Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Curr Obes Rep ; 12(3): 280-307, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37389759

RESUMEN

PURPOSE OF REVIEW: To conduct a systematic review to summarize the results of studies on this subject and to identify whether single nucleotide polymorphisms (SNPs) are good prognostic markers for body weight trajectory after bariatric surgery. RECENT FINDINGS: A considerable number of events can influence the body weight trajectory after bariatric surgery, and in the post-genomic era, genetic factors have been explored. This study is registered with PROSPERO (CRD42021240903). SNPs positively associated with poor weight loss after bariatric surgery were rs17702901, rs9939609, rs1360780, rs1126535, rs1137101, rs17782313, rs490683, and rs659366. Alternatively, SNPs rs2229616, rs5282087, rs490683, rs9819506, rs4771122, rs9939609, rs4846567, rs9930506, rs3813929, rs738409, rs696217, rs660339, rs659366, rs6265, rs1801260, and rs2419621 predicted a higher weight loss after bariatric surgery. Six studies performed with a genetic risk score (GRS) model presented significant associations between GRS and outcomes following bariatric surgery. This systematic review shows that, different SNPs and genetic models could be good predictors for body weight trajectory after bariatric surgery. Based on the results of the selected studies for this Systematic Review is possible to select SNPs and metabolic pathways of interest for the GRS construction to predict the outcome of bariatric surgery to be applied in future studies.


Asunto(s)
Cirugía Bariátrica , Trayectoria del Peso Corporal , Obesidad Mórbida , Humanos , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Pérdida de Peso/genética , Índice de Masa Corporal , Obesidad Mórbida/cirugía
2.
Nutrients ; 14(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35267990

RESUMEN

Given the relationship between vitamin D deficiency (VDD) and adverse outcomes of metabolic diseases, we investigated the interplay of dietary and genetic components on vitamin D levels and metabolic traits in young adults from Brazil. Genetic analysis, dietary intake, and anthropometric and biochemical measurements were performed in 187 healthy young adults (19−24 years). Genetic risk scores (GRS) from six genetic variants associated with vitamin D (vitamin D-GRS) and 10 genetic variants associated with metabolic disease (metabolic-GRS) were constructed. High vitamin D-GRS showed a significant association with low 25(OH)D concentrations (p = 0.001) and high metabolic-GRS showed a significant association with high fasting insulin concentrations (p = 0.045). A significant interaction was found between vitamin D-GRS and total protein intake (g/day) (adjusted for non-animal protein) on 25(OH)D (pinteraction = 0.006), where individuals consuming a high protein diet (≥73 g/d) and carrying >4 risk alleles for VDD had significantly lower 25(OH)D (p = 0.002) compared to individuals carrying ≤4 risk alleles. Even though our study did not support a link between metabolic-GRS and vitamin D status, our study has demonstrated a novel interaction, where participants with high vitamin D-GRS and consuming ≥73 g of protein/day had significantly lower 25(OH)D levels. Further research is necessary to evaluate the role of animal protein consumption on VDD in Brazilians.


Asunto(s)
Proteínas en la Dieta , Vitamina D , Brasil/epidemiología , Factores de Riesgo , Vitamina D/metabolismo , Vitaminas
3.
J Diabetes Metab Disord ; 20(2): 1337-1347, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34900785

RESUMEN

PURPOSE: The development of metabolic diseases such as type 2 diabetes (T2D) is closely linked to a complex interplay between genetic and dietary factors. The prevalence of abdominal obesity, hyperinsulinemia, dyslipidaemia, and high blood pressure among Brazilian adolescents is increasing and hence, early lifestyle interventions targeting these factors might be an effective strategy to prevent or slow the progression of T2D. METHODS: We aimed to assess the interaction between dietary and genetic factors on metabolic disease-related traits in 200 healthy Brazilian young adults. Dietary intake was assessed using 3-day food records. Ten metabolic disease-related single nucleotide polymorphisms (SNPs) were used to construct a metabolic-genetic risk score (metabolic-GRS). RESULTS: We found significant interactions between the metabolic-GRS and total fat intake on fasting insulin level (Pinteraction = 0.017), insulin-glucose ratio (Pinteraction = 0.010) and HOMA-B (Pinteraction = 0.002), respectively, in addition to a borderline GRS-fat intake interaction on HOMA-IR (Pinteraction = 0.051). Within the high-fat intake category [37.98 ± 3.39% of total energy intake (TEI)], individuals with ≥ 5 risk alleles had increased fasting insulin level (P = 0.021), insulin-glucose ratio (P = 0.010), HOMA-B (P = 0.001) and HOMA-IR (P = 0.053) than those with < 5 risk alleles. CONCLUSION: Our study has demonstrated a novel GRS-fat intake interaction in young Brazilian adults, where individuals with higher genetic risk and fat intake had increased glucose and insulin-related traits than those with lower genetic risk. Large intervention and follow-up studies with an objective assessment of dietary factors are needed to confirm our findings. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40200-021-00863-7.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda