Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
País como asunto
Tipo del documento
Publication year range
1.
J Theor Biol ; 554: 111271, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36075456

RESUMEN

Complex interactions are at the root of the population dynamics of many natural systems, particularly for being responsible for the allocation of species and individuals across apposite niches of the ecological landscapes. On the other side, the randomness that unavoidably characterises complex systems has increasingly challenged the niche paradigm providing alternative neutral theoretical models. We introduce a network-inspired metapopulation individual-based model (IBM), hereby named self-segregation, where the density of individuals in the hosting patches (local habitats) drives the individuals spatial assembling while still constrained by nodes' saturation. In particular, we prove that the core-periphery structure of the networked landscape triggers the spontaneous emergence of vacant habitat patches, which segregate the population in multistable patterns of isolated (sub)communities separated by empty patches. Furthermore, a quantisation effect in the number of vacant patches is observed once the total system mass varies continuously, emphasising thus a striking feature of the robustness of population stationary distributions. Notably, our model reproduces the patch vacancy found in the fragmented habitat of the Glanville fritillary butterfly Melitaea cinxia, an endemic species of the Åland islands. We argue that such spontaneous breaking of the natural habitat supports the concept of the highly contentious (Grinnellian) niche vacancy and also suggests a new mechanism for the endogeneous habitat fragmentation and consequently the peripatric speciation.


Asunto(s)
Mariposas Diurnas , Animales , Ecosistema , Finlandia , Humanos , Dinámica Poblacional
2.
Phys Rev E ; 110(1): L012201, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39160944

RESUMEN

Many natural or human-made systems encompassing local reactions and diffusion processes exhibit spatially distributed patterns of some relevant dynamical variable. These interactions, through self-organization and critical phenomena, give rise to power-law distributions, where emergent patterns and structures become visible across vastly different scales. Recent observations reveal power-law distributions in the spatial organization of, e.g., tree clusters and forest patch sizes. Crucially, these patterns do not follow a spatially periodic order but rather a statistical one. Unlike the spatially periodic patterns elucidated by the Turing mechanism, the statistical order of these particular vegetation patterns suggests an incomplete understanding of the underlying mechanisms. Here, we present a self-segregation mechanism, driving the emergence of power-law scalings in pattern-forming systems. The model incorporates an Allee-logistic reaction term, responsible for the local growth, and a nonlinear diffusion process accounting for positive interactions and limited resources. According to a self-organized criticality (SOC) principle, after an initial decrease, the system mass reaches an analytically predictable threshold, beyond which it self-segregates into distinct clusters, due to local positive interactions that promote cooperation. Numerical investigations show that the distribution of cluster sizes obeys a power law with an exponential cutoff.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda