neuronal nicotinic acetylcholine receptor alpha4 and beta2 subunits expressed in heterologous expression systems assemble into at least two distinct subunit stoichiometries of alpha4beta2 receptor. The (alpha4)2(beta2)3 stoichiometry is about 100-fold more sensitive to acetylcholine than the (alpha4)3(beta2)2 stoichiometry. In order to investigate if agonists in general distinguish high- and low-affinity alpha4beta2 nicotinic acetylcholine receptors, we have expressed human alpha4 and beta2 nicotinic acetylcholine receptor subunits in two different expression systems. The relative amounts of alpha4beta2 nicotinic acetylcholine receptors with high- and low-affinity for acetylcholine were manipulated by (a) injecting the subunit cDNAs at different alpha:beta ratios into Xenopus oocytes and (b) by culturing HEK-293 cells stably expressing alpha4beta2 nicotinic acetylcholine receptors overnight at different temperatures. The sensitivities of the alpha4beta2 nicotinic acetylcholine receptors to the agonists acetylcholine, 5-I A-85380, and TC-2559 were investigated using the voltage-clamp technique on Xenopus oocytes and using a fluorescent imaging plate reader to measure calcium responses from HEK-293 cells. Like acetylcholine, 5-I A-85380 produced biphasic concentration-response curves and the high-affinity component became larger when the cells were manipulated to produce a greater proportion of (alpha4)2(beta2)3 nicotinic acetylcholine receptors. Interestingly, under all circumstances, TC-2559 produced monophasic concentration-response curves. In oocytes injected with alpha4 and beta2 subunits in the 1:1 ratio the maximum effect of TC-2559 was 28% of that of acetylcholine. The EC50 for TC-2559 was not changed when oocytes were manipulated to express exclusively (alpha4)2(beta2)3 nicotinic acetylcholine receptors, however, the maximum effect of TC-2559 was dramatically enhanced. These results suggest that TC-2559 is a selective agonist of the (alpha4)2(beta2)3 nicotinic acetylcholine receptor stoichiometry.
Asunto(s)
Azetidinas/farmacología , Agonistas Nicotínicos/farmacología , Piridinas/farmacología , Receptores Nicotínicos/efectos de los fármacos , Animales , Línea Celular , Humanos , Técnicas In Vitro , Oocitos/efectos de los fármacos , Oocitos/fisiología , Técnicas de Placa-Clamp , Subunidades de Proteína/agonistas , Subunidades de Proteína/fisiología , Receptores Nicotínicos/fisiología , XenopusRESUMEN
Inhibition of KCNQ (Kv7) potassium channels by activation of muscarinic acetylcholine receptors has been well established, and the ion currents through these channels have been long known as M-currents. We found that this cross-talk can be reconstituted in Xenopus oocytes by co-transfection of human recombinant muscarinic M1 receptors and KCNQ2/3 potassium channels. Application of the muscarinic acetylcholine receptor agonist Oxotremorine-methiodide (Oxo-M) between voltage pulses to activate KCNQ2/3 channels caused inhibition of the subsequent KCNQ2/3 responses. This effect of Oxo-M was blocked by the muscarinic acetylcholine receptor antagonist atropine. We also found that KCNQ2/3 currents were inhibited when Oxo-M was applied during an ongoing KCNQ2/3 response, an effect that was not blocked by atropine, suggesting that Oxo-M inhibits KCNQ2/3 channels directly. Indeed, also in oocytes that were transfected with only KCNQ2/3 channels, but not with muscarinic M1 receptors, Oxo-M inhibited the KCNQ2/3 response. These results show that besides the usual muscarinic acetylcholine receptor-mediated inhibition, Oxo-M also inhibits KCNQ2/3 channels by a direct mechanism. We subsequently tested xanomeline, which is a chemically distinct muscarinic acetylcholine receptor agonist, and oxotremorine, which is a close analogue of Oxo-M. Both compounds inhibited KCNQ2/3 currents via activation of M1 muscarinic acetylcholine receptors but, in contrast to Oxo-M, they did not directly inhibit KCNQ2/3 channels. Xanomeline and oxotremorine do not contain a positively charged trimethylammonium moiety that is present in Oxo-M, suggesting that such a charged moiety could be a crucial component mediating this newly described direct inhibition of KCNQ2/3 channels.
Asunto(s)
Canal de Potasio KCNQ2/antagonistas & inhibidores , Canal de Potasio KCNQ3/antagonistas & inhibidores , Oxotremorina/análogos & derivados , Bloqueadores de los Canales de Potasio/farmacología , Animales , Humanos , Oxotremorina/farmacología , Piridinas/farmacología , Receptor Muscarínico M1/metabolismo , Tiadiazoles/farmacología , XenopusRESUMEN
Pharmacological manipulation of specific neural circuits to optimize therapeutic index is an unrealized goal in neurology and psychiatry. AMPA receptors are important for excitatory synaptic transmission, and their antagonists are antiepileptic. Although efficacious, AMPA-receptor antagonists, including perampanel (Fycompa), the only approved antagonist for epilepsy, induce dizziness and motor impairment. We hypothesized that blockade of forebrain AMPA receptors without blocking cerebellar AMPA receptors would be antiepileptic and devoid of motor impairment. Taking advantage of an AMPA receptor auxiliary protein, TARP γ-8, which is selectively expressed in the forebrain and modulates the pharmacological properties of AMPA receptors, we discovered that LY3130481 selectively antagonized recombinant and native AMPA receptors containing γ-8, but not γ-2 (cerebellum) or other TARP members. Two amino acid residues unique to γ-8 determined this selectivity. We also observed antagonism of AMPA receptors expressed in hippocampal, but not cerebellar, tissue from an patient with epilepsy. Corresponding to this selective activity, LY3130481 prevented multiple seizure types in rats and mice and without motor side effects. These findings demonstrate the first rationally discovered molecule targeting specific neural circuitries for therapeutic advantage.
Asunto(s)
Anticonvulsivantes/farmacología , Benzotiazoles/farmacología , Cerebelo/efectos de los fármacos , Epilepsia/tratamiento farmacológico , Prosencéfalo/efectos de los fármacos , Pirazoles/farmacología , Piridonas/farmacología , Receptores AMPA/antagonistas & inhibidores , Animales , Anticonvulsivantes/efectos adversos , Canales de Calcio/metabolismo , Cerebelo/metabolismo , Convulsivantes/toxicidad , Modelos Animales de Enfermedad , Mareo/inducido químicamente , Epilepsia/inducido químicamente , Ratones , Nitrilos , Pentilenotetrazol/toxicidad , Prosencéfalo/metabolismo , Piridonas/efectos adversos , Ratas , Receptores AMPA/metabolismo , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológicoRESUMEN
In this study, we investigate how neurosteroid sensitivity of GABA(A) receptors (GABA(A)Rs) is regulated. We examined this issue in neurons of the supraoptic nucleus (SON) of the rat and found that, during parturition, the GABA(A)Rs become insensitive to the neurosteroid allopregnanolone attributable to a shift in the balance between the activities of endogenous Ser/Thr phosphatase and PKC. In particular, a constitutive endogenous tone of oxytocin within the SON after parturition suppressed neurosteroid sensitivity of GABA(A)Rs via activation of PKC. Vice versa before parturition, during late pregnancy, application of exogenous oxytocin brings the GABA(A)Rs from a neurosteroid-sensitive mode toward a condition in which the receptors are not sensitive. This indicates that there may be an inverse causal relationship between the extent to which the GABA(A)R or one of its interacting proteins is phosphorylated and the neurosteroid sensitivity of the GABA(A)R. Neurosteroid sensitivity was not affected by changes in subunit composition of GABA(A)Rs known to occur concurrently in these cells.
Asunto(s)
Oxitocina/farmacología , Receptores de GABA-A/metabolismo , Esteroides/farmacología , Núcleo Supraóptico/metabolismo , Animales , Animales Recién Nacidos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacocinética , Línea Celular , Femenino , Humanos , Riñón/citología , Riñón/metabolismo , Ligandos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Oocitos/metabolismo , Oxitocina/metabolismo , Técnicas de Placa-Clamp , Fosfoproteínas Fosfatasas/metabolismo , Embarazo , Pregnanolona/farmacología , Proteína Quinasa C/metabolismo , Ratas , Ratas Wistar , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/genética , Núcleo Supraóptico/efectos de los fármacos , Transfección , Xenopus , Ácido gamma-Aminobutírico/farmacologíaRESUMEN
Effects of cholinergic drugs on human alpha4beta2 nicotinic acetylcholine receptors expressed in Xenopus oocytes have been investigated in electrophysiological and ligand binding experiments. Atropine, scopolamine, physostigmine, and tacrine combine potentiation of ion current induced by low concentrations of acetylcholine with inhibition of ion current evoked by high concentrations of acetylcholine. Rivastigmine, galanthamine, and dichlorvos cause only inhibition of ion current evoked by low concentrations of acetylcholine. Binding experiments show that the potentiating cholinergic drugs atropine, scopolamine, and physostigmine are competitive ligands of human alpha4beta2 nicotinic acetylcholine receptors. Conversely, the inhibitory cholinergic drugs galanthamine and rivastigmine are non-competitive. The non-competitive drugs are not allosteric, since they do not affect the saturation curve of the radioligand [3H]cytisine. Effects of potentiating cholinergic drugs on nicotinic acetylcholine receptors are consistent with and predicted by a model comprising competitive drug effects at two equivalent agonist recognition sites on the nicotinic acetylcholine receptor combined with non-competitive ion channel block.
Asunto(s)
Colinérgicos/farmacología , Receptores Nicotínicos/fisiología , Acetilcolina/farmacología , Alcaloides/farmacología , Animales , Atropina/farmacología , Azocinas/farmacología , Unión Competitiva/efectos de los fármacos , Inhibidores de la Colinesterasa/farmacología , Diclorvos/farmacología , Relación Dosis-Respuesta a Droga , Femenino , Galantamina/farmacología , Humanos , Potenciales de la Membrana/efectos de los fármacos , Modelos Biológicos , Nicotina/farmacología , Oocitos/efectos de los fármacos , Oocitos/fisiología , Fenilcarbamatos/farmacología , Fisostigmina/farmacología , Plásmidos/administración & dosificación , Plásmidos/genética , Quinolizinas/farmacología , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Rivastigmina , Escopolamina/farmacología , Tacrina/farmacología , Xenopus laevisRESUMEN
The existence of α7ß2 nicotinic acetylcholine receptors (nAChRs) has recently been demonstrated in both the rodent and human brain. Since α7-containing nAChRs are promising drug targets for schizophrenia and Alzheimer's disease, it is critical to determine whether α7ß2 nAChRs are present in the human brain, in which brain areas, and whether they differ functionally from α7 nAChR homomers. We used α-bungarotoxin to affinity purify α7-containing nAChRs from surgically excised human temporal cortex, and found that α7 subunits co-purify with ß2 subunits, indicating the presence of α7ß2 nAChRs in the human brain. We validated these results by demonstrating co-purification of ß2 from wild-type, but not α7 or ß2 knock-out mice. The pharmacology and kinetics of human α7ß2 nAChRs differed significantly from that of α7 homomers in response to nAChR agonists when expressed in Xenopus oocytes and HEK293 cells. Notably, α7ß2 heteromers expressed in HEK293 cells display markedly slower rise and decay phases. These results demonstrate that α7 subunits in the human brain form heteromeric complexes with ß2 subunits, and that human α7ß2 nAChR heteromers respond to nAChR agonists with a unique pharmacology and kinetic profile. α7ß2 nAChRs thus represent an alternative mechanism for the reported clinical efficacy of α7 nAChR ligands.
Asunto(s)
Corteza Cerebral/metabolismo , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Corteza Cerebral/patología , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Agonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/farmacología , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Técnicas de Placa-Clamp , Receptores Nicotínicos/deficiencia , Receptores Nicotínicos/genética , Xenopus laevis/crecimiento & desarrollo , Xenopus laevis/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/deficiencia , Receptor Nicotínico de Acetilcolina alfa 7/genéticaRESUMEN
The ability of alpha4beta2 nicotinic acetylcholine receptors to modulate dopaminergic (DA) cell activity in the ventral tegmental area (VTA) in rat midbrain slices was assessed using a selective alpha4beta2 receptor agonist, TC-2559 ((E)-N-methyl-4-[3-(5-ethoxypyridin)y1]-3-buten-1-amine). The selectivity of TC-2559 was characterized across 6 recombinant human nicotinic receptors (alpha4beta2, alpha2beta4, alpha4beta4, alpha3beta4, alpha3beta2 and alpha7) stably expressed in mammalian cell lines. Using a fluorescent imaging plate reader and fluo-3 to monitor changes in intracellular calcium, TC-2559 was found to be at least 69 fold more potent on alpha4beta2 than on other heteromeric subtypes, with an efficacy of 33%. No activity on the homomeric alpha7 subtype was detected. TC-2559 also showed selectivity for alpha4beta2 over the alpha4beta4 and alpha7 subtypes expressed in Xenopus oocytes. When bath applied to VTA slices, TC-2559 increased the firing of DA cells in a dose-dependent manner, in the same concentration range that activates alpha4beta2 receptors in recombinant cell lines or oocytes. The effect of TC-2559 was blocked by 2 microM dihydro-beta-erythroidine (an alpha4beta2-preferring antagonist), but not by 10 nM methyllycaconitine (an alpha7 antagonist). Glutamate receptor antagonists (6-cyano-7-nitroquinoxaline-2,3-dione and D(-)-2-amino-5-phosphonopentanoic acid) did not reduce TC-2559-induced responses, suggesting that the increase in DA cell firing induced by TC-2559 is caused by direct postsynaptic depolarisation via the activation of alpha4beta2 receptors and not by enhancement of glutamate release.
Asunto(s)
Dopamina/fisiología , Neuronas/efectos de los fármacos , Piridinas/farmacología , Receptores Nicotínicos/fisiología , Área Tegmental Ventral/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Masculino , Mesencéfalo/efectos de los fármacos , Mesencéfalo/fisiología , Neuronas/fisiología , Agonistas Nicotínicos/farmacología , Ratas , Ratas Sprague-Dawley , Área Tegmental Ventral/fisiología , Xenopus laevisRESUMEN
Cytisine very potently binds and activates the alpha 3 beta 4 and alpha 7 nicotinic subtypes, but only partially agonises the alpha 4 beta 2 subtype. Although with a lower affinity than cytisine, new cytisine derivatives with different substituents on the basic nitrogen (CC1-CC8) bind to both the heteromeric and homomeric subtypes, with higher affinity for brain [3H]epibatidine receptors. The cytisine derivatives were tested on the Ca(2+) flux of native or transfected cell lines expressing the rat alpha 7, or human alpha 3 beta 4 or alpha 4 beta 2 subtypes using Ca(2+) dynamics in conjunction with a fluorescent image plate reader. None elicited any response at doses of up to 30-100 microM, but all inhibited agonist-induced responses. Compounds CC5 and CC7 were also electrophysiologically tested on oocyte-expressed rat alpha 4 beta 2, alpha 3 beta 4 and alpha 7 subtypes. CC5 competitively antagonised the alpha 4 beta 2 and alpha 3 beta 4 subtypes with similar potency, whereas CC7 only partially agonised them with maximum responses of respectively 3% and 11% of those of 1 mM acetylcholine. Neither compound induced any current in the oocyte-expressed alpha 7 subtype, and both weakly inhibited acetylcholine-induced currents. Adding chemical groups of a different class or size to the basic nitrogen of cytisine leads to compounds that lose full agonist activity on the alpha 3 beta 4 and alpha 7 subtypes.
Asunto(s)
Alcaloides/síntesis química , Alcaloides/farmacología , Azocinas/síntesis química , Azocinas/farmacología , Neuronas/efectos de los fármacos , Nitrógeno/análisis , Quinolizinas/síntesis química , Quinolizinas/farmacología , Receptores Nicotínicos/efectos de los fármacos , Alcaloides/agonistas , Animales , Azocinas/agonistas , Unión Competitiva , Compuestos Bicíclicos Heterocíclicos con Puentes/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacocinética , Bungarotoxinas/metabolismo , Bungarotoxinas/farmacocinética , Calcio/química , Calcio/metabolismo , Línea Celular , Femenino , Expresión Génica , Radioisótopos de Yodo , Estructura Molecular , Neuronas/metabolismo , Agonistas Nicotínicos/síntesis química , Agonistas Nicotínicos/farmacocinética , Antagonistas Nicotínicos/síntesis química , Antagonistas Nicotínicos/farmacocinética , Oocitos/efectos de los fármacos , Piridinas/metabolismo , Piridinas/farmacocinética , Quinolizinas/agonistas , Ensayo de Unión Radioligante , Ratas , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Relación Estructura-Actividad , Tritio , Xenopus laevisRESUMEN
5-Hydroxytryptamine 3 (5-HT(3)) and alpha 7 nicotinic receptors share high sequence homology and pharmacological cross-reactivity. An assessment of the potential role of alpha 7 receptors in many neurophysiological processes, and hence their therapeutic value, requires the development of selective alpha 7 receptor agonists. We used a recently reported selective alpha 7 receptor agonist, (R)-(-)-5'Phenylspiro[1-azabicyclo[2.2.2] octane-3,2'-(3'H)furo[2,3-b]pyridine (PSAB-OFP) and confirmed its activity on human recombinant alpha 7 receptors. However, PSAB-OFP also displayed high affinity binding to 5-HT(3) receptors. To assess the functional activity of PSAB-OFP on 5-HT(3) receptors we studied recombinant human 5-HT(3) receptors expressed in Xenopus oocytes, as well as native mouse 5-HT(3) receptors expressed in N1E-115 neuroblastoma cells, using whole-cell patch clamp and Ca(2+) imaging. Our results show that PSAB-OFP is an equipotent, partial agonist of both alpha 7 and 5-HT(3) receptors. We conclude that it will be necessary to identify the determinant of this overlapping pharmacology in order to develop more selective alpha 7 receptor ligands.