Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Biomed Sci ; 26(1): 10, 2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30665403

RESUMEN

BACKGROUND: Toxoplasma gondii is a protozoan parasite that causes congenital toxoplasmosis by transplacental transmission. Parasite strains are genetically diverse and disease severity is related to the genotype. In Uberlândia city, Brazil, two virulent strains were isolated: TgChBrUD1 and TgChBrUD2. Congenital toxoplasmosis is more prevalent in South America compared to Europe, and more often associated with severe symptoms, usually as a result of infection with atypical strains. METHODS: Considering that T. gondii has shown high genetic diversity in Brazil, the effectiveness of traditional treatment may not be the same, as more virulent strains of atypical genotypes may predominate. Thus, the aim of this study were to evaluate the Brazilian strain infection rate in human villous explants and the azithromycin efficacy with regard to the control of these strains compared to traditional therapy. Villi were infected with RH, ME49, TgChBrUD1 or TgChBrUD2 strains and treated with azithromycin, spiramycin or a combination of pyrimethamine plus sulfadiazine. The villous viability was analyzed by LDH assay and morphological analysis. Parasite proliferation, as well as production of cytokines was analyzed by qPCR and ELISA, respectively. Statistical analysis was performed using the GraphPad Prism 5.0. RESULTS: The treatments were not toxic and TgChBrUD1 infected villi showed a higher parasite burden compared with others strains. Treatments significantly reduced the intracellular proliferation of T. gondii, regardless of the strain. TgChBrUD1-infected villi produced a larger amount of MIF, IL-6 and TGF-ß1 compared with other infected villi. Azithromycin treatment increased MIF production by RH- or TgChBrUD2-infected villi, but in ME49- or TgChBrUD1-infected villi, the MIF production was not altered by treatment. On the other hand, azithromycin treatment induced lower IL-6 production by ME49- or TgChBrUD1-infected villi. CONCLUSIONS: Azithromycin treatment was effective against T. gondii Brazilian strains compared with conventional treatment. Also, the TgChBrUD1 strain replicated more in villi and modulated important cytokines involved in parasite control, showing that different strains use different strategies to evade the host immune response and ensure their survival.


Asunto(s)
Azitromicina/farmacología , Coccidiostáticos/farmacología , Citocinas/metabolismo , Placenta/parasitología , Toxoplasma/efectos de los fármacos , Brasil , Femenino , Humanos , Embarazo , Tercer Trimestre del Embarazo
2.
Parasitol Res ; 113(7): 2655-64, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24781027

RESUMEN

There is a significant genetic diversity of Toxoplasma gondii in Brazil. Two parasite isolates were recently obtained from chickens in Uberlândia, Minas Gerais state, Brazil, namely, TgChBrUD1 and TgChBrUD2. In this study, we investigated Calomys callosus susceptibility to these atypical T. gondii strains. Male and female animals were intraperitoneally infected with tachyzoites and monitored to evaluate body weight change, morbidity, and mortality. Immunohistochemical assay and qPCR were performed to determine the parasitism in liver, spleen, and brain. Our data showed that TgChBrUD2-infected males died earlier than TgChBrUD1-infected males and 100% of mortality was observed after 10 and 12 days of infection, respectively. Also, TgChBrUD1-infected females died earlier than TgChBrUD1-infected males and 100% of mortality was observed after 9 and 12 days of infection, respectively. Both strains were able to induce a decrease in body weight of males, but only the TgChBrUD1 strain induced an increase in body weight of females. TgChBrUD2-infected females had significantly higher parasite load in both liver and spleen in comparison to TgChBrUD1-infected females, but no significant difference was found between genders or strains when males were infected. There was higher parasitism in the liver than the brain from both males and females infected with either strain. In conclusion, C. callosus specimens are susceptible to both T. gondii atypical strains with differences between males and females in severity of infection. These findings open new prospects for understanding different aspects of T. gondii infection, including reinfection and vertical transmission with these atypical strains when utilizing this experimental model.


Asunto(s)
Enfermedades de los Roedores/parasitología , Sigmodontinae/parasitología , Toxoplasma/genética , Toxoplasmosis Animal/parasitología , Animales , Peso Corporal , Encéfalo/parasitología , Brasil , Susceptibilidad a Enfermedades , Femenino , Hígado/parasitología , Masculino , Enfermedades de los Roedores/mortalidad , Enfermedades de los Roedores/transmisión , Factores Sexuales , Bazo/parasitología , Análisis de Supervivencia , Toxoplasmosis Animal/mortalidad , Toxoplasmosis Animal/transmisión
3.
Life Sci ; 331: 122074, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37683724

RESUMEN

Flaviviruses infect arthropods and mammals and their pathologies are a considerable global health problem, affecting about 400 million people per year. The symptoms of these flaviviruses range from mild manifestations such as nausea, vomiting, and headache to more serious cases such as hemorrhage, meningitis, microcephaly, kidney, and liver failure. This review aims to compile the morphological changes that occur due to infections caused by dengue, yellow fever, and Zika viruses, as well as to describe possible mechanisms of action of such flaviviruses in the liver. PRISMA guidelines were used to search for studies associating flavivirus with liver disorders. Two independent reviewers selected the studies on PubMed/Medline, Web of Science, and Scopus search platforms. The SYRCLE software was used for the evaluation of the study's quality. Eighteen experimental articles were included. The experimental animals often used in experiments were monkeys (5 %), hamsters (10 %), chicken embryos (10 %), and mice (75 %). It is evident that there is a strong hepatic interaction with flaviviruses, and the main hepatic alterations found were steatosis, apoptosis, necrosis, hemorrhage, elevation of ALT and AST levels, and total bilirubin. Flavivirus infection, in general, trigger an upregulation of pro-inflammatory cytokines, leading to structural changes in mitochondria that activate cascades of cellular death and promote insulin resistance. The majority of the studies primarily focus on dengue and yellow fever viruses, while the findings related to Zika virus exposure are still relatively limited and require further investigation.


Asunto(s)
Dengue , Flavivirus , Hepatopatías , Fiebre Amarilla , Infección por el Virus Zika , Virus Zika , Embrión de Pollo , Humanos , Cricetinae , Animales , Ratones , Mamíferos
4.
Am J Pathol ; 178(6): 2792-801, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21641401

RESUMEN

Because macrophage migration inhibitory factor (MIF) is a key cytokine in pregnancy and has a role in inflammatory response and pathogen defense, the objective of the present study was to investigate the effects of MIF in first- and third-trimester human placental explants infected with Toxoplasma gondii. Explants were treated with recombinant MIF, IL-12, interferon-γ, transforming growth factor-ß1, or IL-10, followed by infection with T. gondii RH strain tachyzoites. Supernatants of cultured explants were assessed for MIF production. Explants were processed for morphologic analysis, immunohistochemistry, and real-time PCR analysis. Comparison of infected and stimulated explants versus noninfected control explants demonstrated a significant increase in MIF release in first-trimester but not third-trimester explants. Tissue parasitism was higher in third- than in first-trimester explants. Moreover, T. gondii DNA content was lower in first-trimester explants treated with MIF compared with untreated explants. However, in third-trimester explants, MIF stimulus decreased T. gondii DNA content only at the highest concentration of the cytokine. In addition, high expression of MIF receptor was observed in first-trimester placental explants, whereas MIF receptor expression was low in third-trimester explants. In conclusion, MIF was up-regulated and demonstrated to be important for control of T. gondii infection in first-trimester explants, whereas lack of MIF up-regulation in third-trimester placentas may be involved in higher susceptibility to infection at this gestational age.


Asunto(s)
Edad Gestacional , Oxidorreductasas Intramoleculares/metabolismo , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Placenta/metabolismo , Placenta/parasitología , Toxoplasma/fisiología , Toxoplasmosis/parasitología , Antígenos de Diferenciación de Linfocitos B/genética , Antígenos de Diferenciación de Linfocitos B/metabolismo , Femenino , Regulación de la Expresión Génica , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Oxidorreductasas Intramoleculares/biosíntesis , Oxidorreductasas Intramoleculares/farmacología , Factores Inhibidores de la Migración de Macrófagos/biosíntesis , Factores Inhibidores de la Migración de Macrófagos/farmacología , Modelos Biológicos , Nitritos/metabolismo , Placenta/efectos de los fármacos , Placenta/patología , Embarazo , Primer Trimestre del Embarazo/efectos de los fármacos , Tercer Trimestre del Embarazo/efectos de los fármacos , Toxoplasma/citología , Toxoplasma/efectos de los fármacos , Toxoplasmosis/patología , Toxoplasmosis/prevención & control
5.
Folia Parasitol (Praha) ; 692022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36227152

RESUMEN

Toxoplasma gondii Nicolle et Manceaux, 1909, the etiologic agent of toxoplasmosis, was considered a clonal population with three distinct genetic lineages (I, II and III); however, sequence analysis of different strains has revealed distinct atypical genotypes. Macrophages are essential for immunity against toxoplasmosis and differential cell regulation may affect the course of the disease. In this context, our study aims to investigate the infection by TgChBrUD2, a highly virulent atypical Brazilian strain of T. gondii, on the activation and polarisation of human macrophages. Human macrophage-like cells obtained from THP-1 cells were infected with TgChBrUD2, RH or ME49 strains of T. gondii to evaluate the impact of parasite infection on macrophage polarisation. Our results indicate that the TgChBrUD2 and ME49 strains of T. gondii induced a classic activation of human macrophages, which was confirmed by the high rate of spindle-shaped macrophages, low amount of urea and increase in the levels of nitrite, as well as the down-regulation of M2-markers. In contrast, RH strain promoted an alternative activation of macrophages. The polarisation of human macrophages towards an M1 subtype mediated by TgChBrUD2 and ME49 strains resulted in a low parasite burden, with high levels of IL-6 and MIF. Finally, the M2 subtype triggered by the RH strain culminated in a lower intracellular proliferation index. We concluded that the atypical (TgChBrUD2) and clonal (ME49) strains are able to elicit an M1 subtype, which results in parasitism control, partially explained by the high levels of IL-6 and MIF produced during the infection by these genotypes. In contrast, the clonal (RH) strain promoted a macrophage polarisation towards an M2 subtype, marked by a high parasite burden, with a weak modulation of pro-inflammatory cytokines. Thus, atypical strains can present different mechanisms of pathogenicity and transmissibility compared to clonal strains, as well as they can use distinct strategies to evade the host's immune response and ensure their survival.


Asunto(s)
Parásitos , Toxoplasma , Toxoplasmosis , Animales , Brasil/epidemiología , Citocinas , Humanos , Interleucina-6 , Macrófagos/parasitología , Nitritos , Urea
6.
Tissue Cell ; 73: 101658, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34597888

RESUMEN

Crosstalk between trophoblast and monocytes is essential for gestational success, and it can be compromised in congenital toxoplasmosis. Cell death is one of the mechanisms involved in the maintenance of pregnancy, and this study aimed to evaluate the role of trophoblast in the modulation of monocyte cell death in the presence or absence of Toxoplasma gondii infection. THP-1 cells were stimulated with supernatants of BeWo cells and then infected or not with T. gondii. The supernatants were collected and analyzed for the secretion of human Fas ligand, and cells were used to determine cell death and apoptosis, cell death receptor, and intracellular proteins expression. Cell death and apoptosis index were higher in uninfected THP-1 cells stimulated with supernatants of BeWo cells; however, apoptosis index was reduced by T. gondii infection. Macrophage migration inhibitory factor (MIF) and transforming growth factor (TGF)-ß1, secreted by BeWo cells, altered the cell death and apoptosis rates in THP-1 cells. In infected THP-1 cells, the expression of Fas/CD95 and secretion of FasL was significantly higher; however, caspase 3 and phosphorylated extracellular-signal-regulated kinase (ERK1/2) were downregulated. Results suggest that soluble factors secreted by BeWo cells induce cell death and apoptosis in THP-1 cells, and Fas/CD95 can be involved in this process. On the other hand, T. gondii interferes in the mechanism of cell death and inhibits THP-1 cell apoptosis, which can be associated with active caspase 3 and phosphorylated ERK1/2. In conclusion, our results showed that human BeWo trophoblast cells and T. gondii infection modulate cell death in human THP-1 monocyte cells.


Asunto(s)
Espacio Intracelular/metabolismo , Monocitos/patología , Monocitos/parasitología , Proteínas/metabolismo , Receptores de Muerte Celular/metabolismo , Toxoplasmosis/patología , Trofoblastos/parasitología , Caspasa 3/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular , Medios de Cultivo Condicionados/farmacología , Regulación hacia Abajo/efectos de los fármacos , Proteína Ligando Fas/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Factores Inhibidores de la Migración de Macrófagos/farmacología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Fosforilación/efectos de los fármacos , Células THP-1 , Trofoblastos/efectos de los fármacos , Trofoblastos/metabolismo , Receptor fas/metabolismo
7.
Front Microbiol ; 10: 852, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31068920

RESUMEN

Macrophage migration inhibitory factor (MIF) is a potent pro-inflammatory cytokine, which mediates the regulation of diverse cellular functions. It is produced by extravillous trophoblastic cells and has been found to be involved in the pathogenesis of diseases caused by some protozoa, including Toxoplasma gondii. Previous studies demonstrated the ability of T. gondii to take advantage of MIF action in human trophoblast cells. However, MIF action in T. gondii-infected extravillous trophoblastic cells (HTR8/SVneo cell line) has not been fully investigated. The present study aimed to investigate the role of MIF in T. gondii-infected HTR8/SVneo cells and verify the intracellular signaling pathways triggered by this cytokine. We found that T. gondii increased MIF production by HTR8/SVneo cells, and by contrast, MIF inhibition, by ISO-1, led to a significant decrease in T. gondii proliferation and CD74 expression in HTR8/SVneo cells. Moreover, in infected HTR8/SVneo cells, the addition of recombinant MIF (rMIF) increased CD44 co-receptor expression, ERK1/2 phosphorylation, COX-2 expression, and IL-8 production, which favored T. gondii proliferation. Our findings indicate that T. gondii can use MIF to modulate important factors in HTR8/SVneo cells, being a possible explanation for the higher susceptibility of extravillous trophoblast cells than other trophoblast cell populations.

8.
Front Microbiol ; 10: 225, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30809216

RESUMEN

Toxoplasma gondii is able to infect a wide range of vertebrates, including humans. Studies show that cyclooxygenase-2 (COX-2) is a modulator of immune response in multiple types of infection, such as Trypanosoma cruzi. However, the role of COX-2 during T. gondii infection is still unclear. The aim of this study was to investigate the role of COX-2 during infection by moderately or highly virulent strains of T. gondii in Calomys callosus rodents and human THP-1 cells. C. callosus were infected with 50 cysts of T. gondii (ME49), treated with COX-2 inhibitors (meloxicam or celecoxib) and evaluated to check body weight and morbidity. After 40 days, brain and serum were collected for detection of T. gondii by real-time PCR and immunohistochemistry or cytokines by CBA. Furthermore, peritoneal macrophages or THP-1 cells, infected with RH strain or uninfected, were treated with meloxicam or celecoxib to evaluate the parasite proliferation by colorimetric assay and cytokine production by ELISA. Finally, in order to verify the role of prostaglandin E2 in COX-2 mechanism, THP-1 cells were infected, treated with meloxicam or celecoxib plus PGE2, and analyzed to parasite proliferation and cytokine production. The data showed that body weight and morbidity of the animals changed after infection by T. gondii, under both treatments. Immunohistochemistry and real-time PCR showed a reduction of T. gondii in brains of animals treated with both COX-2 inhibitors. Additionally, it was observed that both COX-2 inhibitors controlled the T. gondii proliferation in peritoneal macrophages and THP-1 cells, and the treatment with PGE2 restored the parasite growth in THP-1 cells blocked to COX-2. In the serum of Calomys, upregulation of pro-inflammatory cytokines was detected, while the supernatants of peritoneal macrophages and THP-1 cells demonstrated significant production of TNF and nitrite, or TNF, nitrite and MIF, respectively, under both COX-2 inhibitors. Finally, PGE2 treatment in THP-1 cells triggered downmodulation of pro-inflammatory mediators and upregulation of IL-8 and IL-10. Thus, COX-2 is an immune mediator involved in the susceptibility to T. gondii regardless of strain or cell types, since inhibition of this enzyme induced control of infection by upregulating important pro-inflammatory mediators against Toxoplasma.

9.
Front Microbiol ; 6: 181, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25806028

RESUMEN

Considering that Toxoplasma gondii has shown high genetic diversity in Brazil, the aim of this study was to determine whether Calomys callosus chronically infected by the ME-49 strain might be susceptible to reinfection by these Brazilian strains, including vertical transmission of the parasite. Survival curves were analyzed in non-pregnant females chronically infected with ME-49 and reinfected with the TgChBrUD1 or TgChBrUD2 strain, and vertical transmission was analyzed after reinfection of pregnant females with these same strains. On the 19th day of pregnancy (dop), placentas, uteri, fetuses, liver, spleen, and lung were processed for detection of the parasite. Blood samples were collected for humoral and cellular immune response analyses. All non-pregnant females survived after reinfection and no changes were observed in body weight and morbidity scores. In pregnant females, parasites were detected in the placentas of ME-49 chronically infected females and reinfected females, but were only detected in the fetuses of reinfected females. TgChBrUD2 reinfected females showed more impaired pregnancy outcomes, presenting higher numbers of animals with fetal loss and a higher resorption rate, in parallel with higher levels of pro-inflammatory cytokines and IgG2a subclass antibodies. Vertical transmission resulting from chronic infection of immunocompetent C. callosus is considered a rare event, being attributed instead to either reactivation or reinfection. That is, the pregnancy may be responsible for reactivation of the latent infection or the reinfection may promote T. gondii vertical transmission. Our results clearly demonstrate that, during pregnancy, protection against T. gondii can be breached after reinfection with parasites belonging to different genotypes, particularly when non-clonal strains are involved in this process and in this case the reinfection promoted vertical transmission of both type II and Brazilian T. gondii strains.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda