Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Phytopathology ; 114(1): 84-92, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37486097

RESUMEN

Citrus greening disease, or Huanglongbing (HLB), has devastated citrus crops globally in recent years. The causal bacterium, 'Candidatus Liberibacter asiaticus', presents a sampling issue for qPCR diagnostics and results in a high false negative rate. In this work, we compared six metabolomics assays to identify HLB-infected citrus trees from leaf tissue extracted from 30 control and 30 HLB-infected trees. A liquid chromatography-mass spectrometry-based assay was most accurate. A final partial least squares-discriminant analysis (PLS-DA) model was trained and validated on 690 leaf samples with corresponding qPCR measures from three citrus varieties (Rio Red grapefruit, Hamlin sweet orange, and Valencia sweet orange) from orchards in Florida and Texas. Trees were naturally infected with HLB transmitted by the insect vector Diaphorina citri. In a randomized validation set, the assay was 99.9% accurate to classify diseased from nondiseased samples. This model was applied to samples from trees receiving plant defense-inducer compounds or biological treatments to prevent or cure HLB infection. From two trials, HLB-related metabolite abundances and PLS-DA scores were tracked longitudinally and compared with those of control trees. We demonstrate how our assay can assess tree health and the efficacy of HLB treatments and conclude that no trialed treatment was efficacious.


Asunto(s)
Citrus sinensis , Citrus , Hemípteros , Liberibacter , Rhizobiaceae , Citrus/microbiología , Rhizobiaceae/genética , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Árboles
2.
Phytopathology ; 112(1): 44-54, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34503351

RESUMEN

It has been nearly 100 years since citrus growers in two distinct regions in the northern provinces of South Africa noticed unusual symptoms in their citrus trees, causing significant crop losses. They had no idea that these symptoms would later become part of an almost global pandemic of a disease called greening or huanglongbing (HLB). The rapid spread of the disease indicated that it might be caused by a transmissible pathogen, but it took >50 years to identify the causative agent as 'Candidatus Liberibacter africanus'. Recently, the disease appeared in more African countries, spreading by both infected planting material and Trioza erytreae. To date, five 'Ca. L. africanus' subspecies have been identified in various rutaceous species, with 'Ca. L. africanus subsp. clausenae' the only subspecies for which a biovar was detected in citrus. Efforts to detect and differentiate HLB-causing Liberibacter species are ongoing, and recent developments are discussed here. This review focuses on aspects of the African form of HLB, including its specific bacterial species and subspecies, its main insect vector, its geographic distribution, and current management strategies.


Asunto(s)
Citrus , Rhizobiaceae , Liberibacter , Enfermedades de las Plantas , Sudáfrica
3.
Plant Dis ; 105(3): 592-598, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32840435

RESUMEN

Citrus tristeza virus (CTV) in Texas was first reported in the 1950s and has since been sporadically reported in the residential areas in the Upper Gulf Coast region. Because the major rootstock for commercial citriculture in South Texas is sour orange, which is susceptible to CTV decline, the spread of CTV into South Texas can pose a great threat to Texas citrus industry. Thirty-six CTV-positive samples, collected during surveys conducted in the Upper Gulf Coast area of Texas from 2013 to 2018, were first analyzed by strain-specific real-time PCR (RT-PCR) targeting various regions of CTV Open reading frame (Orf) 1a and then by amplicon sequencing derived from p25 and p20 region of CTV genome. Among 36 samples, 33 were successfully genotyped by strain-specific RT-PCR and by amplicon sequencing followed by phylogenetic analysis. Variability in the detection of CTV strains was observed over a 6-year period. In 2013, T3 and T30 were the only strains detected in the Upper Gulf Coast of Texas, but in further surveys until 2018, additional strains were detected, including T36, VT, and RB. Mixed infections were also detected in 14 samples comprising about 42% of CTV samples examined in the study. Although genotyping mixed infection samples by targeting Orf 1a and full-length p25, residing in the 5' and 3' region of the CTV genome, respectively, confirmed the presence of multiple strains in these samples, incongruent genotyping data were observed. These findings suggested that the current status of CTV strain diversity in Texas Upper Gulf Coast region might have been established by multiple introductions of CTV-infected plant materials for propagation and with a potential recombination in planta.


Asunto(s)
Variación Genética , Genoma Viral , Closterovirus , Filogenia , Enfermedades de las Plantas , Texas
4.
Arch Virol ; 165(12): 3023-3072, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32888050

RESUMEN

In March 2020, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. At the genus rank, 20 new genera were added, two were deleted, one was moved, and three were renamed. At the species rank, 160 species were added, four were deleted, ten were moved and renamed, and 30 species were renamed. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Asunto(s)
Mononegavirales/clasificación , Terminología como Asunto
5.
Plant Dis ; 104(4): 1118-1126, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32040392

RESUMEN

Huanglongbing (HLB, citrus greening disease) in the major citrus-producing states of the United States is associated with Candidatus Liberibacter asiaticus (CLas), which is vectored by the Asian citrus psyllid (ACP). Surveys were conducted in Texas from 2007 to 2017 to assess the prevalence and titer of CLas in ACPs and citrus trees. ACP and citrus leaf tissue samples were collected from suspect trees in residential areas and commercial groves (orchards) and assayed for CLas by quantitative PCR. CLas detection in ACPs (2011) preceded that of citrus trees (2012) by several months. Annual incidences of CLas-positive ACPs and leaf tissue followed an exponential growth pattern over the survey period, varying from 0.03 to 28.7% in ACPs and 0.6 to 36.5% in citrus trees. There was a significant and positive relationship between the monthly incidences of CLas-positive ACP and leaf tissue samples. The proportion of HLB detection sites also increased with time, reaching 26 and 40% of commercial groves and residential sites, respectively, by 2017. Seasonal variations were observed in the incidences of CLas-positive ACPs and citrus trees such that significantly more CLas-positive ACPs and trees were recorded during the fall and winter of a given year relative to the hot summer. A temporal analysis of the class distribution of cycle threshold values revealed a trend of increased bacterial accumulation in ACPs and trees over time, with the trend more pronounced for the former than the latter host type. These findings provide a comprehensive insight into the ongoing CLas/HLB epidemic in Texas, with potential lessons for California and other citrus-producing areas where the disease is not yet established.


Asunto(s)
Citrus , Hemípteros , Animales , California , Enfermedades de las Plantas , Texas
6.
Plant Dis ; 104(9): 2455-2461, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32609054

RESUMEN

Phytophthora-induced foot rot, also known as gummosis, is an important disease affecting citrus production worldwide. In Texas, the third-largest citrus-producing state in the United States, limited information is available on the etiology and epidemiology of foot rot in commercial orchards. This study comprises a survey of foot rot incidence and severity in Texas and the characterization of Phytophthora isolates associated with the disease. Surveys in 2015 and 2017 of 30 orchards in the Lower Rio Grande Valley (LRGV) region where commercial citrus production is concentrated in the state revealed that foot rot occurred in 97% of the orchards assessed. Overall, foot rot symptoms were observed on 33.7% of the trees evaluated and the disease severity index in the region was rated at 14.2 and 16.5% in 2015 and 2017, respectively. Lesions were mostly present on the scion, while the rootstock (sour orange) was not affected. Phytophthora nicotianae was the only Phytophthora sp. isolated from the surveyed orchards and from five additional residential sites on the Texas Coastal Bend (TCB). Sporangia and chlamydospores from 34 representative LRGV isolates of P. nicotianae were larger than those of TCB isolates. In both LRGV and TCB, A1 and A2 mating types were present in the same location, albeit the A2 mating type was more prevalent. All isolates were sensitive to mefenoxam (50% inhibition in the presence of mefenoxam [EC50] < 0.5 µg/ml), except for one TCB isolate (EC50 = 143.6 µg/ml). Our research indicates that treatment for Phytophthora foot rot in the region is necessary and, although mefenoxam is still useful, alternating chemistries for resistance management are required.


Asunto(s)
Citrus , Phytophthora , Incidencia , Texas
7.
J Gen Virol ; 98(6): 1161-1162, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28635587

RESUMEN

The Ophioviridae is a family of filamentous plant viruses, with single-stranded negative, and possibly ambisense, RNA genomes of 11.3-12.5 kb divided into 3-4 segments, each encapsidated separately. Virions are naked filamentous nucleocapsids, forming kinked circles of at least two different contour lengths. The sole genus, Ophiovirus, includes seven species. Four ophioviruses are soil-transmitted and their natural hosts include trees, shrubs, vegetables and bulbous or corm-forming ornamentals, both monocots and dicots. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Ophioviridae, which is available at http://www.ictv.global/report/ophioviridae.


Asunto(s)
Enfermedades de las Plantas/virología , Virus de Plantas/clasificación , Virus de Plantas/genética , Plantas/virología , Virus ARN/clasificación , Virus ARN/genética , Virus de Plantas/aislamiento & purificación , Virus ARN/aislamiento & purificación , Estructuras Virales
9.
J Integr Plant Biol ; 58(4): 373-87, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26466921

RESUMEN

Citrus huanglongbing (HLB) has become a major disease and limiting factor of production in citrus areas that have become infected. The destruction to the affected citrus industries has resulted in a tremendous increase to support research that in return has resulted in significant information on both applied and basic knowledge concerning this important disease to the global citrus industry. Recent research indicates the relationship between citrus and the causal agent of HLB is shaped by multiple elements, in which host defense responses may also play an important role. This review is intended to provide an overview of the importance of HLB to a wider audience of plant biologists. Recent advances on host-pathogen interactions, population genetics and vectoring of the causal agent are discussed.


Asunto(s)
Citrus/microbiología , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Ecosistema , Modelos Biológicos , Inmunidad de la Planta
11.
Sci Rep ; 10(1): 16982, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33046775

RESUMEN

Huanglongbing (HLB), or Citrus Greening, is one of the most devastating diseases affecting agriculture today. Widespread throughout Citrus growing regions of the world, it has had severe economic consequences in all areas it has invaded. With no treatment available, management strategies focus on suppression and containment. Effective use of these costly control strategies relies on rapid and accurate identification of infected plants. Unfortunately, symptoms of the disease are slow to develop and indistinct from symptoms of other biotic/abiotic stressors. As a result, diagnosticians have focused on detecting the pathogen, Candidatus Liberibacter asiaticus, by DNA-based detection strategies utilizing leaf midribs for sampling. Recent work has shown that fibrous root decline occurs in HLB-affected trees before symptom development among leaves. Moreover, the pathogen, Ca. Liberibacter asiaticus, has been shown to be more evenly distributed within roots than within the canopy. Motivated by these observations, a longitudinal study of young asymptomatic trees was established to observe the spread of disease through time and test the relative effectiveness of leaf- and root-based detection strategies. Detection of the pathogen occurred earlier, more consistently, and more often in root samples than in leaf samples. Moreover, little influence of geography or host variety was found on the probability of detection.


Asunto(s)
Citrus/fisiología , ADN de Plantas/genética , Infecciones por Bacterias Gramnegativas/diagnóstico , Liberibacter/fisiología , Enfermedades de las Plantas/microbiología , Raíces de Plantas/fisiología , Carga Bacteriana , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología , Reacción en Cadena de la Polimerasa
12.
Genome Announc ; 5(15)2017 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-28408682

RESUMEN

We report here the draft genome sequence of "Candidatus Liberibacter asiaticus" strain TX2351, collected from Asian citrus psyllids in south Texas, USA. The TX2351 genome has a size of 1,252,043 bp, a G+C content of 36.5%, 1,184 predicted open reading frames, and 52 RNA genes.

13.
J Econ Entomol ; 109(5): 1973-1978, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27451998

RESUMEN

The Asian citrus psyllid preferentially feeds and exclusively reproduces on young, newly emerged flush shoots of citrus. Asian citrus psyllid nymphs feed and complete their life stages on these flush shoots. Recent studies conducted under greenhouse conditions have shown that the transmission rates of 'Candidatus Liberibacter asiaticus' (CLas), the putative causal agent of huanglongbing disease of citrus, are enhanced when flush shoots are present. However, it is unclear if CLas acquisition by migrant adult Asian citrus psyllids is similarly enhanced. To address this knowledge gap, cohorts of Asian citrus psyllid adults were allowed 1-wk acquisition access period (AAP) on flushing and nonflushing shoots of qPCR-tested symptomatic (CLas+) and asymptomatic (CLas-) 10-yr-old sweet orange trees under field conditions. After the AAP, they were tested for CLas by qPCR. Progeny Asian citrus psyllid adults that emerged 4 wk post-AAP were similarly retrieved and tested. Eighty percent of flushing and 30% of nonflushing CLas+ trees produced infective Asian citrus psyllid adults, indicating that flush shoots have greater potential to be inoculum sources for CLas acquisition. Concomitantly, 21.1% and 6.0% infective adults were retrieved, respectively, from flushing and nonflushing CLas+ trees, indicating that Asian citrus psyllid adults acquire CLas more efficiently from flush shoots relative to mature shoots. In addition, 12.1% of infective Asian citrus psyllid adult progeny were obtained from 70% of flushing CLas+ trees. Significantly lower mean Ct values were also obtained from infective adults retrieved from flushing relative to nonflushing trees. The results underscore the role of flush shoots in CLas acquisition and the need to protect citrus trees from Asian citrus psyllid infestations during flush cycles.


Asunto(s)
Citrus/microbiología , Hemípteros/microbiología , Hemípteros/fisiología , Enfermedades de las Plantas/microbiología , Rhizobiaceae/fisiología , Animales , Conducta Alimentaria , Femenino , Masculino
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda