Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Cells Tissues Organs ; 198(2): 160-8, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23886660

RESUMEN

Ileocolonic aganglionosis (ICA) is the congenital and hereditary absence of neurons that constitute the enteric nervous system and has been described in various species including humans - Hirschsprung's disease - and horses - overo lethal white syndrome (OLWS). Hirschsprung's disease affects circa 1 in 5,000 live births. At best, this disease means an inability to absorb nutrients from food (humans). At worse, in horses, it always means death. Despite our general understanding of the functional mechanisms underlying ICA, there is a paucity of reliable quantitative information about the structure of myenteric and submucosal neurons in healthy horses and there are no studies on horses with ICA. In light of these uncertainties, we have used design-based stereology to describe the 3-D structure - total number and true size - of myenteric and submucosal neurons in the ileum of ICA horses. Our study has shown that ICA affects all submucosal neurons and 99% of myenteric neurons. The remaining myenteric neurons (0.56%) atrophy immensely, i.e. 63.8%. We believe this study forms the basis for further research, assessing which subpopulation of myenteric neurons are affected by ileocolonic aganglionosis, and we would like to propose a new nomenclature to distinguish between a complete absence of neurons - aganglionosis - and a weaker form of the disease which we suggest naming 'hypoganglionosis'. Our results are a step forward in understanding this disease structurally.


Asunto(s)
Enfermedad de Hirschsprung/veterinaria , Enfermedades de los Caballos/diagnóstico , Imagenología Tridimensional/métodos , Animales , Recuento de Células , Ganglios/patología , Enfermedad de Hirschsprung/diagnóstico , Enfermedad de Hirschsprung/genética , Enfermedades de los Caballos/genética , Caballos , Íleon/patología , Masculino , Neuronas/patología , Tamaño de los Órganos
2.
Nutrition ; 38: 61-69, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28526384

RESUMEN

OBJECTIVE: The aim of the present study was to investigate the putative effects of a low-protein diet on the three-dimensional structure of hepatocytes and determine whether this scenario could be reversed by restoring the adequate levels of protein to the diet. METHODS: Using design-based stereology, the total number and volume of hepatocytes were estimated in the liver of mice in healthy and altered (by protein malnutrition) conditions and after protein renutrition. RESULTS: This study demonstrated a 65% decrease in the liver volume (3302 mm3 for the control for undernourished versus 1141 mm3 for the undernourished group) accompanied by a 46% reduction in the hepatocyte volume (8223 µm3 for the control for undernourished versus 4475 µm3 for the undernourished group) and a 90% increase in the total number of binucleate hepatocytes (1 549 393 for the control for undernourished versus 2 941 353 for the undernourished group). Reinstating a normoproteinic diet (12% casein) proved to be effective in restoring the size of hepatocytes, leading to an 85% increase in the total number of uninucleate hepatocytes (15 988 560 for the undernourished versus 29 600 520 for the renourished group), and partially reversed the liver atrophy. CONCLUSIONS: Awareness of these data will add to a better morphologic understanding of malnutrition-induced hepatopathies and will help clinicians improve the diagnosis and treatment of this condition in humans and in veterinary practice.


Asunto(s)
Proteínas en la Dieta/uso terapéutico , Imagenología Tridimensional/métodos , Hígado/patología , Deficiencia de Proteína/dietoterapia , Deficiencia de Proteína/patología , Animales , Modelos Animales de Enfermedad , Hepatocitos/patología , Ratones , Microscopía , Tamaño de los Órganos , Resultado del Tratamiento
3.
Int J Dev Neurosci ; 29(4): 475-81, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21334426

RESUMEN

Recently, superior cervical ganglionectomy has been performed to investigate a variety of scientific topics from regulation of intraocular pressure to suppression of lingual tumour growth. Despite these recent advances in our understanding of the functional mechanisms underlying superior cervical ganglion (SCG) growth and development after surgical ablation, there still exists a need for information concerning the quantitative nature of the relationships between the removed SCG and its remaining contralateral ganglion and between the remaining SCG and its modified innervation territory. To this end, using design-based stereological methods, we have investigated the structural changes induced by unilateral ganglionectomy in sheep at three distinct timepoints (2, 7 and 12 weeks) after surgery. The effects of time, and lateral (left-right) differences, were examined by two-way analyses of variance and paired t-tests. Following removal of the left SCG, the main findings were: (i) the remaining right SCG was bigger at shorter survival times, i.e. 74% at 2 weeks, 55% at 7 weeks and no increase by 12 weeks, (ii) by 7 weeks after surgery, the right SCG contained fewer neurons (no decrease at 2 weeks, 6% fewer by 7 weeks and 17% fewer by 12 weeks) and (iii) by 7 weeks, right SCG neurons were also larger and the magnitude of this increase grew substantially with time (no rise at 2 weeks, 77% by 7 weeks and 215% by 12 weeks). Interaction effects between time and ganglionectomy-induced changes were significant for SCG volume and mean perikaryal volume. These findings show that unilateral superior cervical ganglionectomy has profound effects on the contralateral ganglion. For future investigations, it would be interesting to examine the interaction between SCGs and their innervation targets after ganglionectomy. Is the ganglionectomy-induced imbalance between the sizes of innervation territories the milieu in which morphoquantitative changes, particularly changes in perikaryal volume and neuron number, occur? Mechanistically, how would those changes arise? Are there any grounds for believing in a ganglionectomy-triggered SCG cross-innervation and neuroplasticity?


Asunto(s)
Hipertrofia , Degeneración Nerviosa/patología , Neuronas/patología , Ganglio Cervical Superior/patología , Simpatectomía/efectos adversos , Animales , Temperatura Corporal , Masculino , Neuronas/citología , Neuronas/fisiología , Ovinos , Ganglio Cervical Superior/citología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda