Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
J Neuroinflammation ; 20(1): 215, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752582

RESUMEN

BACKGROUND: Recent studies suggest that extended interval dosing of ocrelizumab, an anti-B cell therapy, does not affect its clinical effectiveness in most patients with multiple sclerosis (MS). However, it remains to be established whether certain B cell subsets are differentially repopulated after different dosing intervals and whether these subsets relate to clinical efficacy. METHODS: We performed high-dimensional single-cell characterization of the peripheral immune landscape of patients with MS after standard (SID; n = 43) or extended interval dosing (EID; n = 37) of ocrelizumab and in non-ocrelizumab-treated (control group, CG; n = 28) patients with MS, using mass cytometry by time of flight (CyTOF). RESULTS: The first B cells that repopulate after both ocrelizumab dosing schemes were immature, transitional and regulatory CD1d+ CD5+ B cells. In addition, we observed a higher percentage of transitional, naïve and regulatory B cells after EID in comparison with SID, but not of memory B cells or plasmablasts. The majority of repopulated B cell subsets showed an increased migratory phenotype, characterized by higher expression of CD49d, CD11a, CD54 and CD162. Interestingly, after EID, repopulated B cells expressed increased CD20 levels compared to B cells in CG and after SID, which was associated with a delayed repopulation of B cells after a subsequent ocrelizumab infusion. Finally, the number of/changes in B cell subsets after both dosing schemes did not correlate with any relapses nor progression of the disease. CONCLUSIONS: Taken together, our data highlight that extending the dosing interval of ocrelizumab does not lead to increased repopulation of effector B cells. We show that the increase of CD20 expression on B cell subsets in EID might lead to longer depletion or less repopulation of B cells after the next infusion of ocrelizumab. Lastly, even though extending the ocrelizumab interval dosing alters B cell repopulation, it does not affect the clinical efficacy of ocrelizumab in our cohort of patients with MS.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Linfocitos B , Resultado del Tratamiento , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Factores Inmunológicos/uso terapéutico
2.
Proc Natl Acad Sci U S A ; 117(9): 5028-5038, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32071226

RESUMEN

The brain's endogenous capacity to restore damaged myelin deteriorates during the course of demyelinating disorders. Currently, no treatment options are available to establish remyelination. Chronic demyelination leads to damaged axons and irreversible destruction of the central nervous system (CNS). We identified two promising therapeutic candidates which enhance remyelination: oncostatin M (OSM), a member of the interleukin-6 family, and downstream mediator tissue inhibitor of metalloproteinases-1 (TIMP-1). While remyelination was completely abrogated in OSMRß knockout (KO) mice, OSM overexpression in the chronically demyelinated CNS established remyelination. Astrocytic TIMP-1 was demonstrated to play a pivotal role in OSM-mediated remyelination. Astrocyte-derived TIMP-1 drove differentiation of oligodendrocyte precursor cells into mature oligodendrocytes in vitro. In vivo, TIMP-1 deficiency completely abolished spontaneous remyelination, phenocopying OSMRß KO mice. Finally, TIMP-1 was expressed by human astrocytes in demyelinated multiple sclerosis lesions, confirming the human value of our findings. Taken together, OSM and its downstream mediator TIMP-1 have the therapeutic potential to boost remyelination in demyelinating disorders.


Asunto(s)
Astrocitos/metabolismo , Oncostatina M/metabolismo , Remielinización/fisiología , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Animales , Astrocitos/patología , Axones , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Humanos , Interleucina-6/metabolismo , Ratones , Ratones Noqueados , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Vaina de Mielina , Células Precursoras de Oligodendrocitos , Inhibidor Tisular de Metaloproteinasa-1/genética
3.
Cell Mol Life Sci ; 78(10): 4615-4637, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33751149

RESUMEN

Oligodendrocyte precursor cells (OPCs) account for 5% of the resident parenchymal central nervous system glial cells. OPCs are not only a back-up for the loss of oligodendrocytes that occurs due to brain injury or inflammation-induced demyelination (remyelination) but are also pivotal in plastic processes such as learning and memory (adaptive myelination). OPC differentiation into mature myelinating oligodendrocytes is controlled by a complex transcriptional network and depends on high metabolic and mitochondrial demand. Mounting evidence shows that OPC dysfunction, culminating in the lack of OPC differentiation, mediates the progression of neurodegenerative disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Importantly, neurodegeneration is characterised by oxidative and carbonyl stress, which may primarily affect OPC plasticity due to the high metabolic demand and a limited antioxidant capacity associated with this cell type. The underlying mechanisms of how oxidative/carbonyl stress disrupt OPC differentiation remain enigmatic and a focus of current research efforts. This review proposes a role for oxidative/carbonyl stress in interfering with the transcriptional and metabolic changes required for OPC differentiation. In particular, oligodendrocyte (epi)genetics, cellular defence and repair responses, mitochondrial signalling and respiration, and lipid metabolism represent key mechanisms how oxidative/carbonyl stress may hamper OPC differentiation in neurodegenerative disorders. Understanding how oxidative/carbonyl stress impacts OPC function may pave the way for future OPC-targeted treatment strategies in neurodegenerative disorders.


Asunto(s)
Diferenciación Celular , Enfermedades del Sistema Nervioso/patología , Células Precursoras de Oligodendrocitos/patología , Estrés Oxidativo , Animales , Humanos
4.
J Neuroinflammation ; 18(1): 255, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34740381

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is a chronic autoimmune disease driven by sustained inflammation in the central nervous system. One of the pathological hallmarks of MS is extensive free radical production. However, the subsequent generation, potential pathological role, and detoxification of different lipid peroxidation-derived reactive carbonyl species during neuroinflammation are unclear, as are the therapeutic benefits of carbonyl quenchers. Here, we investigated the reactive carbonyl acrolein and (the therapeutic effect of) acrolein quenching by carnosine during neuroinflammation. METHODS: The abundance and localization of acrolein was investigated in inflammatory lesions of MS patients and experimental autoimmune encephalomyelitis (EAE) mice. In addition, we analysed carnosine levels and acrolein quenching by endogenous and exogenous carnosine in EAE. Finally, the therapeutic effect of exogenous carnosine was assessed in vivo (EAE) and in vitro (primary mouse microglia, macrophages, astrocytes). RESULTS: Acrolein was substantially increased in inflammatory lesions of MS patients and EAE mice. Levels of the dipeptide carnosine (ß-alanyl-L-histidine), an endogenous carbonyl quencher particularly reactive towards acrolein, and the carnosine-acrolein adduct (carnosine-propanal) were ~ twofold lower within EAE spinal cord tissue. Oral carnosine treatment augmented spinal cord carnosine levels (up to > tenfold), increased carnosine-acrolein quenching, reduced acrolein-protein adduct formation, suppressed inflammatory activity, and alleviated clinical disease severity in EAE. In vivo and in vitro studies indicate that pro-inflammatory microglia/macrophages generate acrolein, which can be efficiently quenched by increasing carnosine availability, resulting in suppressed inflammatory activity. Other properties of carnosine (antioxidant, nitric oxide scavenging) may also contribute to the therapeutic effects. CONCLUSIONS: Our results identify carbonyl (particularly acrolein) quenching by carnosine as a therapeutic strategy to counter inflammation and macromolecular damage in MS.


Asunto(s)
Acroleína/metabolismo , Enfermedades Autoinmunes del Sistema Nervioso/metabolismo , Enfermedades Autoinmunes del Sistema Nervioso/patología , Carnosina/farmacología , Enfermedades Neuroinflamatorias/metabolismo , Animales , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología
5.
Acta Neuropathol ; 141(4): 585-604, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33569629

RESUMEN

Sustained exposure to pro-inflammatory cytokines in the leptomeninges is thought to play a major role in the pathogenetic mechanisms leading to cortical pathology in multiple sclerosis (MS). Although the molecular mechanisms underlying neurodegeneration in the grey matter remain unclear, several lines of evidence suggest a prominent role for tumour necrosis factor (TNF). Using cortical grey matter tissue blocks from post-mortem brains from 28 secondary progressive MS subjects and ten non-neurological controls, we describe an increase in expression of multiple steps in the TNF/TNF receptor 1 signaling pathway leading to necroptosis, including the key proteins TNFR1, FADD, RIPK1, RIPK3 and MLKL. Activation of this pathway was indicated by the phosphorylation of RIPK3 and MLKL and the formation of protein oligomers characteristic of necrosomes. In contrast, caspase-8 dependent apoptotic signaling was decreased. Upregulation of necroptotic signaling occurred predominantly in macroneurons in cortical layers II-III, with little expression in other cell types. The presence of activated necroptotic proteins in neurons was increased in MS cases with prominent meningeal inflammation, with a 30-fold increase in phosphoMLKL+ neurons in layers I-III. The density of phosphoMLKL+ neurons correlated inversely with age at death, age at progression and disease duration. In vivo induction of chronically elevated TNF and INFγ levels in the CSF in a rat model via lentiviral transduction in the meninges, triggered inflammation and neurodegeneration in the underlying cortical grey matter that was associated with increased neuronal expression of TNFR1 and activated necroptotic signaling proteins. Exposure of cultured primary rat cortical neurons to TNF induced necroptosis when apoptosis was inhibited. Our data suggest that neurons in the MS cortex are dying via TNF/TNFR1 stimulated necroptosis rather than apoptosis, possibly initiated in part by chronic meningeal inflammation. Neuronal necroptosis represents a pathogenetic mechanism that is amenable to therapeutic intervention at several points in the signaling pathway.


Asunto(s)
Sustancia Gris/patología , Esclerosis Múltiple Crónica Progresiva/patología , Necroptosis/fisiología , Neuronas/patología , Factor de Necrosis Tumoral alfa/metabolismo , Adulto , Anciano , Animales , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Femenino , Sustancia Gris/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Ratas , Receptores del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal/fisiología
6.
Acta Neuropathol ; 141(6): 881-899, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33779783

RESUMEN

Meningeal inflammation strongly associates with demyelination and neuronal loss in the underlying cortex of progressive MS patients, thereby contributing significantly to clinical disability. However, the pathological mechanisms of meningeal inflammation-induced cortical pathology are still largely elusive. By extensive analysis of cortical microglia in post-mortem progressive MS tissue, we identified cortical areas with two MS-specific microglial populations, termed MS1 and MS2 cortex. The microglial population in MS1 cortex was characterized by a higher density and increased expression of the activation markers HLA class II and CD68, whereas microglia in MS2 cortex showed increased morphological complexity and loss of P2Y12 and TMEM119 expression. Interestingly, both populations associated with inflammation of the overlying meninges and were time-dependently replicated in an in vivo rat model for progressive MS-like chronic meningeal inflammation. In this recently developed animal model, cortical microglia at 1-month post-induction of experimental meningeal inflammation resembled microglia in MS1 cortex, and microglia at 2 months post-induction acquired a MS2-like phenotype. Furthermore, we observed that MS1 microglia in both MS cortex and the animal model were found closely apposing neuronal cell bodies and to mediate pre-synaptic displacement and phagocytosis, which coincided with a relative sparing of neurons. In contrast, microglia in MS2 cortex were not involved in these synaptic alterations, but instead associated with substantial neuronal loss. Taken together, our results show that in response to meningeal inflammation, microglia acquire two distinct phenotypes that differentially associate with neurodegeneration in the progressive MS cortex. Furthermore, our in vivo data suggests that microglia initially protect neurons from meningeal inflammation-induced cell death by removing pre-synapses from the neuronal soma, but eventually lose these protective properties contributing to neuronal loss.


Asunto(s)
Corteza Cerebral/patología , Meninges/patología , Microglía/patología , Esclerosis Múltiple/patología , Enfermedades Neurodegenerativas/patología , Enfermedades Neuroinflamatorias/patología , Neuronas/patología , Adulto , Anciano , Animales , Muerte Celular , Enfermedades Desmielinizantes/inmunología , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Meninges/inmunología , Microglía/clasificación , Microglía/inmunología , Microglía/metabolismo , Persona de Mediana Edad , Esclerosis Múltiple/inmunología , Enfermedades Neurodegenerativas/inmunología , Fenotipo , Ratas
7.
Proc Natl Acad Sci U S A ; 114(9): E1745-E1754, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28196893

RESUMEN

The small heat shock protein αB-crystallin (CRYAB) has been implicated in multiple sclerosis (MS) pathogenesis. Earlier studies have indicated that CRYAB inhibits inflammation and attenuates clinical disease when administered in the experimental autoimmune encephalomyelitis model of MS. In this study, we evaluated the role of CRYAB in primary demyelinating events. Using the cuprizone model of demyelination, a noninflammatory model that allows the analysis of glial responses in MS, we show that endogenous CRYAB expression is associated with increased severity of demyelination. Moreover, we demonstrate a strong correlation between the expression of CRYAB and the extent of reactive astrogliosis in demyelinating areas and in in vitro assays. In addition, we reveal that CRYAB is differentially phosphorylated in astrocytes in active demyelinating MS lesions, as well as in cuprizone-induced lesions, and that this phosphorylation is required for the reactive astrocyte response associated with demyelination. Furthermore, taking a proteomics approach to identify proteins that are bound by the phosphorylated forms of CRYAB in primary cultured astrocytes, we show that there is clear differential binding of protein targets due to the specific phosphorylation of CRYAB. Subsequent Ingenuity Pathway Analysis of these targets reveals implications for intracellular pathways and biological processes that could be affected by these modifications. Together, these findings demonstrate that astrocytes play a pivotal role in demyelination, making them a potential target for therapeutic intervention, and that phosphorylation of CRYAB is a key factor supporting the pathogenic response of astrocytes to oligodendrocyte injury.


Asunto(s)
Astrocitos/metabolismo , Enfermedades Desmielinizantes/metabolismo , Fosforilación/fisiología , Cadena B de alfa-Cristalina/metabolismo , Animales , Astrocitos/efectos de los fármacos , Cuprizona/farmacología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/inducido químicamente , Esclerosis Múltiple/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Fosforilación/efectos de los fármacos
8.
Glia ; 67(1): 68-77, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30453391

RESUMEN

Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system (CNS), characterized by inflammation-mediated demyelination, axonal injury and neurodegeneration. The mechanisms underlying impaired neuronal function are not fully understood, but evidence is accumulating that the presence of the gliotic scar produced by reactive astrocytes play a critical role in these detrimental processes. Here, we identified astrocytic Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7), a Ca2+ -permeable nonselective cation channel, as a novel player in the formation of a gliotic scar. TRPM7 was found to be highly expressed in reactive astrocytes within well-characterized MS lesions and upregulated in primary astrocytes under chronic inflammatory conditions. TRPM7 overexpressing astrocytes impaired neuronal outgrowth in vitro by increasing the production of chondroitin sulfate proteoglycans, a key component of the gliotic scar. These findings indicate that astrocytic TRPM7 is a critical regulator of the formation of a gliotic scar and provide a novel mechanism by which reactive astrocytes affect neuronal outgrowth.


Asunto(s)
Astrocitos/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/biosíntesis , Esclerosis Múltiple/metabolismo , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/biosíntesis , Canales Catiónicos TRPM/biosíntesis , Adulto , Anciano , Anciano de 80 o más Años , Animales , Células Cultivadas , Proteoglicanos Tipo Condroitín Sulfato/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Neuronas/patología , Proteínas Serina-Treonina Quinasas/genética , Ratas , Canales Catiónicos TRPM/genética
9.
Brain ; 141(12): 3377-3388, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30462206

RESUMEN

Increasing evidence suggests that vascular dysfunction in the brain is associated with early stages of Alzheimer's disease. Amyloid-ß deposition in the microvasculature of the brain, a process referred to as capillary cerebral amyloid angiopathy (capillary CAA), propagates vascular remodelling, which results in impaired function of the blood-brain barrier, reduced cerebral perfusion and increased hypoxia. While improving vascular function may be an attractive new way to fight capillary CAA, the underlying factors that mediate vascular alterations in Alzheimer's disease and capillary CAA pathogenesis remain largely unknown. Here we provide first evidence that angiopoietin like-4 (ANGPTL4), a hypoxia-induced factor, is highly expressed by reactive astrocytes in well characterized post-mortem tissues of patients with capillary CAA. Our in vitro studies reveal that ANGPTL4 is upregulated and secreted by human cortical astrocytes under hypoxic conditions and in turn stimulates endothelial cell migration and sprouting in a 3D spheroid model of human brain endothelial cells. Interestingly, plasma levels of ANGPTL4 are significantly increased in patients with vascular dementia compared to patients with subjective memory complaints. Overall, our data suggest that ANGPTL4 contributes to pathological vascular remodelling in capillary CAA and that detection of ANGPTL4 levels may improve current diagnostics. Ways of counteracting the detrimental effects of ANGPTL4 and thus promoting cerebral vascular function may provide novel treatment regimens to halt the progression of Alzheimer's disease.


Asunto(s)
Proteína 4 Similar a la Angiopoyetina/metabolismo , Astrocitos/metabolismo , Angiopatía Amiloide Cerebral/metabolismo , Anciano , Anciano de 80 o más Años , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Encéfalo/patología , Hipoxia de la Célula , Movimiento Celular , Células Endoteliales/metabolismo , Femenino , Humanos , Masculino , Microvasos/patología , Remodelación Vascular
10.
Mult Scler ; 24(3): 279-289, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28273782

RESUMEN

OBJECTIVE: We sought to determine the liver X receptor (LXR) ligands present in human macrophages after myelin phagocytosis and whether LXRs are activated in multiple sclerosis (MS) lesions. METHODS: We used real-time quantitative polymerase chain reaction (PCR) and immunohistochemistry to determine expression of LXRs and their response genes in human phagocytes after myelin phagocytosis and in active MS lesions. We used gas chromatographic/mass spectrometric analysis to determine LXR-activating oxysterols and cholesterol precursors present and formed in myelin and myelin-incubated cells, respectively. RESULTS: Myelin induced LXR response genes ABCA1 and ABCG1 in human monocyte-derived macrophages. In active MS lesions, we found that both gene expression and protein levels of ABCA1 and apolipoprotein E ( APOE) are upregulated in foamy phagocytes. Moreover, we found that the LXR ligand 27-hydroxycholesterol (27OHC) is significantly increased in human monocyte-derived macrophages after myelin uptake. CONCLUSION: LXR response genes are upregulated in phagocytes present in active MS lesions, indicating that LXRs are activated in actively demyelinating phagocytes. In addition, we have shown that myelin contains LXR ligands and that 27OHC is generated in human monocyte-derived macrophages after myelin processing. This suggests that LXRs in phagocytes in active MS lesions are activated at least partially by (oxy)sterols present in myelin and the generation thereof during myelin processing.


Asunto(s)
Encéfalo , Receptores X del Hígado/metabolismo , Macrófagos , Vaina de Mielina/metabolismo , Transducción de Señal , Bancos de Tejidos , Encéfalo/inmunología , Encéfalo/metabolismo , Células Cultivadas , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Esclerosis Múltiple
11.
Mult Scler ; 24(3): 290-300, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28277099

RESUMEN

BACKGROUND: Phagocytes, such as macrophages and microglia, are key effector cells in the pathophysiology of multiple sclerosis (MS). It is widely accepted that they instigate and promote neuroinflammatory and neurodegenerative events in MS. An increasing amount of studies indicate that Siglec-1, also known CD169, is a marker for activated phagocytes in inflammatory disorders. OBJECTIVE: In this study, we set out to define how CD169+ phagocytes contribute to neuroinflammation in MS. METHODS: CD169-diphtheria toxin receptor (DTR) mice, which express human DTR under control of the CD169 promoter, were used to define the impact of CD169+ cells on neuroinflammation. Flow cytometry and immunohistochemistry were utilized to determine the expression and distribution of CD169. RESULTS: We show that CD169 is highly expressed by lesional and circulating phagocytes in MS and experimental autoimmune encephalomyelitis (EAE). Our data further indicate that CD169 represents a selective marker for early activated microglia in MS and EAE lesions. Depletion of CD169+ cells markedly reduced neuroinflammation and ameliorated disease symptoms in EAE-affected mice. CONCLUSION: Our findings indicate that CD169+ cells promote neuroinflammation. Furthermore, they suggest that CD169+ phagocytes play a key role in the pathophysiology of MS. Hence, targeting CD169+ phagocytes may hold therapeutic value for MS.


Asunto(s)
Biomarcadores , Encefalomielitis Autoinmune Experimental/diagnóstico , Inflamación/diagnóstico , Esclerosis Múltiple/diagnóstico , Fagocitos , Lectina 1 Similar a Ig de Unión al Ácido Siálico , Adulto , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad
12.
Mult Scler ; 24(4): 472-480, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28294696

RESUMEN

BACKGROUND: Mitochondrial dysfunction is increasingly recognized as an important feature of multiple sclerosis (MS) pathology and may be relevant for clinical disease progression. However, it is unknown whether mitochondrial DNA (mtDNA) levels in the cerebrospinal fluid (CSF) associate with disease progression and therapeutic response. OBJECTIVES: To evaluate whether CSF concentrations of mtDNA in MS patients can serve as a marker of ongoing neuropathology and may be helpful to differentiate between MS disease subtypes. To explore the effect of disease-modifying therapies on mtDNA levels in the CSF. METHODS: CSF mtDNA was measured using a digital polymerase chain reaction (PCR) CSF mtDNA in two independent MS cohorts. The cohorts included 92 relapsing-remitting multiple sclerosis (RRMS) patients, 40 progressive multiple sclerosis (PMS) patients (27 secondary progressive and 13 primary progressive), 50 various neurologic disease controls, and 5 healthy controls. RESULTS: Patients with PMS showed a significant increase in CSF mtDNA compared to non-inflammatory neurologic disease controls. Patients with higher T2 lesion volumes and lower normalized brain volumes showed increased concentration of mtDNA. Patients treated with fingolimod had significantly lower mtDNA copy levels at follow-up compared to baseline. CONCLUSION: Our results showed a non-specific elevation of concentration of mtDNA in PMS patients. mtDNA concentrations respond to fingolimod and may be used to monitor biological effect of this treatment.


Asunto(s)
Biomarcadores/líquido cefalorraquídeo , ADN Mitocondrial/líquido cefalorraquídeo , Mitocondrias/metabolismo , Esclerosis Múltiple/tratamiento farmacológico , Adulto , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple/patología , Esclerosis Múltiple Crónica Progresiva/líquido cefalorraquídeo , Esclerosis Múltiple Recurrente-Remitente/líquido cefalorraquídeo
13.
Glia ; 65(9): 1521-1534, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28618115

RESUMEN

Demyelinated brain lesions, a hallmark of autoimmune neuroinflammatory diseases like multiple sclerosis, result from oligodendroglial cell damage. Activated microglia are considered a major source of nitric oxide and subsequent peroxynitrite-mediated damage of myelin. Here, we provide biochemical and biophysical evidence that the oxidoreductase glutaredoxin 2 inhibits peroxynitrite formation by transforming nitric oxide into dinitrosyl-diglutathionyl-iron-complexes. Glutaredoxin 2 levels influence both survival rates of primary oligodendrocyte progenitor cells and preservation of myelin structure in cerebellar organotypic slice cultures challenged with activated microglia or nitric oxide donors. Of note, glutaredoxin 2-mediated protection is not linked to its enzymatic activity as oxidoreductase, but to the disassembly of its uniquely coordinated iron-sulfur cluster using glutathione as non-protein ligand. The protective effect of glutaredoxin 2 is connected to decreased protein carbonylation and nitration. In line, brain lesions of mice suffering from experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, show decreased glutaredoxin 2 expression and increased nitrotyrosine formation indicating that this type of protection is missing in the inflamed central nervous system. Our findings link inorganic biochemistry to neuroinflammation and identify glutaredoxin 2 as a protective factor against neuroinflammation-mediated myelin damage. Thus, improved availability of glutathione-coordinated iron-sulfur clusters emerges as a potential therapeutic approach in inflammatory demyelination.


Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , Glutarredoxinas/metabolismo , Microglía/metabolismo , Óxido Nítrico/metabolismo , Oligodendroglía/metabolismo , Animales , Cerebelo/metabolismo , Cerebelo/patología , Encefalomielitis Autoinmune Experimental/patología , Escherichia coli , Femenino , Glutarredoxinas/genética , Glutatión Transferasa/metabolismo , Células HeLa , Humanos , Inflamación/metabolismo , Inflamación/patología , Ratones Endogámicos C57BL , Microglía/patología , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Neuroprotección/fisiología , Oligodendroglía/patología , Ácido Peroxinitroso/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Schistosoma japonicum , Técnicas de Cultivo de Tejidos
14.
J Neuroinflammation ; 14(1): 259, 2017 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-29273052

RESUMEN

BACKGROUND: Microglia are major players in the pathogenesis of multiple sclerosis (MS) and may play a dual role in disease progression. The activation status of microglia in vivo is highly dynamic and occurs as a continuum, with the pro-inflammatory and anti-inflammatory phenotypes on either end of this spectrum. Little is known about in vivo dynamics of microglia phenotypes in MS due to the lack of diagnostic tools. Positron emission tomography (PET) imaging is a powerful non-invasive technique that allows real-time imaging of microglia activation phenotypes in the central nervous system, depending on the availability of selective PET tracers. Our objective is to investigate and characterize the expression of the purinergic receptors P2Y12R and P2X7R as potential targets for PET tracer development and subsequent PET imaging in order to evaluate the dynamics of microglia status in vivo. METHODS: We used immunohistochemical analysis to explore the expression of P2Y12R and P2X7R in experimental autoimmune encephalomyelitis (EAE) post-mortem tissues and different stages of well-characterized MS lesions. We evaluated by quantitative real-time polymerase chain reaction the expression of P2Y12R and P2X7R in human polarized microglia, and we performed autoradiography binding assay with radiolabeled P2Y12R and P2X7R antagonists using MS and rat EAE tissues. RESULTS: Here, we demonstrate that P2X7R is associated with a pro-inflammatory phenotype of human microglia in vitro, and is highly expressed in microglia in MS lesions as well as during the peak of EAE. In contrast, P2Y12R was associated with an anti-inflammatory phenotype in human microglia in vitro and was expressed at lower levels in active inflammatory MS lesions compared to normal-appearing white matter (NAWM) and similarly in EAE, while its expression increased in the remission phase of EAE. Binding of radiolabeled tracers specific for P2Y12R and P2X7R on ex vivo tissues validated the value of these receptors as PET imaging targets for microglia phenotypes in vivo. CONCLUSION: Our results suggest that P2Y12R and P2X7R are excellent targets for PET imaging to discriminate distinct microglia phenotypes in MS. Ultimately, this may provide insight into the role of microglia in disease progression and monitor novel treatment strategies to alter microglia phenotype.


Asunto(s)
Microglía/metabolismo , Esclerosis Múltiple/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Animales , Encefalomielitis Autoinmune Experimental/diagnóstico por imagen , Encefalomielitis Autoinmune Experimental/metabolismo , Humanos , Inmunohistoquímica , Masculino , Ratones , Esclerosis Múltiple/diagnóstico por imagen , Tomografía de Emisión de Positrones , Ratas
15.
J Immunol ; 195(12): 5762-9, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26566674

RESUMEN

The proneurotrophin receptor sortilin is a protein with dual functions, being involved in intracellular protein transport, as well as cellular signal transduction. The relevance of the receptor for various neuronal disorders, such as dementia, seizures, and brain injury, is well established. In contrast, little is known about the role of sortilin in immune cells and inflammatory diseases. The aim of our study was to elucidate the distribution of sortilin in different immune cell types in mice and humans and to analyze its function in autoimmune CNS inflammation. Sortilin was expressed most profoundly in murine and human macrophages and dendritic cells and to a much lesser extent in B and T cells. In dendritic cells, sortilin had an impact on Ag processing. Accordingly, sortilin was highly expressed by infiltrated perivascular myeloid cells, mainly in vessel cuffs, in the CNS of patients suffering from multiple sclerosis, the most common inflammatory autoimmune disease of the CNS. Yet, sortilin gene-targeted mice (Sort1(-/-)) and chimeras deficient in sortilin in the immune system were as susceptible as wild-type littermates to T cell-dependent experimental autoimmune encephalomyelitis. Considering our results and recent data from other investigators, we conclude that the proneurotrophin receptor sortilin plays a role in innate, rather than in adaptive, immune processes and, thus, not in autoimmune neuroinflammation.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Lesiones Encefálicas/inmunología , Células Dendríticas/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Macrófagos/inmunología , Esclerosis Múltiple/inmunología , Linfocitos T/inmunología , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Presentación de Antígeno/genética , Autoinmunidad/genética , Sistema Nervioso Central/inmunología , Humanos , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Inflamación Neurogénica , Transducción de Señal
16.
J Immunol ; 194(5): 2099-109, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25617471

RESUMEN

CD4(+)CD28(-) T cells arise through repeated antigenic stimulation and are present in diseased tissues of patients with various autoimmune disorders, including multiple sclerosis (MS). These cells are believed to have cytotoxic properties that contribute to the pathogenic damaging of the target organ. Endogenous cues that are increased in the diseased tissue may amplify the activity of CD4(+)CD28(-) T cells. In this study, we focused on IL-15, a cytotoxicity-promoting cytokine that is increased in the serum and cerebrospinal fluid of MS patients. Using immunohistochemistry, we demonstrate that IL-15 is mainly produced by astrocytes and infiltrating macrophages in inflammatory lesions of MS patients. Moreover, in vitro transmigration studies reveal that IL-15 selectively attracts CD4(+)CD28(-) T cells of MS patients, but not of healthy individuals. IL-15 further induces the expression of chemokine receptors and adhesion molecules on CD4(+)CD28(-) T cells, as investigated using flow cytometry, resulting in enhanced migration over a monolayer of human brain endothelial cells. Finally, flow cytometric analyses revealed that IL-15 increases the proliferation and production of GM-CSF, expression of cytotoxic molecules (NKG2D, perforin, and granzyme B), and degranulation capacity of CD4(+)CD28(-) T cells. Taken together, these findings indicate that increased peripheral and local levels of IL-15 amplify the pathogenic potential of CD4(+)CD28(-) T cells, thus contributing to tissue damage in MS brain lesions.


Asunto(s)
Encéfalo/inmunología , Antígenos CD28/inmunología , Antígenos CD4/inmunología , Interleucina-15/farmacología , Esclerosis Múltiple/inmunología , Linfocitos T Citotóxicos/inmunología , Adulto , Anciano , Astrocitos/efectos de los fármacos , Astrocitos/inmunología , Astrocitos/patología , Encéfalo/patología , Antígenos CD28/genética , Antígenos CD4/genética , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Estudios de Casos y Controles , Quimiotaxis de Leucocito , Células Endoteliales/efectos de los fármacos , Células Endoteliales/inmunología , Células Endoteliales/patología , Femenino , Regulación de la Expresión Génica , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Granzimas/genética , Granzimas/inmunología , Humanos , Interleucina-15/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/patología , Persona de Mediana Edad , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Perforina/genética , Perforina/inmunología , Cultivo Primario de Células , Transducción de Señal , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/patología , Migración Transendotelial y Transepitelial
17.
Clin Immunol ; 173: 124-132, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27717695

RESUMEN

Antibody-independent B cell functions play an important role in multiple sclerosis (MS) pathogenesis. In this study, B cell antigen presentation and costimulation in MS were studied. Peripheral blood B cells of MS patients showed increased expression of costimulatory CD86 and CD80 molecules compared with healthy controls (HC). In MS cerebrospinal fluid (CSF), 12-fold and 2-fold increases in CD86+ and CD80+ B cells, respectively, were evidenced compared with peripheral blood. Further, B cells from MS patients induced proinflammatory T cells in response to myelin basic protein (MBP). Immunomodulatory treatment restored B cell costimulatory molecule expression and caused significantly reduced B cell induced T cell responses. Together, these results demonstrate the potential of B cells from MS patients to induce autoreactive proinflammatory T cell responses. Immunomodulatory therapy abrogated this effect, emphasizing the importance of B cell antigen presentation and costimulation in MS pathology.


Asunto(s)
Linfocitos B/inmunología , Esclerosis Múltiple/inmunología , Linfocitos T/inmunología , Adulto , Antígeno B7-1/inmunología , Antígeno B7-2/inmunología , Citocinas/inmunología , Femenino , Antígenos HLA/sangre , Antígenos HLA/líquido cefalorraquídeo , Antígenos HLA/inmunología , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/sangre , Esclerosis Múltiple/líquido cefalorraquídeo , Adulto Joven
18.
Acta Neuropathol ; 132(5): 703-720, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27544757

RESUMEN

In multiple sclerosis (MS), the immune cell attack leads to axonal injury as a major cause for neurological disability. Here, we report a novel role of the cell adhesion molecule L1 in the crosstalk between the immune and nervous systems. L1 was found to be expressed by CNS axons of MS patients and human T cells. In MOG35-55-induced murine experimental neuroinflammation, CD4+ T cells were associated with degenerating axons in the spinal cord, both expressing L1. However, neuronal L1 expression in the spinal cord was reduced, while levels of the transcriptional repressor REST (RE1-Silencing Transcription Factor) were up-regulated. In PLP139-151-induced relapsing-remitting neuroinflammation, L1 expression was low at the peak stage of disease, reached almost normal levels in the remission stage, but decreased again during disease relapse indicating adaptive expression regulation of L1. In vitro, activated CD4+ T cells caused contact-dependent down-regulation of L1, up-regulation of its repressor REST and axonal injury in co-cultured neurons. T cell adhesion to neurons and axonal injury were prevented by an antibody blocking L1 suggesting that down-regulation of L1 ameliorates neuroinflammation. In support of this hypothesis, antibody-mediated blocking of L1 in C57BL/6 mice as well as neuron-specific depletion of L1 in synapsinCre × L1fl/fl mice reduces disease severity and axonal pathology despite unchanged immune cell infiltration of the CNS. Our data suggest that down-regulation of neuronal L1 expression is an adaptive process of neuronal self-defense in response to pro-inflammatory T cells, thereby alleviating immune-mediated axonal injury.


Asunto(s)
Regulación hacia Abajo/fisiología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Neuronas/metabolismo , Linfocitos T/fisiología , Anciano , Animales , Axones/efectos de los fármacos , Axones/patología , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/inducido químicamente , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Proteína Proteolipídica de la Mielina/farmacología , Glicoproteína Mielina-Oligodendrócito/farmacología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/genética , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Sinapsinas/genética , Sinapsinas/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/patología
19.
Microvasc Res ; 105: 61-9, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26679389

RESUMEN

BACKGROUND: Reactive oxygen species play a key role in the pathogenesis of multiple sclerosis as they induce blood-brain barrier disruption and enhance transendothelial leukocyte migration. Thus, therapeutic compounds with antioxidant and anti-inflammatory potential could have clinical value in multiple sclerosis. The aim of the current study was to elucidate the therapeutic effects of monomethyl fumarate on inflammatory-mediated changes in blood-brain barrier function and gain insight into the underlying mechanism. METHODS: The effects of monomethyl fumarate on monocyte transendothelial migration across and adhesion to inflamed human brain endothelial cells (hCMEC/D3) were quantified using standardized in vitro migration and adhesion assays. Flow cytometry analysis and qPCR were used to measure the concomitant effects of monomethyl fumarate treatment on protein expression of cell adhesion molecules. Furthermore, the effects of monomethyl fumarate on the expression and nuclear localization of proteins involved in the activation of antioxidant and inflammatory pathways in human brain endothelial cells were elucidated using nuclear fractionation and Western blotting. Statistical analysis was performed using one-way ANOVA followed by the Bonferroni post-hoc test. RESULTS: Our results show that monomethyl fumarate induced nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 and concomitant production of the antioxidant enzymes heme oxygenase-1 and NADPH:quinone oxidoreductase-1 in brain endothelial cells. Importantly, monomethyl fumarate treatment markedly decreased monocyte transendothelial migration across and adhesion to inflamed human brain endothelial cells. Treatment of brain endothelial cells with monomethyl fumarate resulted in a striking reduction of vascular cell adhesion molecule expression. Surprisingly, monomethyl fumarate did not affect nuclear translocation of nuclear factor-кB suggesting that monomethyl fumarate potentially affects activity of nuclear factor-ĸB downstream of nuclear translocation. CONCLUSIONS: Taken together, we show that monomethyl fumarate, the primary metabolite of dimethyl fumarate, which is currently used in the clinics for the treatment of relapsing-remitting multiple sclerosis, demonstrates beneficial therapeutic effects at the inflamed blood-brain barrier.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Fumaratos/farmacología , Leucocitos/efectos de los fármacos , Maleatos/farmacología , Esclerosis Múltiple/tratamiento farmacológico , Migración Transendotelial y Transepitelial/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Adhesión Celular/efectos de los fármacos , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Citoprotección , Células Endoteliales/metabolismo , Células Endoteliales/patología , Hemo-Oxigenasa 1/metabolismo , Humanos , Leucocitos/metabolismo , Leucocitos/patología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo
20.
J Immunol ; 193(5): 2147-56, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25086173

RESUMEN

We have previously identified eight novel autoantibody targets in the cerebrospinal fluid of multiple sclerosis (MS) patients, including sperm-associated Ag 16 (SPAG16). In the current study, we further investigated the autoantibody response against SPAG16-a protein with unknown function in the CNS-and its expression in MS pathology. Using isoelectric focusing, we detected SPAG16-specific oligoclonal bands in the cerebrospinal fluid of 5 of 23 MS patients (22%). Analysis of the anti-SPAG16 Ab reactivity in the plasma of a total of 531 donors using ELISA demonstrated significantly elevated anti-SPAG16 Ab levels (p = 0.002) in 32 of 153 MS patients (21%) compared with all other control groups with 95% specificity for the disease. To investigate the pathologic relevance of anti-SPAG16 Abs in vivo, anti-SPAG16 Abs were injected in mice with experimental autoimmune encephalomyelitis, resulting in a significant disease exacerbation. Finally, we demonstrated a consistent upregulation of SPAG16 in MS brain and experimental autoimmune encephalomyelitis spinal cord lesions, more specifically in reactive astrocytes. We conclude that SPAG16 is a novel autoantibody target in a subgroup of MS patients and in combination with other diagnostic criteria, elevated levels of anti-SPAG16 Abs could be used as a biomarker for diagnosis. Furthermore, the pathologic relevance of anti-SPAG16 Abs was shown in vivo.


Asunto(s)
Especificidad de Anticuerpos , Autoanticuerpos/inmunología , Proteínas Asociadas a Microtúbulos/inmunología , Esclerosis Múltiple/inmunología , Adulto , Animales , Autoanticuerpos/sangre , Biomarcadores/sangre , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Encefalomielitis Autoinmune Experimental/sangre , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Focalización Isoeléctrica , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/sangre , Persona de Mediana Edad , Esclerosis Múltiple/sangre , Esclerosis Múltiple/diagnóstico , Esclerosis Múltiple/patología , Regulación hacia Arriba/inmunología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda