Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Phys Rev Lett ; 131(26): 262501, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38215380

RESUMEN

The excited states of unstable ^{20}O were investigated via γ-ray spectroscopy following the ^{19}O(d,p)^{20}O reaction at 8 AMeV. By exploiting the Doppler shift attenuation method, the lifetimes of the 2_{2}^{+} and 3_{1}^{+} states were firmly established. From the γ-ray branching and E2/M1 mixing ratios for transitions deexciting the 2_{2}^{+} and 3_{1}^{+} states, the B(E2) and B(M1) were determined. Various chiral effective field theory Hamiltonians, describing the nuclear properties beyond ground states, along with a standard USDB interaction, were compared with the experimentally obtained data. Such a comparison for a large set of γ-ray transition probabilities with the valence space in medium similarity renormalization group ab initio calculations was performed for the first time in a nucleus far from stability. It was shown that the ab initio approaches using chiral effective field theory forces are challenged by detailed high-precision spectroscopic properties of nuclei. The reduced transition probabilities were found to be a very constraining test of the performance of the ab initio models.

2.
Phys Rev Lett ; 129(11): 112501, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36154392

RESUMEN

The reduced transition probabilities for the 4_{1}^{+}→2_{1}^{+} and 2_{1}^{+}→0_{1}^{+} transitions in ^{92}Mo and ^{94}Ru and for the 4_{1}^{+}→2_{1}^{+} and 6_{1}^{+}→4_{1}^{+} transitions in ^{90}Zr have been determined in this experiment making use of a multinucleon transfer reaction. These results have been interpreted on the basis of realistic shell-model calculations in the f_{5/2}, p_{3/2}, p_{1/2}, and g_{9/2} proton valence space. Only the combination of extensive lifetime information and large scale shell-model calculations allowed the extent of the seniority conservation in the N=50 g_{9/2} orbital to be understood. The conclusion is that seniority is largely conserved in the first πg_{9/2} orbital.

3.
Phys Rev Lett ; 126(7): 072501, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33666458

RESUMEN

We studied the proton-rich T_{z}=-1 nucleus ^{70}Kr through inelastic scattering at intermediate energies in order to extract the reduced transition probability, B(E2;0^{+}→2^{+}). Comparison with the other members of the A=70 isospin triplet, ^{70}Br and ^{70}Se, studied in the same experiment, shows a 3σ deviation from the expected linearity of the electromagnetic matrix elements as a function of T_{z}. At present, no established nuclear structure theory can describe this observed deviation quantitatively. This is the first violation of isospin symmetry at this level observed in the transition matrix elements. A heuristic approach may explain the anomaly by a shape change between the mirror nuclei ^{70}Kr and ^{70}Se contrary to the model predictions.

4.
Phys Rev Lett ; 124(6): 062501, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32109090

RESUMEN

The low-lying energy spectrum of the extremely neutron-deficient self-conjugate (N=Z) nuclide _{44}^{88}Ru_{44} has been measured using the combination of the Advanced Gamma Tracking Array (AGATA) spectrometer, the NEDA and Neutron Wall neutron detector arrays, and the DIAMANT charged particle detector array. Excited states in ^{88}Ru were populated via the ^{54}Fe(^{36}Ar,2nγ)^{88}Ru^{*} fusion-evaporation reaction at the Grand Accélérateur National d'Ions Lourds (GANIL) accelerator complex. The observed γ-ray cascade is assigned to ^{88}Ru using clean prompt γ-γ-2-neutron coincidences in anticoincidence with the detection of charged particles, confirming and extending the previously assigned sequence of low-lying excited states. It is consistent with a moderately deformed rotating system exhibiting a band crossing at a rotational frequency that is significantly higher than standard theoretical predictions with isovector pairing, as well as observations in neighboring N>Z nuclides. The direct observation of such a "delayed" rotational alignment in a deformed N=Z nucleus is in agreement with theoretical predictions related to the presence of strong isoscalar neutron-proton pair correlations.

5.
Phys Rev Lett ; 122(22): 222502, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31283269

RESUMEN

A record number of ^{100}Sn nuclei was detected and new isotopic species toward the proton dripline were discovered at the RIKEN Nishina Center. Decay spectroscopy was performed with the high-efficiency detector arrays WAS3ABi and EURICA. Both the half-life and the ß-decay end point energy of ^{100}Sn were measured more precisely than the literature values. The value and the uncertainty of the resulting strength for the pure 0^{+}→1^{+} Gamow-Teller decay was improved to B_{GT}=4.4_{-0.7}^{+0.9}. A discrimination between different model calculations was possible for the first time, and the level scheme of ^{100}In is investigated further.

6.
Phys Rev Lett ; 121(3): 032502, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-30085775

RESUMEN

Energy differences between analogue states in the T=1/2 ^{23}Mg-^{23}Na mirror nuclei have been measured along the rotational yrast bands. This allows us to search for effects arising from isospin-symmetry-breaking interactions (ISB) and/or shape changes. Data are interpreted in the shell model framework following the method successfully applied to nuclei in the f_{7/2} shell. It is shown that the introduction of a schematic ISB interaction of the same type of that used in the f_{7/2} shell is needed to reproduce the data. An alternative novel description, applied here for the first time, relies on the use of an effective interaction deduced from a realistic charge-dependent chiral nucleon-nucleon potential. This analysis provides two important results: (i) The mirror energy differences give direct insight into the nuclear skin; (ii) the skin changes along the rotational bands are strongly correlated with the difference between the neutron and proton occupations of the s_{1/2} "halo" orbit.

7.
Phys Rev Lett ; 121(19): 192502, 2018 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-30468583

RESUMEN

Lifetime measurements of excited states of the light N=52 isotones ^{88}Kr, ^{86}Se, and ^{84}Ge have been performed, using the recoil distance Doppler shift method and VAMOS and AGATA spectrometers for particle identification and gamma spectroscopy, respectively. The reduced electric quadrupole transition probabilities B(E2;2^{+}→0^{+}) and B(E2;4^{+}→2^{+}) were obtained for the first time for the hard-to-reach ^{84}Ge. While the B(E2;2^{+}→0^{+}) values of ^{88}Kr, ^{86}Se saturate the maximum quadrupole collectivity offered by the natural valence (3s, 2d, 1g_{7/2}, 1h_{11/2}) space of an inert ^{78}Ni core, the value obtained for ^{84}Ge largely exceeds it, suggesting that shape coexistence phenomena, previously reported at N≲49, extend beyond N=50. The onset of collectivity at Z=32 is understood as due to a pseudo-SU(3) organization of the proton single-particle sequence reflecting a clear manifestation of pseudospin symmetry. It is realized that the latter provides actually reliable guidance for understanding the observed proton and neutron single particle structure in the whole medium-mass region, from Ni to Sn, pointing towards the important role of the isovector-vector ρ field in shell-structure evolution.

8.
Phys Rev Lett ; 121(19): 192501, 2018 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-30468600

RESUMEN

The lifetimes of the first excited 2^{+}, 4^{+}, and 6^{+} states in ^{98}Zr were measured with the recoil-distance Doppler shift method in an experiment performed at GANIL. Excited states in ^{98}Zr were populated using the fission reaction between a 6.2 MeV/u ^{238}U beam and a ^{9}Be target. The γ rays were detected with the EXOGAM array in correlation with the fission fragments identified by mass and atomic number in the VAMOS++ spectrometer. Our result shows a very small B(E2;2_{1}^{+}→0_{1}^{+}) value in ^{98}Zr, thereby confirming the very sudden onset of collectivity at N=60. The experimental results are compared to large-scale Monte Carlo shell model and beyond-mean-field calculations. The present results indicate the coexistence of two additional deformed shapes in this nucleus along with the spherical ground state.

9.
Nature ; 486(7403): 341-5, 2012 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-22722192

RESUMEN

The shell structure of atomic nuclei is associated with 'magic numbers' and originates in the nearly independent motion of neutrons and protons in a mean potential generated by all nucleons. During ß(+)-decay, a proton transforms into a neutron in a previously not fully occupied orbital, emitting a positron-neutrino pair with either parallel or antiparallel spins, in a Gamow-Teller or Fermi transition, respectively. The transition probability, or strength, of a Gamow-Teller transition depends sensitively on the underlying shell structure and is usually distributed among many states in the neighbouring nucleus. Here we report measurements of the half-life and decay energy for the decay of (100)Sn, the heaviest doubly magic nucleus with equal numbers of protons and neutrons. In the ß-decay of (100)Sn, a large fraction of the strength is observable because of the large decay energy. We determine the largest Gamow-Teller strength so far measured in allowed nuclear ß-decay, establishing the 'superallowed' nature of this Gamow-Teller transition. The large strength and the low-energy states in the daughter nucleus, (100)In, are well reproduced by modern, large-scale shell model calculations.

10.
Phys Rev Lett ; 118(16): 162501, 2017 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-28474951

RESUMEN

Prompt γ-ray spectroscopy of the neutron-rich ^{96}Kr, produced in transfer- and fusion-induced fission reactions, has been performed using the combination of the Advanced Gamma Tracking Array and the VAMOS++ spectrometer. A second excited state, assigned to J^{π}=4^{+}, is observed for the first time, and a previously reported level energy of the first 2^{+} excited state is confirmed. The measured energy ratio R_{4/2}=E(4^{+})/E(2^{+})=2.12(1) indicates that this nucleus does not show a well-developed collectivity contrary to that seen in heavier N=60 isotones. This new measurement highlights an abrupt transition of the degree of collectivity as a function of the proton number at Z=36, of similar amplitude to that observed at N=60 at higher Z values. A possible reason for this abrupt transition could be related to the insufficient proton excitations in the g_{9/2}, d_{5/2}, and s_{1/2} orbitals to generate strong quadrupole correlations or to the coexistence of competing different shapes. An unexpected continuous decrease of R_{4/2} as a function of the neutron number up to N=60 is also evidenced. This measurement establishes the Kr isotopic chain as the low-Z boundary of the island of deformation for N=60 isotones. A comparison with available theoretical predictions using different beyond mean-field approaches shows that these models fail to reproduce the abrupt transitions at N=60 and Z=36.

11.
Nature ; 469(7328): 68-71, 2011 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-21179086

RESUMEN

Shell structure and magic numbers in atomic nuclei were generally explained by pioneering work that introduced a strong spin-orbit interaction to the nuclear shell model potential. However, knowledge of nuclear forces and the mechanisms governing the structure of nuclei, in particular far from stability, is still incomplete. In nuclei with equal neutron and proton numbers (N = Z), enhanced correlations arise between neutrons and protons (two distinct types of fermions) that occupy orbitals with the same quantum numbers. Such correlations have been predicted to favour an unusual type of nuclear superfluidity, termed isoscalar neutron-proton pairing, in addition to normal isovector pairing. Despite many experimental efforts, these predictions have not been confirmed. Here we report the experimental observation of excited states in the N = Z = 46 nucleus (92)Pd. Gamma rays emitted following the (58)Ni((36)Ar,2n)(92)Pd fusion-evaporation reaction were identified using a combination of state-of-the-art high-resolution γ-ray, charged-particle and neutron detector systems. Our results reveal evidence for a spin-aligned, isoscalar neutron-proton coupling scheme, different from the previous prediction. We suggest that this coupling scheme replaces normal superfluidity (characterized by seniority coupling) in the ground and low-lying excited states of the heaviest N = Z nuclei. Such strong, isoscalar neutron-proton correlations would have a considerable impact on the nuclear level structure and possibly influence the dynamics of rapid proton capture in stellar nucleosynthesis.

12.
Phys Rev Lett ; 116(16): 162501, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-27152796

RESUMEN

Several new isotopes, ^{96}In, ^{94}Cd, ^{92}Ag, and ^{90}Pd, have been identified at the RIKEN Nishina Center. The study of proton drip-line nuclei in the vicinity of ^{100}Sn led to the discovery of new proton emitters ^{93}Ag and ^{89}Rh with half-lives in the submicrosecond range. The systematics of the half-lives of odd-Z nuclei with T_{z}=-1/2 toward ^{99}Sn shows a stabilizing effect of the Z=50 shell closure. Production cross sections for nuclei in the vicinity of ^{100}Sn measured at different energies and target thicknesses were compared to the cross sections calculated by epax taking into account contributions of secondary reactions in the primary target.

13.
Phys Rev Lett ; 115(17): 172503, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26551108

RESUMEN

Absolute cross sections for isotopically identified products formed in multinucleon transfer in the (136)Xe+(198)Pt system at ∼8 MeV/nucleon are reported. The isotopic distributions obtained using a large acceptance spectrometer demonstrated the production of the "hard-to-reach" neutron-rich isotopes for Z<78 around the N=126 shell closure far from stability. The main contribution to the formation of these exotic nuclei is shown to arise in collisions with a small kinetic energy dissipation. The present experimental finding corroborates for the first time recent predictions that multinucleon transfer reactions would be the optimum method to populate and characterize neutron-rich isotopes around N=126 which are crucial for understanding both astrophysically relevant processes and the evolution of "magic" numbers far from stability.

14.
Phys Rev Lett ; 110(3): 032501, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23373914

RESUMEN

The decay of (19)O(ß(-)) and (19)Ne(ß(+)) implanted in niobium in its superconducting and metallic phases was measured using purified radioactive beams produced by the SPIRAL GANIL facility. Half-lives and branching ratios measured in the two phases are consistent within a 1σ error bar. This measurement casts strong doubts on the predicted strong electron screening in a superconductor, the so-called superscreening. The measured difference in screening potential energy is 110(90) eV for (19)Ne and 400(320) eV for (19)O. Precise determinations of the half-lives were obtained for (19)O, 26.476(9) s, and for (19)Ne, 17.254(5) s.

15.
Phys Rev Lett ; 104(19): 192501, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-20866960

RESUMEN

The transfer of neutrons onto 24Ne has been measured using a reaccelerated radioactive beam of 24Ne to study the (d,p) reaction in inverse kinematics. The unusual raising of the first 3/2+ level in 25Ne and its significance in terms of the migration of the neutron magic number from N=20 to N=16 is put on a firm footing by confirmation of this state's identity. The raised 3/2+ level is observed simultaneously with the intruder negative parity 7/2- and 3/2- levels, providing evidence for the reduction in the N=20 gap. The coincident gamma-ray decays allowed the assignment of spins as well as the transferred orbital angular momentum. The excitation energy of the 3/2+ state shows that the established USD shell model breaks down well within the sd model space and requires a revised treatment of the proton-neutron monopole interaction.

16.
Phys Rev Lett ; 103(23): 232701, 2009 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-20366144

RESUMEN

A modern variation of the Rutherford experiment to probe the tunneling of exotic nuclear matter from the measurement of the residues formed in the bombardment of (197)Au by extremely neutron-rich (8)He nuclei is presented. Using a novel off-beam technique the most precise and accurate measurements of fusion and neutron transfer involving reaccelerated unstable beams are reported. The results show unusual behavior of the tunneling of (8)He compared to that for lighter helium isotopes, highlighting the role of the intrinsic structure of composite many-body quantum systems and pairing correlations.

17.
Phys Rev Lett ; 84(6): 1116-9, 2000 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-11017457

RESUMEN

In an experiment at the SISSI/LISE3 facility of GANIL, we used the projectile fragmentation of a primary 58Ni26+ beam at 74.5 MeV/nucleon with an average current of 3 &mgr;A on a natural nickel target to produce very neutron-deficient isotopes. In a 10-day experiment, 287 42Cr isotopes, 53 45Fe isotopes, 106 49Ni isotopes, and 4 48Ni isotopes were unambiguously identified. The doubly magic nucleus 48Ni, observed for the first time, is the most proton-rich isotope ever identified with an isospin projection T(z) = -4. It is probably the last doubly magic nucleus with "classical" shell closures accessible for present-day facilities. Its observation allows us to deduce a lower limit for the half-life of 48Ni of 0.5 &mgr;s.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda