Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Euro Surveill ; 28(40)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37796441

RESUMEN

BackgroundRodent-borne viruses such as orthohantaviruses and arenaviruses cause considerable disease burden with regional and temporal differences in incidence and clinical awareness. Therefore, it is important to regularly evaluate laboratory diagnostic capabilities, e.g. by external quality assessments (EQA).AimWe wished to evaluate the performance and diagnostic capability of European expert laboratories to detect orthohantaviruses and lymphocytic choriomeningitis virus (LCMV) and human antibody response towards orthohantaviruses.MethodsWe conducted an EQA in 2021; molecular panels consisted of 12 samples, including different orthohantaviruses (Seoul, Dobrava-Belgrade (DOBV), Puumala (PUUV) and Hantaan orthohantavirus), LCMV and negative controls. Serological panels consisted of six human serum samples reactive to PUUV, DOBV or negative to orthohantaviruses. The EQA was sent to 25 laboratories in 20 countries.ResultsThe accuracy of molecular detection of orthohantaviruses varied (50‒67%, average 62%) among 16 participating laboratories, while LCMV samples were successfully detected in all 11 participating laboratories (91-100%, average 96%). The accuracy of serological diagnosis of acute and past orthohantavirus infections was on average 95% among 20 participating laboratories and 82% in 19 laboratories, respectively. A variety of methods was used, with predominance of in-house assays for molecular tests, and commercial assays for serological ones.ConclusionSerology, the most common tool to diagnose acute orthohantavirus infections, had a high accuracy in this EQA. The molecular detection of orthohantaviruses needs improvement while LCMV detection (performed in fewer laboratories) had 95% accuracy. Further EQAs are recommended to be performed periodically to monitor improvements and challenges in the diagnostics of rodent-borne diseases.


Asunto(s)
Infecciones por Hantavirus , Orthohantavirus , Humanos , Virus de la Coriomeningitis Linfocítica/genética , Europa (Continente)/epidemiología , Infecciones por Hantavirus/diagnóstico , Anticuerpos Antivirales
2.
Emerg Infect Dis ; 28(12): 2416-2424, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36288572

RESUMEN

Tick-borne encephalitis virus (TBEV) is an emerging pathogen that was first detected in ticks and humans in the Netherlands in 2015 (ticks) and 2016 (humans). To learn more about its distribution and prevalence in the Netherlands, we conducted large-scale surveillance in ticks and rodents during August 2018-September 2020. We tested 320 wild rodents and >46,000 ticks from 48 locations considered to be at high risk for TBEV circulation. We found TBEV RNA in 3 rodents (0.9%) and 7 tick pools (minimum infection rate 0.02%) from 5 geographically distinct foci. Phylogenetic analyses indicated that 3 different variants of the TBEV-Eu subtype circulate in the Netherlands, suggesting multiple independent introductions. Combined with recent human cases outside known TBEV hotspots, our data demonstrate that the distribution of TBEV in the Netherlands is more widespread than previously thought.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Ixodes , Animales , Humanos , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Países Bajos/epidemiología , Encefalitis Transmitida por Garrapatas/epidemiología , Filogenia
3.
Emerg Infect Dis ; 25(2): 342-345, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30666954

RESUMEN

To increase knowledge of tick-borne encephalitis virus (TBEV) circulation in the Netherlands, we conducted serosurveillance in roe deer (Capreolus capreolus) during 2017 and compared results with those obtained during 2010. Results corroborate a more widespread occurrence of the virus in 2017. Additional precautionary public health measures have been taken.


Asunto(s)
Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/inmunología , Anticuerpos Antivirales/inmunología , Ciervos/virología , Virus de la Encefalitis Transmitidos por Garrapatas/inmunología , Encefalitis Transmitida por Garrapatas/veterinaria , Enfermedades de los Animales/transmisión , Enfermedades de los Animales/virología , Animales , Ensayo de Inmunoadsorción Enzimática , Geografía Médica , Países Bajos/epidemiología , Oportunidad Relativa , Vigilancia en Salud Pública , Estudios Seroepidemiológicos , Infestaciones por Garrapatas
4.
J Clin Microbiol ; 58(1)2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31619523

RESUMEN

Members of the genus Bartonella are fastidious Gram-negative facultative intracellular bacteria that are typically transmitted by arthropod vectors. Several Bartonella spp. have been found to cause culture-negative endocarditis in humans. Here, we report the case of a 75-year-old German woman with prosthetic valve endocarditis due to Bartonella washoensis The infecting agent was characterized by sequencing of six housekeeping genes (16S rRNA, ftsZ, gltA, groEL, ribC, and rpoB), applying a multilocus sequence typing (MLST) approach. The 5,097 bp of the concatenated housekeeping gene sequence from the patient were 99.0% identical to a sequence from a B. washoensis strain isolated from a red squirrel (Sciurus vulgarisorientis) from China. A total of 39% (24/62) of red squirrel (S. vulgaris) samples from the Netherlands were positive for the B. washoensisgltA gene variant detected in the patient. This suggests that the red squirrel is the reservoir host for human infection in Europe.


Asunto(s)
Enfermedades de los Animales/microbiología , Infecciones por Bartonella/diagnóstico , Infecciones por Bartonella/microbiología , Bartonella , Endocarditis Bacteriana/diagnóstico , Endocarditis Bacteriana/microbiología , Enfermedades de las Válvulas Cardíacas/diagnóstico , Enfermedades de las Válvulas Cardíacas/microbiología , Anciano , Animales , Bartonella/clasificación , Bartonella/genética , Infecciones por Bartonella/transmisión , ADN Bacteriano , Reservorios de Enfermedades , Endocarditis Bacteriana/transmisión , Europa (Continente) , Femenino , Humanos , Masculino , Filogenia , Filogeografía , ARN Ribosómico 16S/genética , Sciuridae/microbiología
5.
Emerg Infect Dis ; 24(12): 2158-2163, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30067176

RESUMEN

Orthohantaviruses are a group of rodentborne viruses with a worldwide distribution. The orthohantavirus Seoul virus (SEOV) can cause hemorrhagic fever with renal syndrome in humans and is distributed worldwide, like its reservoir host, the rat. Cases of SEOV in wild and pet rats have been described in several countries, and human cases have been reported in the United Kingdom, France, Canada, and the United States. In the Netherlands, SEOV has previously been found in wild brown rats. We describe an autochthonous human case of SEOV infection in the Netherlands. This patient had nonspecific clinical symptoms of an orthohantavirus infection (gastrointestinal symptoms and distinct elevation of liver enzymes). Subsequent source investigation revealed 2 potential sources, the patient's feeder rats and a feeder rat farm. At both sources, a high prevalence of SEOV was found in the rats. The virus closely resembled the Cherwell and Turckheim SEOV strains that were previously found in Europe.


Asunto(s)
Fiebre Hemorrágica con Síndrome Renal/virología , Ratas/virología , Virus Seoul , Adulto , Animales , Fiebre Hemorrágica con Síndrome Renal/diagnóstico , Fiebre Hemorrágica con Síndrome Renal/etiología , Humanos , Masculino , Países Bajos , Virus Seoul/clasificación , Virus Seoul/aislamiento & purificación
7.
Euro Surveill ; 21(33)2016 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-27562931

RESUMEN

In July 2016, the first autochthonous case of tick-borne encephalitis was diagnosed in the Netherlands, five days after a report that tick-borne encephalitis virus (TBEV) had been found in Dutch ticks. A person in their 60s without recent travel history suffered from neurological symptoms after a tick bite. TBEV serology was positive and the tick was positive in TBEV qRT-PCR. TBEV infection should be considered in patients with compatible symptoms in the Netherlands.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/aislamiento & purificación , Encefalitis Transmitida por Garrapatas/diagnóstico , Ixodes/virología , Animales , Virus de la Encefalitis Transmitidos por Garrapatas/inmunología , Encefalitis Transmitida por Garrapatas/virología , Humanos , Masculino , Persona de Mediana Edad , Países Bajos , ARN Viral/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Artículo en Inglés | MEDLINE | ID: mdl-38853708

RESUMEN

Background: Urban areas are unique ecosystems with stark differences in species abundance and composition compared with natural ecosystems. These differences can affect pathogen transmission dynamics, thereby altering zoonotic pathogen prevalence and diversity. In this study, we screened small mammals from natural and urban areas in the Netherlands for up to 19 zoonotic pathogens, including viruses, bacteria, and protozoan parasites. Materials and Methods: In total, 578 small mammals were captured, including wood mice (Apodemus sylvaticus), bank voles (Myodes glareolus), yellow-necked mice (Apodemus flavicollis), house mice (Mus musculus), common voles (Microtus arvalis), and greater white-toothed shrews (Crocidura russula). We detected a wide variety of zoonotic pathogens in small mammals from both urban and natural areas. For a subset of these pathogens, in wood mice and bank voles, we then tested whether pathogen prevalence and diversity were associated with habitat type (i.e., natural versus urban), degree of greenness, and various host characteristics. Results: The prevalence of tick-borne zoonotic pathogens (Borrelia spp. and Neoehrlichia mikurensis) was significantly higher in wood mice from natural areas. In contrast, the prevalence of Bartonella spp. was higher in wood mice from urban areas, but this difference was not statistically significant. Pathogen diversity was higher in bank voles from natural habitats and increased with body weight for both rodent species, although this relationship depended on sex for bank voles. In addition, we detected methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase/AmpC-producing Escherichia coli, and lymphocytic choriomeningitis virus for the first time in rodents in the Netherlands. Discussion: The differences between natural and urban areas are likely related to differences in the abundance and diversity of arthropod vectors and vertebrate community composition. With increasing environmental encroachment and changes in urban land use (e.g., urban greening), it is important to better understand transmission dynamics of zoonotic pathogens in urban environments to reduce potential disease risks for public health.

9.
Parasit Vectors ; 16(1): 103, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927723

RESUMEN

BACKGROUND: Tick-borne encephalitis virus (TBEV) can cause severe neurological disease in humans. Its geographical distribution is expanding in Western Europe with unresolved causes and spatial patterns, necessitating enhanced surveillance. Monitoring the virus in the environment is complicated, as it usually relies on destructive sampling of small rodents to test organs for TBEV, which in addition to ethical considerations also raises issues for long-term monitoring or longitudinal studies. Moreover, even when the virus is not detected in the blood or organs of the rodent, TBEV can still be transmitted from an infected tick to uninfected ticks feeding nearby. This is due to the ability of TBEV to replicate and migrate locally within the epidermis of small mammals, including those that do not appear to have systemic infection. This suggests that the virus may be detectable in skin biopsies, which has been confirmed in experimentally infected laboratory rodents, but it remains unknown if this sample type may be a viable alternative to destructively obtained samples in the monitoring of natural TBEV infection. Here we test ear tissue and dried blood spot (DBS) samples from rodents to determine whether TBEV-RNA can be detected in biological samples obtained non-destructively. METHODS: Rodents were live-trapped and sampled at three woodland areas in The Netherlands where presence of TBEV has previously been recorded. Ear tissue (n = 79) and DBSs (n = 112) were collected from a total of 117 individuals and were tested for TBEV-RNA by real-time RT-PCR. RESULTS: TBEV-RNA was detected in five rodents (4.3% of tested individuals), all of which had a TBEV-positive ear sample, while only two out of four of these individuals (for which a DBS was available) had a positive DBS. This equated to 6.3% of ear samples and 1.8% of DBSs testing positive for TBEV-RNA. CONCLUSIONS: We provide the first evidence to our knowledge that TBEV-RNA can be detected in samples obtained non-destructively from naturally infected wild rodents, providing a viable sampling alternative suitable for longitudinal surveillance of the virus.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Garrapatas , Humanos , Animales , Roedores , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Encefalitis Transmitida por Garrapatas/diagnóstico , Encefalitis Transmitida por Garrapatas/veterinaria , Encefalitis Transmitida por Garrapatas/epidemiología , Garrapatas/genética , Mamíferos/genética , ARN
10.
Infect Ecol Epidemiol ; 13(1): 2229583, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37398878

RESUMEN

Leptospirosis is a zoonosis caused by the spirochete Leptospira spp. It is often not clear why certain areas appear to be hotspots for human leptospirosis. Therefore, a predictive risk map for the Netherlands was developed and assessed, based on a random forest model for human leptospirosis incidence levels with various environmental factors and rat density as variables. Next, it was tested whether misclassifications of the risk map could be explained by the prevalence of Leptospira spp. in brown rats. Three recreational areas were chosen, and rats (≥25/location) were tested for Leptospira spp. Concurrently, it was investigated whether Leptospira spp. prevalence in brown rats was associated with Leptospira DNA concentration in surface water, to explore the usability of this parameter in future studies. Approximately 1 L of surface water sample was collected from 10 sites and was tested for Leptospira spp. Although the model predicted the locations of patients relatively well, this study showed that the prevalence of Leptospira spp. infection in rats may be an explaining variable that could improve the predictive model performance. Surface water samples were all negative, even if they had been taken at sites with a high Leptospira spp. prevalence in rats.

11.
Sci Rep ; 13(1): 2872, 2023 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-36807371

RESUMEN

Tick-borne encephalitis virus (TBEV) may cause tick-borne encephalitis (TBE), a potential life-threatening infection of the central nervous system in humans. Phylogenetically, TBEVs can be subdivided into three main subtypes, which differ in endemic region and pathogenic potential. In 2016, TBEV was first detected in the Netherlands. One of two detected strains, referred to as Salland, belonged to the TBEV-Eu subtype, yet diverged ≥ 2% on amino acid level from other members of this subtype. Here, we report the successful rescue of this strain using infectious subgenomic amplicons and its subsequent in vitro characterization by comparison to two well-characterized TBEV-Eu strains; Neudoerfl and Hypr. In the human alveolar epithelial cell line A549, growth kinetics of Salland were comparable to the high pathogenicity TBEV-Eu strain Hypr, and both strains grew considerably faster than the mildly pathogenic strain Neudoerfl. In the human neuroblastoma cell line SK-N-SH, Salland replicated faster and to higher infectious titers than both reference strains. All three TBEV strains infected primary human monocyte-derived dendritic cells to a similar extent and interacted with the type I interferon system in a similar manner. The current study serves as the first in vitro characterization of the novel, divergent TBEV-Eu strain Salland.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Humanos , Países Bajos , Sistema Nervioso Central
12.
Sci Total Environ ; 896: 165069, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37392874

RESUMEN

Urban greening has benefits for both human and environmental health. However, urban greening might also have negative effects as the abundance of wild rats, which can host and spread a great diversity of zoonotic pathogens, increases with urban greenness. Studies on the effect of urban greening on rat-borne zoonotic pathogens are currently unavailable. Therefore, we investigated how urban greenness is associated with rat-borne zoonotic pathogen prevalence and diversity, and translated this to human disease hazard. We screened 412 wild rats (Rattus norvegicus and Rattus rattus) from three cities in the Netherlands for 18 different zoonotic pathogens: Bartonella spp., Leptospira spp., Borrelia spp., Rickettsia spp., Anaplasma phagocytophilum, Neoehrlichia mikurensis, Spiroplasma spp., Streptobacillus moniliformis, Coxiella burnetii, Salmonella spp., methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum beta-lactamase (ESBL)/AmpC-producing Escherichia coli, rat hepatitis E virus (ratHEV), Seoul orthohantavirus, Cowpox virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Toxoplasma gondii and Babesia spp. We modelled the relationships between pathogen prevalence and diversity and urban greenness. We detected 13 different zoonotic pathogens. Rats from greener urban areas had a significantly higher prevalence of Bartonella spp. and Borrelia spp., and a significantly lower prevalence of ESBL/AmpC-producing E. coli and ratHEV. Rat age was positively correlated with pathogen diversity while greenness was not related to pathogen diversity. Additionally, Bartonella spp. occurrence was positively correlated with that of Leptospira spp., Borrelia spp. and Rickettsia spp., and Borrelia spp. occurrence was also positively correlated with that of Rickettsia spp. Our results show an increased rat-borne zoonotic disease hazard in greener urban areas, which for most pathogens was driven by the increase in rat abundance rather than pathogen prevalence. This highlights the importance of keeping rat densities low and investigating the effects of urban greening on the exposure to zoonotic pathogens in order to make informed decisions and to take appropriate countermeasures preventing zoonotic diseases.


Asunto(s)
COVID-19 , Staphylococcus aureus Resistente a Meticilina , Animales , Ratas , Humanos , Escherichia coli , SARS-CoV-2 , Zoonosis/epidemiología
13.
Sci Rep ; 13(1): 21627, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062065

RESUMEN

The distribution of tick-borne encephalitis virus (TBEV) is expanding to Western European countries, including the Netherlands, but the contribution of different rodent species to the transmission of TBEV is poorly understood. We investigated whether two species of wild rodents native to the Netherlands, the wood mouse Apodemus sylvaticus and the yellow-necked mouse Apodemus flavicollis, differ in their relative susceptibility to experimental infection with TBEV. Wild-caught individuals were inoculated subcutaneously with the classical European subtype of TBEV (Neudoerfl) or with TBEV-NL, a genetically divergent TBEV strain from the Netherlands. Mice were euthanised and necropsied between 3 and 21 days post-inoculation. None of the mice showed clinical signs or died during the experimental period. Nevertheless, TBEV RNA was detected up to 21 days in the blood of both mouse species and TBEV was also isolated from the brain of some mice. Moreover, no differences in infection rates between virus strains and mouse species were found in blood, spleen, or liver samples. Our results suggest that the wood mouse and the yellow-necked mouse may equally contribute to the transmission cycle of TBEV in the Netherlands. Future experimental infection studies that include feeding ticks will help elucidate the relative importance of viraemic transmission in the epidemiology of TBEV.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Garrapatas , Animales , Ratones , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Encefalitis Transmitida por Garrapatas/epidemiología , Encefalitis Transmitida por Garrapatas/veterinaria , Murinae , Países Bajos
14.
Viruses ; 15(2)2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36851681

RESUMEN

Seoul orthohantavirus (SEOV) is a rat-associated zoonotic pathogen with an almost worldwide distribution. In 2019, the first autochthonous human case of SEOV-induced hemorrhagic fever with renal syndrome was reported in Germany, and a pet rat was identified as the source of the zoonotic infection. To further investigate the SEOV reservoir, additional rats from the patient and another owner, all of which were purchased from the same vendor, were tested. SEOV RNA and anti-SEOV antibodies were found in both of the patient's rats and in two of the three rats belonging to the other owner. The complete coding sequences of the small (S), medium (M), and large (L) segments obtained from one rat per owner exhibited a high sequence similarity to SEOV strains of breeder rat or human origin from the Netherlands, France, the USA, and Great Britain. Serological screening of 490 rats from breeding facilities and 563 wild rats from Germany (2007-2020) as well as 594 wild rats from the Netherlands (2013-2021) revealed 1 and 6 seropositive individuals, respectively. However, SEOV RNA was not detected in any of these animals. Increased surveillance of pet, breeder, and wild rats is needed to identify the origin of the SEOV strain in Europe and to develop measures to prevent transmission to the human population.


Asunto(s)
Virus Seoul , Zoonosis , Humanos , Animales , Ratas , Europa (Continente) , Cruzamiento , Exones , Francia , ARN , Virus Seoul/genética
15.
Emerg Infect Dis ; 18(11): 1746-54, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23092696

RESUMEN

The emergence of Schmallenberg virus (SBV), a novel orthobunyavirus, in ruminants in Europe triggered a joint veterinary and public health response to address the possible consequences to human health. Use of a risk profiling algorithm enabled the conclusion that the risk for zoonotic transmission of SBV could not be excluded completely. Self-reported health problems were monitored, and a serologic study was initiated among persons living and/or working on SBV-affected farms. In the study set-up, we addressed the vector and direct transmission routes for putative zoonotic transfer. In total, 69 sheep farms, 4 goat farms, and 50 cattle farms were included. No evidence for SBV-neutralizing antibodies was found in serum of 301 participants. The lack of evidence for zoonotic transmission from either syndromic illness monitoring or serologic testing of presumably highly exposed persons suggests that the public health risk for SBV, given the current situation, is absent or extremely low.


Asunto(s)
Infecciones por Bunyaviridae/transmisión , Enfermedades Transmisibles Emergentes/transmisión , Orthobunyavirus/aislamiento & purificación , Zoonosis/transmisión , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Infecciones por Bunyaviridae/epidemiología , Infecciones por Bunyaviridae/veterinaria , Bovinos , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/transmisión , Enfermedades Transmisibles Emergentes/epidemiología , Europa (Continente)/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Orthobunyavirus/clasificación , Vigilancia de la Población , Riesgo , Rumiantes , Estudios Seroepidemiológicos , Adulto Joven , Zoonosis/epidemiología
16.
Microorganisms ; 11(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36677332

RESUMEN

The European mole (Talpa europaea) has a widespread distribution throughout Europe. However, little is known about the presence of zoonotic pathogens in European moles. We therefore tested 180 moles from the middle and the south of the Netherlands by (q)PCR for the presence of multiple (tick-borne) zoonotic pathogens. Spotted fever Rickettsia was found in one (0.6%), Leptospira spp. in three (1.7%), Bartonella spp. in 69 (38.3%) and Hantaviridae in 89 (49.4%) of the 180 moles. Infections with Anaplasma phagocytophilum, Babesia spp., Neoehrlichia mikurensis, Borrelia spp., Spiroplasma spp. and Francisella tularensis were not found. In addition, in a subset of 35 moles no antibodies against Tick-borne encephalitis virus were found. The obtained sequences of Bartonella spp. were closely related to Bartonella spp. sequences from moles in Spain and Hungary. The Hantaviridae were identified as the mole-borne Nova virus, with high sequence similarity to sequences from other European countries, and Bruges virus. Though the zoonotic risk from moles appears limited, our results indicate that these animals do play a role in multiple host-pathogen cycles.

17.
J Wildl Dis ; 58(2): 404-408, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35245369

RESUMEN

Successful repopulation programs of Eurasian beavers (Castor fiber) have resulted in an increase in beaver populations throughout Europe. This may be of public health relevance because beavers can host multiple zoonotic pathogens. From March 2018 to March 2020, opportunistic testing of dead beavers was performed for hepatitis E virus, orthohantavirus, Anaplasma phagocytophilum, Bartonella spp., extended-spectrum-betalactamase or AmpC (ESBL/AmpC-)-producing Enterobacteriaceae, Francisella tularensis, Leptospira spp., Neoehrlichia mikurensis, Babesia spp., Echinococcus multilocularis, Toxoplasma gondii, and Trichinella spp. From the 24 beavers collected, three zoonotic pathogens were detected. One beaver was positive for T. gondii, one was positive for ESBL/AmpC-producing Enterobacteriaceae, and one was positive for N. mikurensis. The latter finding indicates that beavers can be bitten by Ixodes ricinus and be exposed to tick-borne pathogens. The detected ESBL/AmpC-gene was blaCMY-2 in an Escherichia coli ST6599. The findings suggest that the role of beavers in the spread of zoonotic diseases in the Netherlands is currently limited.


Asunto(s)
Anaplasma phagocytophilum , Anaplasmataceae , Ixodes , Animales , Países Bajos , Roedores
18.
Transbound Emerg Dis ; 69(6): 3881-3895, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36404584

RESUMEN

Wild rats can host various zoonotic pathogens. Detection of these pathogens is commonly performed using molecular techniques targeting one or a few specific pathogens. However, this specific way of surveillance could lead to (emerging) zoonotic pathogens staying unnoticed. This problem may be overcome by using broader microbiome-profiling techniques, which enable broad screening of a sample's bacterial or viral composition. In this study, we investigated if 16S rRNA gene amplicon sequencing would be a suitable tool for the detection of zoonotic bacteria in wild rats. Moreover, we used virome-enriched (VirCapSeq) sequencing to detect zoonotic viruses. DNA from kidney samples of 147 wild brown rats (Rattus norvegicus) and 42 black rats (Rattus rattus) was used for 16S rRNA gene amplicon sequencing of the V3-V4 hypervariable region. Blocking primers were developed to reduce the amplification of rat host DNA. The kidney bacterial composition was studied using alpha- and beta-diversity metrics and statistically assessed using PERMANOVA and SIMPER analyses. From the sequencing data, 14 potentially zoonotic bacterial genera were identified from which the presence of zoonotic Leptospira spp. and Bartonella tribocorum was confirmed by (q)PCR or Sanger sequencing. In addition, more than 65% of all samples were dominated (>50% reads) by one of three bacterial taxa: Streptococcus (n = 59), Mycoplasma (n = 39) and Leptospira (n = 25). These taxa also showed the highest contribution to the observed differences in beta diversity. VirCapSeq sequencing in rat liver samples detected the potentially zoonotic rat hepatitis E virus in three rats. Although 16S rRNA gene amplicon sequencing was limited in its capacity for species level identifications and can be more difficult to interpret due to the influence of contaminating sequences in these low microbial biomass samples, we believe it has potential to be a suitable pre-screening method in the future to get a better overview of potentially zoonotic bacteria that are circulating in wildlife.


Asunto(s)
Infecciones por Bartonella , Microbiota , Enfermedades de los Roedores , Animales , Ratas , ARN Ribosómico 16S/genética , Animales Salvajes , Bacterias/genética , Infecciones por Bartonella/microbiología , Infecciones por Bartonella/veterinaria , Microbiota/genética , Enfermedades de los Roedores/epidemiología , Enfermedades de los Roedores/microbiología
19.
Viruses ; 13(6)2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208752

RESUMEN

Serological assays, such as the enzyme-linked immunosorbent assay (ELISA), are popular tools for establishing the seroprevalence of various infectious diseases in humans and animals. In the ELISA, the optical density is measured and gives an indication of the antibody level. However, there is variability in optical density values for individuals that have been exposed to the pathogen of interest, as well as individuals that have not been exposed. In general, the distribution of values that can be expected for these two categories partly overlap. Often, a cut-off value is determined to decide which individuals should be considered seropositive or seronegative. However, the classical cut-off approach based on a putative threshold ignores heterogeneity in immune response in the population and is thus not the optimal solution for the analysis of serological data. A binary mixture model does include this heterogeneity, offers measures of uncertainty and the direct estimation of seroprevalence without the need for correction based on sensitivity and specificity. Furthermore, the probability of being seropositive can be estimated for individual samples, and both continuous and categorical covariates (risk-factors) can be included in the analysis. Using ELISA results from rats tested for the Seoul orthohantavirus, we compared the classical cut-off method with a binary mixture model set in a Bayesian framework. We show that it performs similarly or better than cut-off methods, by comparing with real-time quantitative polymerase chain reaction (RT-qPCR) results. We therefore recommend binary mixture models as an analysis tool over classical cut-off methods. An example code is included to facilitate the practical use of binary mixture models in everyday practice.


Asunto(s)
Teorema de Bayes , Análisis de Datos , Ensayo de Inmunoadsorción Enzimática/métodos , Virus Seoul/inmunología , Animales , Estudios de Casos y Controles , Ensayo de Inmunoadsorción Enzimática/estadística & datos numéricos , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Sensibilidad y Especificidad , Virus Seoul/genética , Estudios Seroepidemiológicos
20.
Viruses ; 13(3)2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33801789

RESUMEN

Seoul virus (SEOV) is a zoonotic orthohantavirus carried by rats. In humans, SEOV can cause hemorrhagic fever with renal syndrome. Recent human SEOV cases described in the USA, United Kingdom, France and the Netherlands were associated with contact with pet or feeder rats. The prevalence of SEOV in these types of rats is unknown. We collected 175 pet and feeder rats (Rattus norvegicus) from private owners, ratteries and commercial breeders/traders in the Netherlands. Lung tissue of the rats was tested using a SEOV real-time RT-qPCR and heart fluid was tested for the presence of antibodies against SEOV. In all three investigated groups, RT-qPCR-positive rats were found: in 1/29 rats from private owners (3.6%), 2/56 rats from ratteries (3.4%) and 11/90 rats from commercial breeders (12.2%). The seroprevalence was largely similar to the prevalence calculated from RT-qPCR-positive rats. The SEOV sequences found were highly similar to sequences previously found in domesticated rats in Europe. In conclusion, SEOV is spread throughout different populations of domesticated rats.


Asunto(s)
Fiebre Hemorrágica con Síndrome Renal/epidemiología , Enfermedades de los Roedores/epidemiología , Virus Seoul/aislamiento & purificación , Animales , Fiebre Hemorrágica con Síndrome Renal/transmisión , Fiebre Hemorrágica con Síndrome Renal/virología , Humanos , Técnicas de Diagnóstico Molecular , Países Bajos/epidemiología , Mascotas/virología , Prevalencia , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Enfermedades de los Roedores/virología , Virus Seoul/genética , Estudios Seroepidemiológicos , Encuestas y Cuestionarios , Carga Viral
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda