Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Eur J Pharm Sci ; 162: 105822, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33775828

RESUMEN

Nifuroxazide has been employed as an anti-diarrheic agent since 1966, but in the last decade has brought to the research spotlight again due to its recently described antitumoral activity through the JAK2 inhibitory potential. Since 2008, more than 70 papers have been published about the issue and more are expected to the following years. Herein we discuss the findings of molecular modelling studies which were performed to elucidate the potential binding mode of this drug into the JAK2 ATP recognition site and also into the allosteric region near the catalytic site. Molecular modelling followed by dynamics simulations indicated the NFZ could bind at both sites, such as a Type II kinase inhibitor since residues from both ATP and modulatory site would exhibit contacts with the drug when in a stable complex. Synthesis of NFZ and its sulfur bioisosteric analogue GPQF-63 were performed and experimental assays against HEL cells indicate the potential of NFZ and, mainly of its analogue GPQF-63 in acting as inhibitors of cell growth. HEL-cells present the JAK2 V617F mutation which leads to an enhanced JAK/STAT pathway and they have never been tested by the NFZ activity before. A mechanistic approach was also performed and revealed that both compounds induce cell apoptosis.Taken together, both the theoretical and experimental approaches point out the N-acylhydrazones as good starting points in the search for JAK2 modulatory small molecules which could then, be studied as promising leads toward new alternatives to control the JAK-STAT pathway related pathologies. This is the first study, as far as we have known, to propose a potential binding mode for NFZ as well as reporting the activity of this drug against HEL cells, which are a usual cellular model to human erythroleukemia and other myeloproliferative diseases.


Asunto(s)
Janus Quinasa 2 , Trastornos Mieloproliferativos , Línea Celular Tumoral , Proliferación Celular , Humanos , Hidroxibenzoatos , Janus Quinasa 2/genética , Mutación , Nitrofuranos , Inhibidores de Proteínas Quinasas/farmacología
2.
Artículo en Inglés | MEDLINE | ID: mdl-30214457

RESUMEN

BACKGROUND: There is still a need for new alternatives in pharmacological therapy for neglected diseases, as the drugs available show high toxicity and parenteral administration. That is the case for the treatment of leishmaniasis, particularly to the cutaneous clinical form of the disease. In this study, we present the synthesis and biological screening of eight 4-phenyl-1,3-thiazol-2-amines assayed against Leishmania amazonensis. Herein we propose that these compounds are good starting points for the search of new antileishmanial drugs by demonstrating some of the structural aspects which could interfere with the observed activity, as well as suggesting potential macromolecular targets. METHODS: The compounds were easily synthesized by the methodology of Hantzsch and Weber, had their purities determined by Gas Chromatography-Mass spectrometry and assayed against the promastigote forms of Leishmania amazonensis as well as against two white cell lines (L929 and THP-1) and the monkey's kidney Vero cells. PrestoBlue® and MTT viability assays were the methodologies applied to measure the antileishmanial and cytotoxic activities, respectively. A molecular modeling target fishing study was performed aiming to propose potential macromolecular targets which could explain the observed biological behavior. RESULTS: Four out of the eight compounds tested exhibited important anti-promastigote activity associated with good selectivity indexes when considering Vero cells. For the most promising compound, compound 6, IC50 against promastigotes was 20.78 while SI was 5.69. Compounds 3 (IC50: 46.63 µM; SI: 26.11) and 4 (IC50: 53.12 µM; SI: 4.80) also presented important biological behavior. A target fishing study suggested that S-methyl-5-thioadenosine phosphorylase is a potential target to these compounds, which could be explored to enhance activity and decrease the potential toxic side effects. CONCLUSIONS: This study shows that 4-phenyl-1,3-thiazol-2-amines could be good scaffolds to the development of new antileishmanial agents. The S-methyl-5-thioadenosine phosphorylase could be one of the macromolecular targets involved in the action.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda