Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Nanotechnology ; 31(37): 375101, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32470951

RESUMEN

Bacterial infections represent one of the leading causes of mortality in the world. Among causative pathogens, S. aureus is prominently known as the underlying cause of many multidrug resistant infections that are often treated with the first-line choice antibiotic vancomycin (VCM). Loading antibiotics into polymeric nanoparticles (Np) displays promise as an alternative method to deliver therapy due to the greater access and accumulation of the antibiotic at the site of the infection as well as reducing toxicity, irritation and degradation. The aim of this work was to prepare, characterize and evaluate VCM-loaded nanoparticles (VNp) for use against S. aureus strains. Moreover, conjugation of Nps with holo-transferrin (h-Tf) was investigated as an approach for improving targeted drug delivery. VNp were prepared by double emulsion solvent evaporation method using PLGA and PVA or DMAB as surfactants. The particles were characterized for size distribution, Zeta Potential, morphology by transmission electron microscopy, encapsulation yield and protein conjugation efficiency. Process yield and drug loading were also investigated along with an in vitro evaluation of VNp antimicrobial effects against S. aureus strains. Results showed that Np were spontaneously formed with a mean diameter lower than 300 nm in a narrow size distribution that presented a spherical shape. The bioconjugation with h-Tf did not appear to increase the antimicrobial effect of VNp. However, non-bioconjugated Np presented a minimal inhibitory concentration lower than free VCM against a MRSA (Methicillin-resistant S. aureus) strain, and slightly higher against a VISA (VCM intermediate S. aureus) strain. VNp without h-Tf showed potential to assist in the development of new therapies against S. aureus infections.


Asunto(s)
Antibacterianos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Nanopartículas/química , Vancomicina/farmacología , Antibacterianos/química , Portadores de Fármacos/química , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Staphylococcus aureus/efectos de los fármacos , Transferrina/química , Vancomicina/química
2.
AAPS PharmSciTech ; 21(5): 195, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32666354

RESUMEN

The objective of this study was to develop a dissolution test in order to establish an in vitro-in vivo correlation (IVIVC) model for desvenlafaxine succinate monohydrate (DVSM) extended release (ER) tablets. The in vitro release characteristics of the drug were determined using USP apparatus 1 at 75 rpm, with volume of HCl pH 1.2, acetate buffer solution (ABS) pH 4.5, or phosphate buffer solution (PBS) pH 6.8. In vivo plasma concentrations and pharmacokinetic parameters in healthy volunteers were obtained from a bioequivalence study. The similarity factors f1 and f2 were used to compare the dissolution data. The IVIVC model was developed using fraction dissolved and fraction absorbed of the reference product. For predictability, the results showed that the percentage prediction error (%PE) value of Cmax was 7.63%. The observed low prediction error for Cmax demonstrated that the IVIVC model was valid for this parameter.


Asunto(s)
Succinato de Desvenlafaxina/administración & dosificación , Inhibidores de Captación de Serotonina y Norepinefrina/administración & dosificación , Comprimidos , Adulto , Área Bajo la Curva , Preparaciones de Acción Retardada/farmacocinética , Succinato de Desvenlafaxina/farmacocinética , Semivida , Humanos , Técnicas In Vitro , Masculino , Inhibidores de Captación de Serotonina y Norepinefrina/farmacocinética , Solubilidad , Adulto Joven
3.
Rapid Commun Mass Spectrom ; 33(1): 116-124, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30378202

RESUMEN

RATIONALE: The chromatographic analysis of topiramate and its degradation products is challenging due to the absence of chromophoric moieties in their structures, the wide polarity range of the compounds and their ionization differences. This work proposes two new mass spectrometry approaches for evaluating these analytes. METHODS: Based on the calculated experimental limit of detection (LOD), a highly sensitive high-performance liquid chromatography (HPLC) paired-ion electrospray ionization mass spectrometry (PIESI-MS) method was developed for the determination of topiramate inorganic degradation products. The influence of different solvent systems on the LODs for topiramate and its main degradation products was determined in both positive/negative ionization modes. In addition, a HPLC method to analyze both organic and inorganic degradation products was proposed by mass spectrometry with positive/negative ion switching electrospray ionization. RESULTS: A sensitive HPLC/PIESI-MS method was achieved for the efficient separation of topiramate inorganic degradation products. Both sulfate and sulfamate were detected in the positive selected ion monitoring (SIM) mode with an increased sensitivity compared with the negative SIM mode. The HPLC/ESI-MS analysis with positive/negative ion switching allowed the simultaneous separation and detection of the major degradation products of topiramate in a 10-min run using a single column and a single detector. CONCLUSIONS: Two new alternative MS approaches for analyzing the main degradation products of topiramate were developed. The proposed methods are considered advantageous over the existing methods and can be applied to quality control studies of topiramate.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Topiramato/análisis , Límite de Detección , Sensibilidad y Especificidad , Solventes/química , Sulfatos/química , Ácidos Sulfónicos/química , Topiramato/química
4.
Chem Pharm Bull (Tokyo) ; 67(1): 23-31, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30606948

RESUMEN

Metformin is a euglycemic drug for the treatment of type 2 diabetes mellitus. To date, there are 13 dissolution methodologies described in the U.S. Pharmacopoeia (USP) to evaluate the release profile of metformin from extended-release tablets utilizing either a USP apparatus 1 (basket) or 2 (paddle). In the absence of a protocol for a USP apparatus 3 (reciprocating cylinder), the goal of this work was to develop an in vitro dissolution method for metformin extended-release tablets based on an in vivo-in vitro correlation (IVIVC). Following a systematic evaluation, a final dissolution method, M4, was defined. It applied 30 dips per minute (dpm) over a total period of 10 h into a series of solutions that included 2 h in HCl media (pH 1.2), 1 h in an acetate buffer solution (pH 4.5), 1 h in phosphate buffer solution (PBS) (pH 5.8) and 6 h in PBS (pH 6.8). This method showed a significant IVIVC with a calculated R2 > 0.98 (point-to-point correlation, Level A) and it was successfully used as a tool to assist in the development of generic extended release formulations for metformin consisting of a lipophilic matrix system.


Asunto(s)
Preparaciones de Acción Retardada , Composición de Medicamentos , Medicamentos Genéricos , Metformina/química , Humanos , Farmacopeas como Asunto , Comprimidos , Estados Unidos
5.
Nanotechnology ; 2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-29424698

RESUMEN

Fucoidan-loaded nanoparticles emerge as great candidates to oral anticoagulant therapy, due to increasing of bioavailability and circulation time of this natural anticoagulant. Crosslink between chitosan chains are performed using glutaraldehyde to confer higher gastric pH resistance to nanoparticle matrices. In this work, chitosan-fucoidan nanoparticles, without (NpCF) and with glutaraldehyde crosslink (NpCF 1% and NpCF 2%), were prepared to evaluate their anticoagulant, antithrombotic and hemorrhagic profile. Nanoparticles were characterized by average diameter, polydispersity index, zeta potential, Fourier transform infrared spectroscopy and fucoidan in vitro release. Anticoagulant and antithrombotic activities were determined by in vitro and in vivo models, respectively. Hemorrhagic profile was in vivo evaluated by tail bleeding assay. Preparations showed nanometric and homogeneous average diameters. Zeta potentials of NpCF and NpCF 1% were stable over gastrointestinal pH range, which was confirmed by low fucoidan release in gastric and enteric media. In pH 7.4, NpCF and NpCF 1% demonstrated fucoidan release of 65.5% and 60.6%, respectively, within the first 24 hours. In comparison to fucoidan, NpCF and NpCF 1% showed increased in vitro anticoagulant activity. A significant difference on oral antithrombotic profile of NpCF 1% was found in comparison to fucoidan. Bleeding profile of NpCF and NpCF 1% showed no differences to control group, indicating the safety of these systems. Surprisingly, oral antithrombotic profile of commercially available fucoidan, from Fucus vesiculosus, has not been previously determined, which reveals new possibilities. In this work, significant advances were observed in anticoagulant and antithrombotic profiles of fucoidan through the preparation of NpCF 1%.

6.
J Sep Sci ; 41(8): 1716-1725, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29288527

RESUMEN

The analysis of topiramate in the presence of its main degradation products is challenging due to the absence of chromophore moieties and their wide range of polarity. Mixed-mode chromatography has been used in such cases because it combines two or more modes of separation. Charged aerosol detector is also an alternative since its detection is independent of optical properties and analyte ionization. This study is aimed to develop and validate two new stability-indicating methods by high-performance liquid chromatography for the main degradation products of topiramate using mixed-mode chromatography and a charged aerosol detector. Method 1 employed an Acclaim Trinity P1® column (3.0 mm × 150 mm, 2.7 µm) with a mobile phase comprising of 80% ammonium acetate buffer (20 mM, pH 4.0) and 20% methanol at a flow rate of 0.5 mL/min at 35°C. Method 2 utilized a C18 Acclaim 120® column (4.6 mm × 250 mm; 5 µm) with ACN/water (50:50) at a flow rate of 0.6 mL/min at 50°C. Validation of the two methods demonstrated excellent performance with respect to linearity, precision, accuracy, and selectivity. The limits of detection for topiramate, fructose, sulfate, sulfamate, and compound A were 2.97, 12.08, 4.02, 13.91, and 3.94 µg/mL, respectively.


Asunto(s)
Fructosa/análogos & derivados , Aerosoles/química , Cromatografía Líquida de Alta Presión , Fructosa/análisis , Estructura Molecular , Topiramato
7.
Chem Pharm Bull (Tokyo) ; 66(7): 701-707, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29962453

RESUMEN

Gliclazide (GLZ) is a second generation hypoglycemic drug used for the treatment of Type 2 diabetes mellitus. The low solubility of GLZ has been described as the rate limiting step for drug dissolution and absorption, thus a prediction of its in vivo behavior based on a discriminative dissolution test should lead to a relevant in vitro-in vivo correlation (IVIVC). The aim of this study was to develop a dissolution method for GLZ modified-release (MR) tablets using an United States Pharmacopeia (USP) apparatus 3 through its evaluation by an IVIVC analysis. Various dissolution parameters were evaluated to establish an in vitro method for GLZ tablets. The final dissolution conditions, referred to as method 3, utilized a 400 µm mesh and 30 dips per minute over a total period of 10 h that included 1h in HCl media (pH 1.2), 2h in acetate buffer solution (pH 4.5), 1 h in phosphate buffer solution (PBS; pH 5.8), 5h in PBS (pH 6.8) and finally 1h in PBS (pH 7.2). The calculated point-to-point IVIVC (R2=0.9970) was significantly greater than other methods. The robustness of method 3 suggests it could be applied to pharmaceutical equivalence studies and for quality control analyses of GLZ.


Asunto(s)
Química Farmacéutica/instrumentación , Gliclazida/química , Hipoglucemiantes/química , Tecnología Farmacéutica/instrumentación , Liberación de Fármacos , Estructura Molecular , Comprimidos
8.
Pharm Dev Technol ; 23(4): 343-350, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28145793

RESUMEN

Copaiba oleoresin (CPO), obtained from Copaifera landgroffii, is described as active to a large number of diseases and more recently in the endometriosis treatment. In this work, poly(lactic-co-glycolic acid) (PLGA) nanoparticles containing CPO were obtained using the design of experiments (DOE) as a tool to optimize the production process. The nanoparticles optimized by means of DOE presented an activity in relation to the cellular viability of endometrial cells. The DOE showed that higher amounts of CPO combined with higher surfactant concentrations resulted in better encapsulation efficiency and size distribution along with good stability after freeze drying. The encapsulation efficiency was over 80% for all produced nanoparticles, which also presented sizes below 300 nm and spherical shape. A decrease in viability of endometrial stromal cells from ectopic endometrium of patients with endometriosis and from eutopic endometriotic lesions was demonstrated after 48 h of incubation with the CPO nanoparticles. The nanoparticles without CPO were not able to alter the cell viability of the same cells, indicating that this material was not cytotoxic to the tested cells and suggesting that the effect was specific to CPO. The results indicate that the use of CPO nanoparticles may represent a promising alternative for the treatment of endometriosis.


Asunto(s)
Portadores de Fármacos/química , Ácido Láctico/química , Nanopartículas/química , Preparaciones de Plantas/administración & dosificación , Ácido Poliglicólico/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Endometriosis/tratamiento farmacológico , Fabaceae/química , Femenino , Liofilización , Humanos , Tamaño de la Partícula , Preparaciones de Plantas/química , Preparaciones de Plantas/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
9.
AAPS PharmSciTech ; 19(6): 2687-2699, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29968042

RESUMEN

In this study, the formation of caffeine/dapsone (CAF/DAP) cocrystals by scalable production methods, such as liquid-assisted grinding (LAG) and spray drying, was investigated in the context of the potential use of processed cocrystal powder for pulmonary delivery. A CAF/DAP cocrystal (1:1 M ratio) was successfully prepared by slow evaporation from both acetone and ethyl acetate. Acetone, ethyl acetate, and ethanol were all successfully used to prepare cocrystals by LAG and spray drying. The powders obtained were characterized by X-ray diffractometry (XRD), differential scanning calorimetry (DSC), thermogravimetry (TGA), and Fourier transform infrared spectroscopy (FTIR). Laser diffraction analysis indicated a median particle size (D50) for spray-dried powders prepared from acetone, ethanol, and ethyl acetate of 5.4 ± 0.7, 5.2 ± 0.1, and 5.1 ± 0.0 µm respectively, which are appropriate sizes for pulmonary delivery by means of a dry powder inhaler. The solubility of the CAF/DAP cocrystal in phosphate buffer pH 7.4, prepared by spray drying using acetone, was 506.5 ± 31.5 µg/mL, while pure crystalline DAP had a measured solubility of 217.1 ± 7.8 µg/mL. In vitro cytotoxicity studies using Calu-3 cells indicated that the cocrystals were not toxic at concentrations of 0.1 and of 1 mM of DAP, while an in vitro permeability study suggested caffeine may contribute to the permeation of DAP by hindering the efflux effect. The results obtained indicate that the CAF/DAP cocrystal, particularly when prepared by the spray drying method, represents a possible suitable approach for inhalation formulations with applications in pulmonary pathologies.


Asunto(s)
Cafeína/análisis , Cafeína/síntesis química , Química Farmacéutica/métodos , Cristalización/métodos , Dapsona/síntesis química , Administración por Inhalación , Rastreo Diferencial de Calorimetría/métodos , Línea Celular , Dapsona/análisis , Desecación/métodos , Composición de Medicamentos/métodos , Inhaladores de Polvo Seco , Humanos , Microscopía Electrónica de Rastreo/métodos , Tamaño de la Partícula , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Termogravimetría/métodos , Difracción de Rayos X/métodos
10.
Plant Foods Hum Nutr ; 73(4): 278-286, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30076506

RESUMEN

In the processing of fruits such as blueberry (Vaccinium sp), that has high levels of phenolic acid, the food industry produces tons of organic waste that causes harm to the environment. Encapsulation is a technique used to take advantage of these wastes. Several methods are used to encapsulate substances, among them ionotropic gelation proves to be a simple, precise, efficient and economical method for obtaining particles with encapsulated bioactives. In this manner, the aim of this study was to test sodium alginate as wall material to encapsulate blueberry residue by ionotropic gelation. The microbeads were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), total phenolic compounds, antioxidant capacity and in vitro dissolution. The results showed that the microbeads had surface invagination; retention of 67.01% of the phenolic compounds after encapsulation and 68.2%, phenolic release 120 min after in vitro dissolution. The results suggest that the tested matrix was suitable for encapsulation. The produced microbeads are promising for applications in food products, once the phenolic compounds present in the blueberry residues were maintained after encapsulation.


Asunto(s)
Arándanos Azules (Planta)/química , Manipulación de Alimentos/métodos , Alginatos/química , Antocianinas/análisis , Geles/química , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Microscopía Electrónica de Rastreo , Fenoles/análisis , Difracción de Rayos X , Zinc/química
11.
Chem Pharm Bull (Tokyo) ; 65(10): 911-919, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28966275

RESUMEN

Leishmaniasis is a neglected tropical disease caused by protozoan parasites belonging to the genus Leishmania. Currently, the drugs available for treatment of this disease present high toxicity, along with development of parasite resistance. In order to overcome these problems, efforts have been made to search for new and more effective leishmanicidal drugs. The aim of this study was to synthesize and investigate the leishmanicidal effect of N,N'-disubstituted thioureas against Leishmania amazonensis, with evaluation of their in silico pharmacokinetics and toxicity profiles. Our results showed that different thioureas could be obtained in high to moderate yields using simple reaction conditions. Nine thiourea derivatives (3e, 3i, 3k, 3l, 3p, 3q, 3v, 3x and 3z) were active against parasite promastigotes (IC50 21.48-189.10 µM), with low cytotoxicity on mice peritoneal macrophages (CC50>200 µM), except for thiourea 3e (CC50=49.22 µM). After that, the most promising thioureas (3k, 3l, 3p, 3q and 3v) showed IC50 ranging from 70 to 150 µM against L. amazonensis amastigotes in infected macrophages. Except for thiourea 3p, the leishmanicidal activity of the derivatives were independent of nitric oxide (NO) production. Thioureas 3q and 3v affected promastigotes cell cycle without disturbing the mitochondrial membrane potential. Furthermore, our derivatives showed satisfactory theoretical absorption, distribution, metabolism, excretion, toxicity (ADMET) properties. These data indicate that thiourea derivatives are good candidates as leading compounds for the development of new leishmanicidal drugs.


Asunto(s)
Antiprotozoarios/síntesis química , Antiprotozoarios/farmacología , Leishmania/efectos de los fármacos , Tiourea/química , Tiourea/farmacología , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Concentración 50 Inhibidora , Macrófagos Peritoneales/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Óxido Nítrico/metabolismo , Teoría Cuántica , Relación Estructura-Actividad
12.
AAPS PharmSciTech ; 18(7): 2561-2569, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28224389

RESUMEN

The aim of this study was to develop and validate a discriminating in vitro release test to evaluate rivastigmine transdermal patches. The Exelon® Patch was chosen as a model transdermal product. The studies of in vitro release were designed to determine the impact of the official apparatus chosen (USP apparatus 5 and USP apparatus 6), the rotation speed, and the dissolution medium characteristics on the rivastigmine release profile from transdermal patches. Patches with different drug release profiles were tested in order to evaluate the discriminating power of the in vitro release test developed and validated. Variables such as the apparatus type, the dissolution medium, and the rotation speed have a significant influence on the drug release characteristics from a transdermal patch. The in vitro release methodologies using the USP apparatus 5 at 50 rpm and USP apparatus 6 at 25 rpm using the medium phosphate-buffered saline pH 7.4 were considered discriminative and adequate to characterize the rivastigmine (RV) release from a commercial transdermal patch, Exelon® Patch.


Asunto(s)
Liberación de Fármacos , Rivastigmina/administración & dosificación , Parche Transdérmico , Farmacopeas como Asunto , Rivastigmina/química , Solubilidad
13.
AAPS PharmSciTech ; 17(6): 1421-1427, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26810491

RESUMEN

The aim of this work was the development and characterization of nisin-loaded nanoparticles and the evaluation of its potential antifungal activity. Candidiasis is a fungal infection caused by Candida sp. considered as one of the major public health problem currently. The discovery of antifungal agents that present a reduced or null resistance of Candida sp. and the development of more efficient drug release mechanisms are necessary for the improvement of candidiasis treatment. Nisin, a bacteriocin commercially available for more than 50 years, exhibits antibacterial action in food products with potential antifungal activity. Among several alternatives used to modulate antifungal activity of bacteriocins, polymeric nanoparticles have received great attention due to an effective drug release control and reduction of therapeutic dose, besides the minimization of adverse effects by the preferential accumulation in specific tissues. The nisin nanoparticles were prepared by double emulsification and solvent evaporation methods. Nanoparticles were characterized by dynamic light scattering, zeta potential, Fourier transform infrared, X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy. Antifungal activity was accessed by pour plate method and cell counting using Candida albicans strains. The in vitro release profile and in vitro permeation studies were performed using dialysis bag method and pig vaginal mucosa in Franz diffusion cell, respectively. The results revealed nisin nanoparticles (300 nm) with spherical shape and high loading efficiency (93.88 ± 3.26%). In vitro test results suggest a promising application of these nanosystems as a prophylactic agent in recurrent vulvovaginal candidiasis and other gynecological diseases.


Asunto(s)
Antifúngicos/administración & dosificación , Antifúngicos/química , Candidiasis/tratamiento farmacológico , Nanopartículas/administración & dosificación , Nanopartículas/química , Nisina/administración & dosificación , Nisina/química , Animales , Rastreo Diferencial de Calorimetría/métodos , Candida albicans/efectos de los fármacos , Candidiasis/microbiología , Femenino , Tamaño de la Partícula , Polímeros/química , Porcinos , Vagina/microbiología , Difracción de Rayos X/métodos
14.
Biomed Chromatogr ; 29(10): 1461-72, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25873016

RESUMEN

Topiramate is an anticonvulsant drug and it has been used worldwide for a wide range of applications. It is mainly indicated for the treatment of partial and generalized seizures, including Lennox Gastant Syndrome and generalized tonic-clonic seizures, and prophylactic treatment of migraine. Different analytical approaches by high-performance liquid chromatography have been described to analyze topiramate because of its lack of chromophore groups, including derivatization with UV-absorbing moieties, derivatization with fluorescent moieties, refractive index detection, conductivity detection, chemiluminescent nitrogen detection, evaporative light scattering detection and MS detection. In addition, some methods for determination of topiramate by capillary electrophoresis have been published as well as by gas chromatography. Thus, it is beneficial to evaluate and compare these papers before selecting the most suitable method/detector to analyze this drug. This systematic review provides a description of the main analytical methods available for the analysis of topiramate in biological matrices. Each of these methods is briefly discussed considering the detector used with HPLC. HPLC coupled with MS is the main technique used for topiramate analysis in biological matrices, mainly in the electrospray ionization-negative mode.


Asunto(s)
Anticonvulsivantes/análisis , Cromatografía de Gases/métodos , Cromatografía Líquida de Alta Presión/métodos , Electroforesis Capilar/métodos , Fructosa/análogos & derivados , Fructosa/análisis , Humanos , Espectrometría de Masas/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Topiramato
15.
Molecules ; 20(4): 7174-200, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25903367

RESUMEN

The incidence of hematological disorders has increased steadily in Western countries despite the advances in drug development. The high expression of the multi-resistance protein 4 in patients with transitory aspirin resistance, points to the importance of finding new molecules, including those that are not affected by these proteins. In this work, we describe the synthesis and biological evaluation of a series of N,N'-disubstituted thioureas derivatives using in vitro and in silico approaches. New designed compounds inhibit the arachidonic acid pathway in human platelets. The most active thioureas (compounds 3d, 3i, 3m and 3p) displayed IC50 values ranging from 29 to 84 µM with direct influence over in vitro PGE2 and TXA2 formation. In silico evaluation of these compounds suggests that direct blockage of the tyrosyl-radical at the COX-1 active site is achieved by strong hydrophobic contacts as well as electrostatic interactions. A low toxicity profile of this series was observed through hemolytic, genotoxic and mutagenic assays. The most active thioureas were able to reduce both PGE2 and TXB2 production in human platelets, suggesting a direct inhibition of COX-1. These results reinforce their promising profile as lead antiplatelet agents for further in vivo experimental investigations.


Asunto(s)
Ciclooxigenasa 1/química , Fibrinolíticos/síntesis química , Fibrinolíticos/farmacología , Inhibidores de Agregación Plaquetaria/síntesis química , Inhibidores de Agregación Plaquetaria/farmacología , Tiourea/análogos & derivados , Ácido Araquidónico/metabolismo , Dominio Catalítico/efectos de los fármacos , Simulación por Computador , Ciclooxigenasa 1/efectos de los fármacos , Ciclooxigenasa 1/metabolismo , Dinoprostona/metabolismo , Fibrinolíticos/química , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Agregación Plaquetaria/química , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Tiourea/farmacología , Tromboxano B2/metabolismo
16.
J Pharm Sci ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38815860

RESUMEN

Rotigotine (RTG) is a dopamine agonist used in the treatment of Parkinson's disease. As it is susceptible to oxidation, stability studies must be carefully designed for the identification and characterization of all possible degradation products. Here, RTG degradation was evaluated according to the International Conference on Harmonization guidelines under various stress conditions, including acidic and basic hydrolysis, oxidative, metallic, photolytic, and thermal conditions. Additionally, more severe stress conditions were applied to induce RTG degradation. Significant degradation was only observed under oxidative and photolytic conditions. The samples were analyzed by high performance liquid chromatography coupled to photodiode array detectors, charged aerosol, and high-resolution mass spectrometry. Chromatographic analyses revealed the presence of eight substances related to RTG, four of which were already described and were qualified impurities (impurities B, C, K and E) and four new degradation products (DP-1 - DP-4), whose structures were characterized by high-resolution mass spectrometry through Q-Orbitrap and electrospray ionization. In the stress testing of the active pharmaceutical ingredient in solid form, significant RTG degradation was observed in the presence of the oxidative matrix. The results corroborate the literature that confirm the high susceptibility of RTG to oxidation and the importance of using different detectors to detect degradation products in forced degradation studies.

17.
Pharmaceutics ; 16(5)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38794280

RESUMEN

Silybin (SIB) is a hepatoprotective drug known for its poor oral bioavailability, attributed to its classification as a class IV drug with significant metabolism during the first-pass effect. This study explored the potential of solid lipid nanoparticles with (SLN-SIB-U) or without (SLN-SIB) ursodeoxycholic acid and polymeric nanoparticles (PN-SIB) as delivery systems for SIB. The efficacy of these nanosystems was assessed through in vitro studies using the GRX and Caco-2 cell lines for permeability and proliferation assays, respectively, as well as in vivo experiments employing a murine model of Schistosomiasis mansoni infection in BALB/c mice. The mean diameter and encapsulation efficiency of the nanosystems were as follows: SLN-SIB (252.8 ± 4.4 nm, 90.28 ± 2.2%), SLN-SIB-U (252.9 ± 14.4 nm, 77.05 ± 2.8%), and PN-SIB (241.8 ± 4.1 nm, 98.0 ± 0.2%). In the proliferation assay with the GRX cell line, SLN-SIB and SLN-SIB-U exhibited inhibitory effects of 43.09 ± 5.74% and 38.78 ± 3.78%, respectively, compared to PN-SIB, which showed no inhibitory effect. Moreover, SLN-SIB-U demonstrated a greater apparent permeability coefficient (25.82 ± 2.2) than PN-SIB (20.76 ± 0.1), which was twice as high as that of SLN-SIB (11.32 ± 4.6) and pure SIB (11.28 ± 0.2). These findings suggest that solid lipid nanosystems hold promise for further in vivo investigations. In the murine model of acute-phase Schistosomiasis mansoni infection, both SLN-SIB and SLN-SIB-U displayed hepatoprotective effects, as evidenced by lower alanine amino transferase values (22.89 ± 1.6 and 23.93 ± 2.4 U/L, respectively) than those in control groups I (29.55 ± 0.7 U/L) and I+SIB (34.29 ± 0.3 U/L). Among the prepared nanosystems, SLN-SIB-U emerges as a promising candidate for enhancing the pharmacokinetic properties of SIB.

18.
AAPS PharmSciTech ; 14(1): 425-34, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23371786

RESUMEN

The intramuscular administration of the injectable suspension betamethasone sodium phosphate (BSP) and betamethasone dipropionate (BD) has immediate therapeutic activity due to solubilized BSP and prolonged activity resulting from the slow release of BD micro-crystals. The purpose of this study was to develop and validate a dissolution method for BD in intramuscular injectable suspensions with detection by high-performance liquid chromatography (HPLC) method. Five commercial products presented a distribution of particle sizes, ranging between 7.43 and 40.25 µm as measured by laser diffraction. It was also found that particle sizes differed between batches of the same product. The different products were tested using the paddle apparatus, with stirring speeds of 25 and 50 rpm in 300 mL of phosphate buffer; simulated body fluid, muscle fluid, and synovial fluid were used as biorelevant dissolution media at 37±0.5°C. It was verified that not only does average particle size affect the dissolution rate, but also the mode and the polydispersity index of the particles. Discriminatory power was obtained using the in vitro dissolution method with 0.1 M sodium phosphate buffer pH 7.4 containing 0.1% sodium lauryl sulfate and a stirring speed of 50 rpm. The HPLC-method is linear, precise, selective, and accurate for the quantification of BSP and BD in dissolution profile testing. This dissolution method can be utilized as a method to control the quality of these injectable suspensions.


Asunto(s)
Betametasona/análogos & derivados , Betametasona/administración & dosificación , Betametasona/química , Cromatografía Líquida de Alta Presión , Inyecciones Intramusculares , Tamaño de la Partícula , Solubilidad
19.
AAPS PharmSciTech ; 14(3): 1244-54, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23943401

RESUMEN

The aim of the present work was to use GastroPlus™ software for the prediction of pharmacokinetic profiles and in vitro-in vivo correlation (IVIVC) as tools to optimize the development of new generic medications. GastroPlus™ was used to simulate the gastrointestinal compartment and was based on the advanced compartmental absorption and transit model. Powder dissolution and efavirenz tablet dissolution studies were carried out to generate data from which correlation was established. The simulated plasma profile, based on the physicochemical properties of efavirenz, was almost identical to that observed in vivo for biobatches A and B. A level A IVIVC was established for the dissolution method obtained for the generic candidate using the Wagner-Nelson (r (2) = 0.85) and for Loo-Riegelman models (r(2) = 0.92). The percentage of fraction absorbed indicated that 0.5% sodium lauryl sulfate may be considered a biorelevant dissolution medium for efavirenz tablets. The simulation of gastrointestinal bioavailability and IVIVC obtained from immediate-release tablet formulations suggests that GastroPlus™ is a valuable in silico method for IVIVC and for studies directed at developing formulations of class II drugs.


Asunto(s)
Benzoxazinas/farmacología , Inhibidores de la Transcriptasa Inversa/farmacología , Comprimidos , Alquinos , Benzoxazinas/química , Benzoxazinas/farmacocinética , Disponibilidad Biológica , Ciclopropanos , Técnicas In Vitro , Inhibidores de la Transcriptasa Inversa/química , Inhibidores de la Transcriptasa Inversa/farmacocinética , Solubilidad , Equivalencia Terapéutica
20.
Curr Pharm Des ; 29(38): 3040-3049, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37957861

RESUMEN

BACKGROUND: Oral suspensions are heterogeneous disperse systems, and the particle size distribution, crystalline form of the dispersed solid, and composition of the formulation can be listed as parameters that control the drug dissolution rate and its bioavailability. OBJECTIVE: The aim of this work was to develop a discriminative dissolution test, which, in association with in silico methodologies, can make it possible to safely anticipate bioavailability problems. METHODS: Nimesulide and ibuprofen (BCS class II) and cephalexin (BCS class I) oral suspensions were studied. Previously, solid-state structure and particle size in active pharmaceutical ingredients were characterized and the impact of differences on solubility was evaluated for the choice of discriminative medium. Afterwards, particle size distribution (0.1 to 360 µm), dissolution profile, and in vitro permeability in Caco-2 cell of commercial suspensions, were determined. These parameters were used as input for the establishment of the in vitro-in vivo correlation (IVIVC) for the suspensions using the GastroPlus™ with Wagner-Nelson and Loo- Riegelmann deconvolution approach. RESULTS: The predicted/observed pharmacokinetic model showed good correlation coefficients (r) of 0.960, 0.950, and 0.901, respectively. The IVIVC was established for one nimesulide and two ibuprofen suspensions with r between 0.956 and 0.932, and the percent prediction error (%PE) did not exceed 15%. CONCLUSION: In this work, we have performed a complete study combining in vitro/in silico approaches with the aim of anticipating the safety and efficacy of oral pharmaceutical suspensions in order to provide a regulatory tool for this category of products in a faster and more economical way.


Asunto(s)
Ibuprofeno , Sulfonamidas , Humanos , Disponibilidad Biológica , Ibuprofeno/química , Ibuprofeno/farmacocinética , Células CACO-2 , Solubilidad , Suspensiones
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda