Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Front Microbiol ; 6: 303, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25914695

RESUMEN

Members of the Paracoccidioides genus are the etiologic agents of paracoccidioidomycosis (PCM). This genus is composed of two species: Paracoccidioides brasiliensis and Paracoccidioides lutzii. The correct molecular taxonomic classification of these fungi has created new opportunities for studying and understanding their relationships with their hosts. Paracoccidioides spp. have features that permit their growth under adverse conditions, enable them to adhere to and invade host tissues and may contribute to disease development. Cell wall proteins called adhesins facilitate adhesion and are capable of mediating fungi-host interactions during infection. This study aimed to evaluate the adhesion profile of two species of the genus Paracoccidioides, to analyze the expression of adhesin-encoding genes by real-time PCR and to relate these results to the virulence of the species, as assessed using a survival curve in mice and in Galleria mellonella after blocking the adhesins. A high level of heterogeneity was observed in adhesion and adhesin expression, showing that the 14-3-3 and enolase molecules are the most highly expressed adhesins during pathogen-host interaction. Additionally, a survival curve revealed a correlation between the adhesion rate and survival, with P. brasiliensis showing higher adhesion and adhesin expression levels and greater virulence when compared with P. lutzii. After blocking 14-3-3 and enolase adhesins, we observed modifications in the virulence of these two species, revealing the importance of these molecules during the pathogenesis of members of the Paracoccidioides genus. These results revealed new insights into the host-pathogen interaction of this genus and may enhance our understanding of different isolates that could be useful for the treatment of this mycosis.

2.
Front Microbiol ; 6: 1526, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26793172

RESUMEN

Histoplasma capsulatum is responsible for a human systemic mycosis that primarily affects lung tissue. Macrophages are the major effector cells in humans that respond to the fungus, and the development of respiratory disease depends on the ability of Histoplasma yeast cells to survive and replicate within alveolar macrophages. Therefore, the interaction between macrophages and H. capsulatum is a decisive step in the yeast dissemination into host tissues. Although the role played by components of cell-mediated immunity in the host's defense system and the mechanisms used by the pathogen to evade the host immune response are well understood, knowledge regarding the effects induced by H. capsulatum in host cells at the nuclear level is limited. According to the present findings, H. capsulatum yeast cells display a unique architectural arrangement during the intracellular infection of cultured murine alveolar macrophages, characterized as a formation of aggregates that seem to surround the host cell nucleus, resembling a "crown." This extranuclear organization of yeast-aggregates generates damage on the nucleus of the host cell, producing DNA fragmentation and inducing apoptosis, even though the yeast cells are not located inside the nucleus and do not trigger changes in nuclear proteins. The current study highlights a singular intracellular arrangement of H. capsulatum yeast near to the nucleus of infected murine alveolar macrophages that may contribute to the yeast's persistence under intracellular conditions, since this fungal pathogen may display different strategies to prevent elimination by the host's phagocytic mechanisms.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda