Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Carbohydr Polym ; 230: 115608, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31887870

RESUMEN

The treatment of vulvovaginal candidiasis (VVC) is based on oral and vaginal formulations which show limited effectiveness. In this study, amphotericin B-loaded Eudragit RL100 nanoparticles coated with hyaluronic acid (AMP EUD nanoparticles/HA) were developed to overcome the drawbacks of the conventional formulations. AMP EUD nanoparticles/HA were synthesized by nanoprecipitation, formulated by statistical experimental design, and characterized. AMP release from EUD nanoparticles/HA and its antifungal activity in a murine model of VVC were evaluated. Nanoparticles showed 147.6 ±â€¯16.7 nm of diameter, 0.301 ±â€¯0.09 of polydispersity index, - 29.9 ±â€¯3.76 mV of zeta potential, and 87.27 % of encapsulation efficiency. They released about 81 % of AMP in 96 h; and provided the elimination of 100 % of the vaginal fungal burden in 24 h. It was suggested that the AMP EUD nanoparticles/HA penetrated into the vaginal epithelium via CD44 receptors. These AMP EUD nanoparticles/HA represent a non-conventional vaginal formulation to improve the treatment of VVC.

2.
J Pharm Sci ; 107(10): 2674-2685, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29940181

RESUMEN

Vulvovaginal candidiasis is an inflammation localized in the vulvovaginal area. It is mostly caused by Candida albicans. Its treatment is based on the systemic and local administration of antifungal drugs. However, this conventional therapy can fail owing to the resistance of the Candida species and noncompliance of patients. Amphotericin B-loaded poly(lactic-co-glycolic acid) nanofibers are single-use, antifungal, controlled drug delivery systems, and represent an alternative therapeutic scheme for the local treatment of vulvovaginal candidiasis. Nanofibers were characterized by analytical techniques and with an in vitro drug delivery study. In vitro and in vivo fungicidal activity of amphotericin B released from nanofibers was evaluated using the agar diffusion method and an experimental murine model of vulvovaginal candidiasis, respectively. Analytical techniques showed that amphotericin B was physically mixed in the polymeric nanofibers. Nanofibers controlled the delivery of therapeutic doses of amphotericin B for 8 consecutive days, providing effective in vitro antifungal activity and eliminated the in vivo vaginal fungal burden after 3 days of treatment and with only one local application. Amphotericin B-loaded poly(lactic-co-glycolic acid) nanofibers could be potentially applied as an alternative strategy for the local treatment of vulvovaginal candidiasis without inducing fungal resistance, yet ensuring patient compliance.


Asunto(s)
Anfotericina B/química , Anfotericina B/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Candidiasis Vulvovaginal/tratamiento farmacológico , Nanofibras/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Animales , Candida/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Femenino , Pruebas de Sensibilidad Microbiana/métodos , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda