Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nano Lett ; 20(9): 6466-6472, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32787172

RESUMEN

Measurement of thermogenesis in individual cells is a remarkable challenge due to the complexity of the biochemical environment (such as pH and ionic strength) and to the rapid and yet not well-understood heat transfer mechanisms throughout the cell. Here, we present a unique system for intracellular temperature mapping in a fluorescence microscope (uncertainty of 0.2 K) using rationally designed luminescent Ln3+-bearing polymeric micellar probes (Ln = Sm, Eu) incubated in breast cancer MDA-MB468 cells. Two-dimensional (2D) thermal images recorded increasing the temperature of the cells culture medium between 296 and 304 K shows inhomogeneous intracellular temperature progressions up to ∼20 degrees and subcellular gradients of ∼5 degrees between the nucleolus and the rest of the cell, illustrating the thermogenic activity of the different organelles and highlighting the potential of this tool to study intracellular processes.


Asunto(s)
Elementos de la Serie de los Lantanoides , Luminiscencia , Micelas , Polímeros , Temperatura
2.
Phys Chem Chem Phys ; 17(12): 7731-42, 2015 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-25712634

RESUMEN

The chemical bond overlap properties were obtained for alkali halides NaY (Y = F, Cl, Br), alkaline-earth chalcogenides MX (M = Ca, Mg and X = O, S, Se) and alkali and alkali-earth metals (Li, Na, and Mg) in diatomic and solid-state systems using an embedding approach based on the frozen density functional theory to simulate the crystalline effects. The computational protocol established provides errors for bond distances smaller than 1%. The results indicate that larger chemical bond covalency leads to larger absorption or scattering by the overlap region. The ionic specific valence and overlap polarizability are closely related to the valence orbital compactness measured by the sum of Mulliken electronegativities. The embedding approach used in this work makes it possible to quantify the effects of the crystalline environment on the chemical bond overlap properties. In the solid-state, the bond overlap charges are less polarizable, in cases of well-known ionic systems (provided by electronegativity differences), leading to smaller chemical bond covalency in solids than in diatomics. The spectroscopic properties of the polarizability of the electron density in the overlap region of a chemical bond could be measured in the 1-20 eV spectral region and could be used to characterize some bands in several spectra whose assignments are ambiguous or not available.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda