Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Am J Hum Genet ; 111(4): 761-777, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38503299

RESUMEN

Ion channels mediate voltage fluxes or action potentials that are central to the functioning of excitable cells such as neurons. The KCNB family of voltage-gated potassium channels (Kv) consists of two members (KCNB1 and KCNB2) encoded by KCNB1 and KCNB2, respectively. These channels are major contributors to delayed rectifier potassium currents arising from the neuronal soma which modulate overall excitability of neurons. In this study, we identified several mono-allelic pathogenic missense variants in KCNB2, in individuals with a neurodevelopmental syndrome with epilepsy and autism in some individuals. Recurrent dysmorphisms included a broad forehead, synophrys, and digital anomalies. Additionally, we selected three variants where genetic transmission has not been assessed, from two epilepsy studies, for inclusion in our experiments. We characterized channel properties of these variants by expressing them in oocytes of Xenopus laevis and conducting cut-open oocyte voltage clamp electrophysiology. Our datasets indicate no significant change in absolute conductance and conductance-voltage relationships of most disease variants as compared to wild type (WT), when expressed either alone or co-expressed with WT-KCNB2. However, variants c.1141A>G (p.Thr381Ala) and c.641C>T (p.Thr214Met) show complete abrogation of currents when expressed alone with the former exhibiting a left shift in activation midpoint when expressed alone or with WT-KCNB2. The variants we studied, nevertheless, show collective features of increased inactivation shifted to hyperpolarized potentials. We suggest that the effects of the variants on channel inactivation result in hyper-excitability of neurons, which contributes to disease manifestations.


Asunto(s)
Epilepsia , Mutación Missense , Trastornos del Neurodesarrollo , Canales de Potasio Shab , Animales , Humanos , Potenciales de Acción , Epilepsia/genética , Neuronas , Oocitos , Xenopus laevis , Canales de Potasio Shab/genética , Canales de Potasio Shab/metabolismo , Trastornos del Neurodesarrollo/genética
2.
N Engl J Med ; 390(7): 623-629, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38354141

RESUMEN

Wolman's disease, a severe form of lysosomal acid lipase deficiency, leads to pathologic lipid accumulation in the liver and gut that, without treatment, is fatal in infancy. Although continued enzyme-replacement therapy (ERT) in combination with dietary fat restriction prolongs life, its therapeutic effect may wane over time. Allogeneic hematopoietic stem-cell transplantation (HSCT) offers a more definitive solution but carries a high risk of death. Here we describe an infant with Wolman's disease who received high-dose ERT, together with dietary fat restriction and rituximab-based B-cell depletion, as a bridge to early HSCT. At 32 months, the infant was independent of ERT and disease-free, with 100% donor chimerism in the peripheral blood.


Asunto(s)
Grasas de la Dieta , Terapia de Reemplazo Enzimático , Trasplante de Células Madre Hematopoyéticas , Factores Inmunológicos , Rituximab , Enfermedad de Wolman , Humanos , Lactante , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Quimerismo , Grasas de la Dieta/efectos adversos , Terapia de Reemplazo Enzimático/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Factores Inmunológicos/uso terapéutico , Rituximab/uso terapéutico , Trasplante Homólogo , Enfermedad de Wolman/dietoterapia , Enfermedad de Wolman/tratamiento farmacológico , Enfermedad de Wolman/inmunología , Enfermedad de Wolman/terapia
3.
J Inherit Metab Dis ; 47(4): 792-804, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38430011

RESUMEN

Metachromatic leukodystrophy (MLD) is an inherited lysosomal storage disorder characterized by arylsulfatase A (ASA) deficiency, leading to sulfatide accumulation and myelin degeneration in the central nervous system. While primarily considered a white matter (WM) disease, gray matter (GM) is also affected in MLD, and hematopoietic stem cell transplantation (HSCT) may have limited effect on GM atrophy. We cross-sectionally and longitudinally studied GM volumes using volumetric MRI in a cohort of 36 (late-infantile, juvenile and adult type) MLD patients containing untreated and HSCT treated subjects. Cerebrum, cortical GM, (total) CSF, cerebellum, deep gray matter (DGM) (excluding thalamus) and thalamus volumes were analyzed. Longitudinal correlations with measures of cognitive and motor functioning were assessed. Cross-sectionally, juvenile and adult type patients (infantiles excluded based on limited numbers) were compared with controls at earliest scan, before possible treatment. Patients had lower cerebrum, cortical GM, DGM and thalamus volumes. Differences were most pronounced for adult type patients. Longitudinal analyses showed substantial and progressive atrophy of all regions and increase of CSF in untreated patients. Similar, albeit less pronounced, effects were seen in treated patients for cerebrum, cortical GM, CSF and thalamus volumes. Deterioration in motor performance (all patients) was related to atrophy, and increase of CSF, in all regions. Cognitive functioning (data available for treated patients) was related to cerebral, cortical GM and thalamus atrophy; and to CSF increase. Our findings illustrate the importance of recognizing GM pathology as a potentially substantial, clinically relevant part of MLD, apparently less amenable to treatment.


Asunto(s)
Atrofia , Sustancia Gris , Leucodistrofia Metacromática , Imagen por Resonancia Magnética , Humanos , Leucodistrofia Metacromática/patología , Leucodistrofia Metacromática/diagnóstico por imagen , Sustancia Gris/patología , Sustancia Gris/diagnóstico por imagen , Atrofia/patología , Masculino , Femenino , Adulto , Estudios Longitudinales , Adolescente , Adulto Joven , Niño , Estudios Transversales , Preescolar , Persona de Mediana Edad , Trasplante de Células Madre Hematopoyéticas , Lactante , Tálamo/patología , Tálamo/diagnóstico por imagen , Cognición
4.
Sci Adv ; 10(15): eadm7600, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608019

RESUMEN

Myelination is essential for neuronal function and health. In peripheral nerves, >100 causative mutations have been identified that cause Charcot-Marie-Tooth disease, a disorder that can affect myelin sheaths. Among these, a number of mutations are related to essential targets of the posttranslational modification neddylation, although how these lead to myelin defects is unclear. Here, we demonstrate that inhibiting neddylation leads to a notable absence of peripheral myelin and axonal loss both in developing and regenerating mouse nerves. Our data indicate that neddylation exerts a global influence on the complex transcriptional and posttranscriptional program by simultaneously regulating the expression and function of multiple essential myelination signals, including the master transcription factor EGR2 and the negative regulators c-Jun and Sox2, and inducing global secondary changes in downstream pathways, including the mTOR and YAP/TAZ signaling pathways. This places neddylation as a critical regulator of myelination and delineates the potential pathogenic mechanisms involved in CMT mutations related to neddylation.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Células de Schwann , Animales , Ratones , Vaina de Mielina/genética , Enfermedad de Charcot-Marie-Tooth/genética , Mutación , Procesamiento Proteico-Postraduccional
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda