Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Appl Microbiol ; 134(1)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36626744

RESUMEN

AIM: This work evaluated the microbial diversity and physicochemical characteristics of fresh and fermented fruits from Brazilian untreated green table olives of the Ascolano and Grappolo cultivars. METHODS AND RESULTS: Twenty species of mesophilic bacteria, seven lactic acid bacteria, and fourteen yeast were identified. Some species prevailed over others, such as the bacteria Levilactobacillus brevis, Lacticaseibacillus paracasei subsp. paracasei, Pantoea agglomerans, Staphylococcus warneri, Bacillus simplex, B. thuringiensis, and the yeasts Candida parapsilosis, Ca. orthopsilosis, and Cryptococcus flavescen. In the olive fruit and olive brine, the sugars: sucrose, glucose, mannitol, and fructose, and the acids: acetic, citric, lactic, malic, and succinic were identified. Thirty-seven volatile compounds belonging to different chemical classes of acids, alcohols, aldehydes, esters, hydrocarbons, phenols, ketones, and ether were identified in the fruits and brine olives. CONCLUSION: The polyphasic methodology using matrix assisted laser desorption/ionization-time of flight and 16S rRNA sequencing was efficiently performed to identify microorganisms; chemical analysis helped to understand the fermentation process of olives.


Asunto(s)
Olea , Olea/microbiología , Brasil , ARN Ribosómico 16S/genética , Levaduras/genética , Bacterias/genética , Saccharomyces cerevisiae/genética , Fermentación , Microbiología de Alimentos
2.
J Food Sci Technol ; 56(4): 1978-1987, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30996432

RESUMEN

Blue cheeses are susceptible to yeast and bacterial growth on their surface, which causes spoilage during ripening process and the formation of slime. The dairy industry frequently control the proliferation of undesirable microorganisms with natamycin and high salt concentration. The green propolis is a complex of substances that presents antimicrobial properties with great potential as preservative in the food industry. The aims of the present study were to identify the mesophilic aerobic microorganisms present on the surface of Gorgonzola-type cheese, evaluate the antifungal and antibacterial effects of the ethanol extract of green propolis (EEP) on the development of those microorganisms and verify the effects of EEP on the sensory quality of cheese. Ten yeast species belonging to genera Yarrowia, Candida, Debaryomyces and Saccharomyces were identified, as well as seven species of bacteria belonging to genera Staphylococcus, Bacillus, Enterococcus, Corynebacterium and Proteus. The EEP showed minimum biocide concentration (MBC), between 0.3% (weight/weight) and 5% for Bacillus cereus and Proteus vulgaris, respectively. Saccharomyces cerevisiae was the most sensitive species (MBC of 0.63%) and Candida parapsilosis the most resistant one (MBC of 5%). In the sensory analysis, the cheeses involved with EEP at 5% concentration did not differ from the control, while at 10%, there was a slight decrease in acceptance. The EEP has potential and feasibility to be used in Gorgonzola-type cheese, inhibiting the main bacteria and yeasts without affecting largely the sensory characteristics of the product.

3.
Prep Biochem Biotechnol ; 47(5): 505-512, 2017 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-28045607

RESUMEN

Actinobacteria isolates from Brazilian Cerrado soil were evaluated for their ability to produce enzymes of the cellulolytic and xylanolytic complex using lignocellulose residual biomass. Preliminary semiquantitative tests, made in Petri plates containing carboxymethylcellulose and beechwood xylan, indicated 11 potential species producing enzymes, all belonging to the genus Streptomyces. The species were subsequently grown in pure substrates in submerged fermentation and analyzed for the production of enzymes endoglucanase, ß-glucosidase, endoxylanase, and ß-xylosidase. The best results were obtained for endoxylanase enzyme production with Streptomyces termitum(UFLA CES 93). The strain was grown on lignocellulose biomass (bagasse, straw sugarcane, and cocoa pod husk) that was used in natura or acid pretreated. The medium containing sugarcane bagasse in natura favored the production of the endoxylanase that was subsequently optimized through an experimental model. The highest enzyme production 0.387 U mL-1, (25.8 times higher), compared to the lowest value obtained in one of the trials, was observed when combining 2.75% sugar cane bagasse and 1.0 g L-1 of yeast extract to the alkaline medium (pH 9.7). This is the first study using S. termitum as a producer of endoxylanase.


Asunto(s)
Endo-1,4-beta Xilanasas/metabolismo , Microbiología Industrial/métodos , Lignina/metabolismo , Streptomyces/enzimología , Actinobacteria/enzimología , Actinobacteria/metabolismo , Biomasa , Celulasa/metabolismo , Celulosa/metabolismo , Saccharum/metabolismo , Streptomyces/metabolismo , Xilanos/metabolismo , Xilosidasas/metabolismo
4.
Braz J Microbiol ; 54(2): 1021-1033, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37162703

RESUMEN

Artisanal Minas cheese (QMA) is traditionally elaborate using raw milk and endogenous ferment (pingo - whey or rala - grated ripened cheese). In the present study, 91 yeast strains were isolated and identified from pingo and rala. Eight yeast species were identified by the MALDI-TOF mass spectrometry and confirmed by sequencing of the ITS region. The yeasts' protease and lipase activities were evaluated in addition to probiotic properties such as tolerance to low pH and bile salts, hydrophobicity, autoaggregation, co-aggregation with pathogens, and antimicrobial susceptibility. The rala ferment showed a greater variety of species. Yarrowia lipolytica was the dominant specie (52.7% of isolates), followed by the Kluyveromyces lactis and Kodamaea ohmeri (9.9 and 6.6%, respectively). From the total yeasts evaluated, 74 strains showed positive enzymatic activity: 52 strains showed lipolytic (51 Y. lipolytica and one Trichosporon japonicum) and 44 proteolytic activities (18 Y. lipolytica, 13 K. ohmeri, 11 K. lactis, and 2 Wickerhamiella sp.). All evaluated isolates demonstrated tolerance to pH 2.0, and 69 isolates supported the presence of bile salts. From them, 12 isolates showed the capacity of autoaggregation (> 30%) and hydrophobicity (> 90.0%) and were then selected for co-aggregation and antibiotic resistance assays. All selected isolates showed co-aggregation with Salmonella Enteritidis, Escherichia coli, and Listeria monocytogenes greater than 30%. None of the yeast showed sensibility to the evaluated antibiotics and antagonistic activity against the evaluated pathogens. The results demonstrated that pingo and rala have different yeast composition with different enzymatic activity, which may affect the characteristics of the cheese. Furthermore, some yeast strains: Y. lipolytica (9 strains isolated from rala) and K. ohmeri (3 strains isolated from pingo) demonstrated attractive probiotic potential.


Asunto(s)
Queso , Probióticos , Queso/microbiología , Levaduras , Péptido Hidrolasas
5.
Microbiol Res ; 241: 126571, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32818706

RESUMEN

Kitchen waste oil (KWO) was evaluated as a substrate for production of biosurfactant by Wickerhamomyces anomalus CCMA 0358 and was tested against Aedes aegypti larvae, the mosquito causing neglected diseases, such as dengue fever, Zika, and Chikungunya, achieving 100 % mortality in the lowest concentration (6.25 %) evaluated in 24 h. Furthermore, possible applications of this compound were evaluated as antibacterial, antiadhesive, and antifungal. At a concentration of 50 %, the biosurfactant was found to inhibit the growth of Bacillus cereus, showing high inhibitions levels against Salmonella Enteritidis, Staphylococcus aureus, and Escherichia coli. The antifungal activity was evaluated against Aspergillus, Cercospora, Colletotrichum, and Fusarium, obtaining results of up to 95 % inhibition. In addition to these promising results, the yeast W. anomalus produced the biosurfactant from an inexpensive substrate, which increases the possibility of its application in several industries owing to the low cost involved.


Asunto(s)
Aedes/efectos de los fármacos , Antiinfecciosos/farmacología , Insecticidas/farmacología , Mosquitos Vectores/efectos de los fármacos , Saccharomycetales/metabolismo , Tensoactivos/farmacología , Animales , Antibacterianos/metabolismo , Antifúngicos/metabolismo , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Hongos/efectos de los fármacos , Hongos/crecimiento & desarrollo , Insecticidas/metabolismo , Larva/efectos de los fármacos , Tensoactivos/metabolismo , Residuos/análisis
6.
Food Res Int ; 136: 109595, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32846620

RESUMEN

The jerivá (Syagrus romanzoffiana) and the macaúba (Acrocomia aculeata) are palm trees of the Arecaceae family, widely distributed in tropical and subtropical areas of Latin America, which have a low production cost and high productivity throughout the year. Due to the high content of lipids, their fruits have been used for oil extraction, which generates byproducts such as the pulps and the kernel cakes, a nutritionally rich byproduct that can be added into human food and, may have prebiotic potential. Therefore, the objective of this work was to characterize and evaluate the prebiotic potential of jerivá pulp (JP), macaúba pulp (MP), jerivá kernel cake (JC) and macaúba kernel cake (MC). For this, the fruits characterization was carried out through proximate composition, phenolic compounds content, and antioxidant activity, besides evaluating the antimicrobial and fermentative capacity of Bifidobacterium lactis, Lactobacillus casei, and Lactobacillus acidophilus against Escherichia coli. Jerivá and macaúba pulps and kernel cakes presented high levels of dietary fiber (20.45% JP, 37.87% JC, 19.95% MP and 35.81% MC) and high antioxidant activity, especially JP, which also showed the high values found for ABTS and DPPH (2498.49 µMTrolox·g-1 fruit and 96.97 g fruit·g-1 DPPH, respectively), has a high total phenolic content (850.62 mg GAE·100 g-1). Also, JP promoted a better growth of probiotic strains and a more relevant pH reduction when compared to the commercial prebiotic FOS. However, MP, JC, and MC were also able to favor the growth of the strains. Probiotic microorganisms were able to use JP, MP, JC, and MC and produced short-chain fatty acids such as lactic, propionic, butyric, and acetic acid, capable of promoting health benefits. Therefore, the byproducts from jerivá and macaúba oil extraction have characteristics that indicate their prebiotic potential, and maybe interesting components to increase the nutritional value of foods.


Asunto(s)
Arecaceae , Frutas , Antioxidantes/análisis , Frutas/química , Humanos , Valor Nutritivo , Prebióticos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda