Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Mol Ther ; 31(6): 1807-1828, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37073128

RESUMEN

While it is experimentally supported that impaired myocardial vascularization contributes to a mismatch between myocardial oxygen demand and supply, a mechanistic basis for disruption of coordinated tissue growth and angiogenesis in heart failure remains poorly understood. Silencing strategies that impair microRNA biogenesis have firmly implicated microRNAs in the regulation of angiogenesis, and individual microRNAs prove to be crucial in developmental or tumor angiogenesis. A high-throughput functional screening for the analysis of a whole-genome microRNA silencing library with regard to their phenotypic effect on endothelial cell proliferation as a key parameter, revealed several anti- and pro-proliferative microRNAs. Among those was miR-216a, a pro-angiogenic microRNA which is enriched in cardiac microvascular endothelial cells and reduced in expression under cardiac stress conditions. miR-216a null mice display dramatic cardiac phenotypes related to impaired myocardial vascularization and unbalanced autophagy and inflammation, supporting a model where microRNA regulation of microvascularization impacts the cardiac response to stress.


Asunto(s)
Insuficiencia Cardíaca , MicroARNs , Animales , Ratones , Células Endoteliales/metabolismo , Insuficiencia Cardíaca/metabolismo , MicroARNs/metabolismo , Miocardio/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica/genética
2.
Circ Res ; 129(1): e1-e20, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33849278
3.
Mol Ther ; 30(6): 2257-2273, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35278675

RESUMEN

As mediators of intercellular communication, extracellular vesicles containing molecular cargo, such as microRNAs, are secreted by cells and taken up by recipient cells to influence their cellular phenotype and function. Here we report that cardiac stress-induced differential microRNA content, with miR-200c-3p being one of the most enriched, in cardiomyocyte-derived extracellular vesicles mediates functional cross-talk with endothelial cells. Silencing of miR-200c-3p in mice subjected to chronic increased cardiac pressure overload resulted in attenuated hypertrophy, smaller fibrotic areas, higher capillary density, and preserved cardiac ejection fraction. We were able to maximally rescue microvascular and cardiac function with very low doses of antagomir, which specifically silences miR-200c-3p expression in non-myocyte cells. Our results reveal vesicle transfer of miR-200c-3p from cardiomyocytes to cardiac endothelial cells, underlining the importance of cardiac intercellular communication in the pathophysiology of heart failure.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Animales , Comunicación Celular , Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo
4.
Mol Ther ; 27(3): 584-599, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30559069

RESUMEN

Heart failure is preceded by ventricular remodeling, changes in left ventricular mass, and myocardial volume after alterations in loading conditions. Concentric hypertrophy arises after pressure overload, involves wall thickening, and forms a substrate for diastolic dysfunction. Eccentric hypertrophy develops in volume overload conditions and leads wall thinning, chamber dilation, and reduced ejection fraction. The molecular events underlying these distinct forms of cardiac remodeling are poorly understood. Here, we demonstrate that miR-148a expression changes dynamically in distinct subtypes of heart failure: while it is elevated in concentric hypertrophy, it decreased in dilated cardiomyopathy. In line, antagomir-mediated silencing of miR-148a caused wall thinning, chamber dilation, increased left ventricle volume, and reduced ejection fraction. Additionally, adeno-associated viral delivery of miR-148a protected the mouse heart from pressure-overload-induced systolic dysfunction by preventing the transition of concentric hypertrophic remodeling toward dilation. Mechanistically, miR-148a targets the cytokine co-receptor glycoprotein 130 (gp130) and connects cardiomyocyte responsiveness to extracellular cytokines by modulating the Stat3 signaling. These findings show the ability of miR-148a to prevent the transition of pressure-overload induced concentric hypertrophic remodeling toward eccentric hypertrophy and dilated cardiomyopathy and provide evidence for the existence of separate molecular programs inducing distinct forms of myocardial remodeling.


Asunto(s)
Cardiomiopatías/metabolismo , Insuficiencia Cardíaca/metabolismo , Trasplante de Corazón/métodos , MicroARNs/metabolismo , Miocardio/metabolismo , Animales , Cardiomiopatías/genética , Proliferación Celular/fisiología , Insuficiencia Cardíaca/genética , Humanos , Ratones , MicroARNs/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/fisiología , Remodelación Ventricular/genética , Remodelación Ventricular/fisiología
5.
Int J Mol Sci ; 21(23)2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255338

RESUMEN

Pulmonary artery hypertension (PAH) is a rare chronic disease with high impact on patients' quality of life and currently no available cure. PAH is characterized by constant remodeling of the pulmonary artery by increased proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), fibroblasts (FBs) and endothelial cells (ECs). This remodeling eventually leads to increased pressure in the right ventricle (RV) and subsequent right ventricle hypertrophy (RVH) which, when left untreated, progresses into right ventricle failure (RVF). PAH can not only originate from heritable mutations, but also develop as a consequence of congenital heart disease, exposure to drugs or toxins, HIV, connective tissue disease or be idiopathic. While much attention was drawn into investigating and developing therapies related to the most well understood signaling pathways in PAH, in the last decade, a shift towards understanding the epigenetic mechanisms driving the disease occurred. In this review, we reflect on the different epigenetic regulatory factors that are associated with the pathology of RV remodeling, and on their relevance towards a better understanding of the disease and subsequently, the development of new and more efficient therapeutic strategies.


Asunto(s)
Epigénesis Genética/genética , Hipertensión Arterial Pulmonar/genética , Disfunción Ventricular Derecha/genética , Remodelación Ventricular/genética , Animales , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Hipertensión Arterial Pulmonar/patología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Transducción de Señal , Disfunción Ventricular Derecha/patología , Función Ventricular Derecha/genética
6.
Int J Mol Sci ; 21(23)2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-33291434

RESUMEN

In 2020, cardiovascular diseases (CVDs) remain a leading cause of mortality and morbidity, contributing to the burden of the already overloaded health system. Late or incorrect diagnosis of patients with CVDs compromises treatment efficiency and patient's outcome. Diagnosis of CVDs could be facilitated by detection of blood-based biomarkers that reliably reflect the current condition of the heart. In the last decade, non-coding RNAs (ncRNAs) present on human biofluids including serum, plasma, and blood have been reported as potential biomarkers for CVDs. This paper reviews recent studies that focus on the use of ncRNAs as biomarkers of CVDs.


Asunto(s)
Biomarcadores , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/diagnóstico , Ácidos Nucleicos Libres de Células , ARN no Traducido/sangre , Animales , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Humanos , Pronóstico
7.
Arch Biochem Biophys ; 661: 56-65, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30439361

RESUMEN

Early and specific diagnosis of oxidative stress linked diseases as cardiac heart diseases remains a major dilemma for researchers and clinicians. MicroRNAs may serve as a better tool for specific early diagnostics and propose their utilization in future molecular medicines. We aimed to measure the microRNAs expressions in oxidative stress linked cardiac hypertrophic condition induced through stimulants as Endothelin and Isoproterenol. Cardiac hypertrophic animal models were confirmed by BNP, GATA4 expression, histological assays, and increased cell surface area. High oxidative stress (ROS level) and decreased antioxidant activities were assessed in hypertrophied groups. Enhanced expression of miR-152, miR-212/132 while decreased miR-142-3p expression was observed in hypertrophic condition. Similar pattern of these microRNAs was detected in HL-1 cells treated with H2O2. Upon administration of antioxidants, the miRNAs expression pattern altered from that of the cardiac hypertrophied model. Present investigation suggests that oxidative stress generated during the cardiac pathology may directly or indirectly regulate anti-hypertrophy pathway elements through microRNAs including antioxidant enzymes, which need further investigation. The down-regulation of free radical scavengers make it easier for the oxidative stress to play a key role in disease progression.


Asunto(s)
Acetilcisteína/farmacología , Cardiomegalia/metabolismo , Depuradores de Radicales Libres/farmacología , Melatonina/farmacología , MicroARNs/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Cardiomegalia/patología , Línea Celular , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
8.
Circ Res ; 121(9): 1058-1068, 2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-28821541

RESUMEN

RATIONALE: Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic current, If, underlies exercise training-induced sinus bradycardia in rodents. If this occurs in humans, it could explain the increased incidence of bradyarrhythmias in veteran athletes, and it will be important to understand the underlying processes. OBJECTIVE: To test the role of HCN4 in the training-induced bradycardia in human athletes and investigate the role of microRNAs (miRs) in the repression of HCN4. METHODS AND RESULTS: As in rodents, the intrinsic heart rate was significantly lower in human athletes than in nonathletes, and in all subjects, the rate-lowering effect of the HCN selective blocker, ivabradine, was significantly correlated with the intrinsic heart rate, consistent with HCN repression in athletes. Next-generation sequencing and quantitative real-time reverse transcription polymerase chain reaction showed remodeling of miRs in the sinus node of swim-trained mice. Computational predictions highlighted a prominent role for miR-423-5p. Interaction between miR-423-5p and HCN4 was confirmed by a dose-dependent reduction in HCN4 3'-untranslated region luciferase reporter activity on cotransfection with precursor miR-423-5p (abolished by mutation of predicted recognition elements). Knockdown of miR-423-5p with anti-miR-423-5p reversed training-induced bradycardia via rescue of HCN4 and If. Further experiments showed that in the sinus node of swim-trained mice, upregulation of miR-423-5p (intronic miR) and its host gene, NSRP1, is driven by an upregulation of the transcription factor Nkx2.5. CONCLUSIONS: HCN remodeling likely occurs in human athletes, as well as in rodent models. miR-423-5p contributes to training-induced bradycardia by targeting HCN4. This work presents the first evidence of miR control of HCN4 and heart rate. miR-423-5p could be a therapeutic target for pathological sinus node dysfunction in veteran athletes.


Asunto(s)
Bradicardia/metabolismo , Ejercicio Físico/fisiología , Marcación de Gen/métodos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , MicroARNs/metabolismo , Proteínas Musculares/metabolismo , Condicionamiento Físico Animal/fisiología , Canales de Potasio/metabolismo , Adolescente , Adulto , Animales , Bradicardia/genética , Bradicardia/fisiopatología , Técnicas de Silenciamiento del Gen/métodos , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Proteínas Musculares/genética , Condicionamiento Físico Animal/métodos , Canales de Potasio/genética , Nodo Sinoatrial/metabolismo , Nodo Sinoatrial/fisiopatología , Adulto Joven
9.
J Physiol ; 595(12): 4037-4050, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28233323

RESUMEN

Heart failure is one of the largest contributors to disease burden and healthcare outflow in the Western world. Despite significant progress in the treatment of heart failure, disease prognosis remains very poor, with the only curative therapy still being heart transplantation. To counteract the current situation, efforts have been made to better understand the underlying molecular pathways in the progression of cardiac disease towards heart failure, and to link the disease to novel therapeutic targets such as non-coding RNAs. The non-coding part of the genome has gained prominence over the last couple of decades, opening a completely new research field and establishing different non-coding RNAs species as fundamental regulators of cellular functions. Not surprisingly, their dysregulation is increasingly being linked to pathology, including to cardiac disease. Pre-clinically, non-coding RNAs have been shown to be of great value as therapeutic targets in pathological cardiac remodelling and also as diagnostic/prognostic biomarkers for heart failure. Therefore, it is to be expected that non-coding RNA-based therapeutic strategies will reach the bedside in the future and provide new and more efficient treatments for heart failure. Here, we review recent discoveries linking the function and molecular interactions of non-coding RNAs with the pathophysiology of cardiac hypertrophy and heart failure.


Asunto(s)
Cardiomegalia/genética , ARN no Traducido/genética , Animales , Cardiomegalia/patología , Progresión de la Enfermedad , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Humanos , Pronóstico
10.
Mol Ther ; 23(12): 1810-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26216517

RESUMEN

Heart failure (HF) is the end result of a diverse set of causes such as genetic cardiomyopathies, coronary artery disease, and hypertension and represents the primary cause of hospitalization in Europe. This serious clinical disorder is mostly associated with pathological remodeling of the myocardium, pump failure, and sudden death. While the survival of HF patients can be prolonged with conventional pharmacological therapies, the prognosis remains poor. New therapeutic modalities are thus needed that will target the underlying causes and not only the symptoms of the disease. Under chronic cardiac stress, small noncoding RNAs, in particular microRNAs, act as critical regulators of cardiac tissue remodeling and represent a new class of therapeutic targets in patients suffering from HF. Here, we focus on the potential use of microRNA inhibitors as a new treatment paradigm for HF.


Asunto(s)
Elementos sin Sentido (Genética)/uso terapéutico , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/genética , MicroARNs/uso terapéutico , Animales , Elementos sin Sentido (Genética)/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Insuficiencia Cardíaca/terapia , Humanos , MicroARNs/genética , Miocardio/patología
11.
J Mol Cell Cardiol ; 89(Pt A): 51-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25820097

RESUMEN

Organogenesis of the vertebrate heart is a highly specialized process involving progressive specification and differentiation of distinct embryonic cardiac progenitor cell populations driven by specialized gene programming events. Likewise, the onset of pathologies in the adult heart, including cardiac hypertrophy, involves the reactivation of embryonic gene programs. In both cases, these intricate genomic events are temporally and spatially regulated by complex signaling networks and gene regulatory networks. Apart from well-established transcriptional mechanisms, increasing evidence indicates that gene programming in both the developing and the diseased myocardium are under epigenetic control by non-coding RNAs (ncRNAs). MicroRNAs regulate gene expression at the post-transcriptional level, and numerous studies have now established critical roles for this species of tiny RNAs in a broad range of aspects from cardiogenesis towards adult heart failure. Recent reports now also implicate the larger family of long non-coding RNAs (lncRNAs) in these processes as well. Here we discuss the involvement of these two ncRNA classes in proper cardiac development and hypertrophic disease processes of the adult myocardium. This article is part of a Special Issue entitled: Non-coding RNAs.


Asunto(s)
Enfermedades Cardiovasculares/genética , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , ARN Largo no Codificante/metabolismo , Animales , Redes Reguladoras de Genes , Humanos , ARN Largo no Codificante/genética
12.
Am J Physiol Heart Circ Physiol ; 308(8): H803-13, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25681425

RESUMEN

Only in recent years has the right ventricle (RV) function become appreciated to be equally important to the left ventricle (LV) function to maintain cardiac output. Right ventricular failure is, irrespectively of the etiology, associated with impaired exercise tolerance and poor survival. Since the anatomy and physiology of the RV is distinctly different than that of the LV, its adaptive mechanisms and the pathways involved are different as well. RV hypertrophy is an important mechanism of the RV to preserve cardiac output. This review summarizes the current knowledge on the right ventricle and its response to pathologic situations. We will focus on the adaptive capacity of the right ventricle and the molecular pathways involved, and we will discuss potential therapeutic interventions.


Asunto(s)
Adaptación Fisiológica , Hipertrofia Ventricular Derecha/fisiopatología , Disfunción Ventricular Derecha/fisiopatología , Animales , Humanos , Hipertrofia Ventricular Derecha/etiología , Hipertrofia Ventricular Derecha/metabolismo , Hipertrofia Ventricular Derecha/terapia , Disfunción Ventricular Derecha/etiología , Disfunción Ventricular Derecha/metabolismo , Disfunción Ventricular Derecha/terapia
13.
Biochim Biophys Acta ; 1832(12): 2414-24, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24036209

RESUMEN

During the processes leading to adverse cardiac remodeling and heart failure, cardiomyocytes react to neurohumoral stimuli and biomechanical stress by activating pathways that induce pathological hypertrophy. The gene expression patterns and molecular changes observed during cardiac hypertrophic remodeling bare resemblance to those observed during fetal cardiac development. The re-activation of fetal genes in the adult failing heart is a complex biological process that involves transcriptional, posttranscriptional and epigenetic regulation of the cardiac genome. In this review, the mechanistic actions of transcription factors, microRNAs and chromatin remodeling processes in regulating fetal gene expression in heart failure are discussed.


Asunto(s)
Biomarcadores/metabolismo , Feto/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica , Insuficiencia Cardíaca/patología , Animales , Feto/patología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Humanos
14.
Cardiovasc Res ; 120(5): 461-475, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38428029

RESUMEN

Pathologic cardiac hypertrophy is a common consequence of many cardiovascular diseases, including aortic stenosis (AS). AS is known to increase the pressure load of the left ventricle, causing a compensative response of the cardiac muscle, which progressively will lead to dilation and heart failure. At a cellular level, this corresponds to a considerable increase in the size of cardiomyocytes, known as cardiomyocyte hypertrophy, while their proliferation capacity is attenuated upon the first developmental stages. Cardiomyocytes, in order to cope with the increased workload (overload), suffer alterations in their morphology, nuclear content, energy metabolism, intracellular homeostatic mechanisms, contractile activity, and cell death mechanisms. Moreover, modifications in the cardiomyocyte niche, involving inflammation, immune infiltration, fibrosis, and angiogenesis, contribute to the subsequent events of a pathologic hypertrophic response. Considering the emerging need for a better understanding of the condition and treatment improvement, as the only available treatment option of AS consists of surgical interventions at a late stage of the disease, when the cardiac muscle state is irreversible, large animal models have been developed to mimic the human condition, to the greatest extend. Smaller animal models lack physiological, cellular and molecular mechanisms that sufficiently resemblance humans and in vitro techniques yet fail to provide adequate complexity. Animals, such as the ferret (Mustello purtorius furo), lapine (rabbit, Oryctolagus cunigulus), feline (cat, Felis catus), canine (dog, Canis lupus familiaris), ovine (sheep, Ovis aries), and porcine (pig, Sus scrofa), have contributed to research by elucidating implicated cellular and molecular mechanisms of the condition. Essential discoveries of each model are reported and discussed briefly in this review. Results of large animal experimentation could further be interpreted aiming at prevention of the disease progress or, alternatively, at regression of the implicated pathologic mechanisms to a physiologic state. This review summarizes the important aspects of the pathophysiology of LV hypertrophy and the applied surgical large animal models that currently better mimic the condition.


Asunto(s)
Estenosis de la Válvula Aórtica , Hipertrofia Ventricular Izquierda , Remodelación Ventricular , Animales , Humanos , Estenosis de la Válvula Aórtica/fisiopatología , Estenosis de la Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/metabolismo , Modelos Animales de Enfermedad , Hipertrofia Ventricular Izquierda/fisiopatología , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/patología , Miocitos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Especificidad de la Especie , Función Ventricular Izquierda , Presión Ventricular
15.
J Mol Cell Cardiol ; 65: 59-66, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24083979

RESUMEN

Hypertrophic cardiomyopathy (HCM) is predominantly caused by mutations in genes encoding sarcomeric proteins. One of the most frequent affected genes is MYBPC3, which encodes the thick filament protein cardiac myosin binding protein C. Despite the prevalence of HCM, disease pathology and clinical outcome of sarcomeric mutations are largely unknown. We hypothesized that microRNAs (miRNAs) could play a role in the disease process. To determine which miRNAs were changed in expression, miRNA arrays were performed on heart tissue from HCM patients with a MYBPC3 mutation (n=6) and compared with hearts of non-failing donors (n=6). 532 out of 664 analyzed miRNAs were expressed in at least one heart sample. 13 miRNAs were differentially expressed in HCM compared with donors (at p<0.01, fold change ≥ 2). The genomic context of these differentially expressed miRNAs revealed that miR-204 (fold change 2.4 in HCM vs. donor) was located in an intron of the TRPM3 gene, encoding an aspecific cation channel involved in calcium entry. RT-PCR analysis revealed a trend towards TRPM3 upregulation in HCM compared with donor myocardium (fold change 2.3, p=0.078). In silico identification of mRNA targets of differentially expressed miRNAs showed a large proportion of genes involved in cardiac hypertrophy and cardiac beta-adrenergic receptor signaling and we showed reduced phosphorylation of cardiac troponin I in the HCM myocardium when compared with donor. HCM patients with MYBPC3 mutations have a specific miRNA expression profile. Downstream mRNA targets reveal possible involvement in cardiac signaling pathways.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Proteínas Portadoras/genética , Perfilación de la Expresión Génica , MicroARNs/genética , Mutación/genética , Miocardio/metabolismo , Transcriptoma/genética , Adulto , Anciano , Cardiomiopatía Hipertrófica/patología , Simulación por Computador , Femenino , Genoma Humano/genética , Humanos , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Miocardio/patología , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Troponina I/metabolismo , Adulto Joven
17.
J Vis Exp ; (200)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37930007

RESUMEN

Large animal models of heart failure play an essential role in the development of new therapeutic interventions due to their size and physiological similarities to humans. Efforts have been dedicated to creating a model of pressure-overload induced heart failure, and ascending aortic banding while still supra-coronary and not a perfect mimic of aortic stenosis in humans, closely resembling the human condition. The purpose of this study is to demonstrate a minimally invasive approach to induce left ventricular pressure overload by placing an aortic band, precisely calibrated with percutaneously introduced high-fidelity pressure sensors. This method represents a refinement of the surgical procedure (3Rs), resulting in homogenous trans-stenotic gradients and reduced intragroup variability. Additionally, it enables swift and uneventful animal recovery, leading to minimal mortality rates. Throughout the study, animals were followed for up to 2 months after surgery, employing transthoracic echocardiography and pressure-volume loop analysis. However, longer follow-up periods can be achieved if desired. This large animal model proves valuable for testing new drugs, particularly those targeting hypertrophy and the structural and functional alterations associated with left ventricular pressure overload.


Asunto(s)
Estenosis de la Válvula Aórtica , Insuficiencia Cardíaca , Humanos , Animales , Porcinos , Corazón , Insuficiencia Cardíaca/etiología , Estenosis de la Válvula Aórtica/cirugía , Ecocardiografía , Aorta/cirugía , Hipertrofia Ventricular Izquierda , Modelos Animales de Enfermedad
18.
J Mol Cell Cardiol ; 52(1): 74-82, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21971075

RESUMEN

Cardiac hypertrophy is a thickening of the heart muscle that results in enlargement of the ventricles, which is the primary response of the myocardium to stress or mechanical overload. Cardiac pathological and physiological hemodynamic overload causes enhanced protein synthesis, sarcomeric reorganization and density, and increased cardiomyocyte size, all culminating into structural remodeling of the heart. With clinical evidence demonstrating that sustained hypertrophy is a key risk factor in heart failure development, much effort is centered on the identification of signals and pathways leading to pathological hypertrophy for future rational drug design in heart failure therapy. A wide variety of studies indicate that individual microRNAs exhibit altered expression profiles under experimental and clinical conditions of cardiac hypertrophy and heart failure. Here we review the recent literature, illustrating how single microRNAs regulate cardiac hypertrophy by classifying them by their prohypertrophic or antihypertrophic properties and their specific effects on intracellular signaling cascades, ubiquitination processes, sarcomere composition and by promoting inter-cellular communication.


Asunto(s)
Cardiomegalia/genética , MicroARNs/genética , Animales , Cardiomegalia/metabolismo , Cardiomegalia/patología , Fibrosis/genética , Regulación de la Expresión Génica , Humanos , MicroARNs/metabolismo , Contracción Miocárdica/genética , Transducción de Señal , Ubiquitinación/genética
19.
J Biol Chem ; 286(16): 14598-607, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21245137

RESUMEN

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family of ligand-activated transcription factors and consist of the three isoforms, PPARα, PPARß/δ, and PPARγ. Considerable evidence indicates the importance of PPARs in cardiovascular lipid homeostasis and diabetes, yet the isoform-dependent cardiac target genes remain unknown. Here, we constructed murine ventricular clones allowing stable expression of siRNAs to achieve specifically knockdown for each of the PPAR isoforms. By combining gene profiling and computational peroxisome proliferator response element analysis following PPAR isoform activation in normal versus PPAR isoform-deficient cardiomyocyte-like cells, we have, for the first time, determined PPAR isoform-specific endogenous target genes in the heart. Electromobility shift and chromatin immunoprecipitation assays demonstrated the existence of an evolutionary conserved peroxisome proliferator response element consensus-binding site in an insulin-like growth factor-1 (igf-1) enhancer. In line, Wy-14643-mediated PPARα activation in the wild-type mouse heart resulted in up-regulation of igf-1 transcript abundance and provided protection against cardiomyocyte apoptosis following ischemia/reperfusion or biomechanical stress. Taken together, these data confirm igf-1 as an in vivo target of PPARα and the involvement of a PPARα/IGF-1 signaling pathway in the protection of cardiomyocytes under ischemic and hemodynamic loading conditions.


Asunto(s)
Regulación de la Expresión Génica , Factor I del Crecimiento Similar a la Insulina/metabolismo , PPAR alfa/química , Animales , Apoptosis , Elementos de Facilitación Genéticos , Perfilación de la Expresión Génica , Humanos , Hipertrofia , Lípidos/química , Ratones , Microscopía Fluorescente/métodos , Miocardio/metabolismo , Miocardio/patología , Isoformas de Proteínas , Ratas , Daño por Reperfusión
20.
Curr Hypertens Rep ; 14(6): 498-509, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22996205

RESUMEN

MicroRNAs are a class of small, noncoding RNAs encoded by the metazoan genome that regulate protein expression. A collection of studies point to vital roles for microRNAs in the onset and development of cardiovascular diseases. So far, microRNAs have been considered as important intracellular mediators in maintaining proper cardiac function and hemostasis, and have been proposed as potential therapeutic targets in cardiovascular disease. The recent discovery that microRNAs circulate in a stable form in many body fluids, including blood, suggests that circulating microRNAs can serve as a new generation of biomarkers for cardiovascular diseases. In this review, we summarize the findings of studies focusing on circulating microRNAs present in human blood cells or plasma/serum, where they potentially could serve as diagnostic or prognostic markers for a variety of cardiovascular pathologies, including acute myocardial infarction, heart failure, coronary artery disease, stroke, diabetes and hypertension. The significance and limitations of microRNAs as the new biomarker generation for cardiovascular disease are also discussed.


Asunto(s)
Enfermedades Cardiovasculares/sangre , Diabetes Mellitus/sangre , MicroARNs/sangre , Biomarcadores/sangre , Micropartículas Derivadas de Células , Enfermedad de la Arteria Coronaria/sangre , Insuficiencia Cardíaca/sangre , Humanos , Hipertensión/sangre , Infarto del Miocardio/sangre , Accidente Cerebrovascular/sangre
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda