Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Glycobiology ; 34(7)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38785323

RESUMEN

Aberrant glycosylation is a key mechanism employed by cancer cells to evade immune surveillance, induce angiogenesis and metastasis, among other hallmarks of cancer. Sialic acids, distinctive terminal glycan structures located on glycoproteins or glycolipids, are prominently upregulated across various tumor types, including colorectal cancer (CRC). Sialylated glycans modulate anti-tumor immune responses through their interactions with Siglecs, a family of glycan-binding receptors with specificity for sialic acid-containing glycoconjugates, often resulting in immunosuppression. In this paper, we investigated the immunomodulatory function of ST3Gal5, a sialyltransferase that catalyzes the addition of α2-3 sialic acids to glycosphingolipids, since lower expression of ST3Gal5 is associated with better survival of CRC patients. We employed CRISPR/Cas9 to knock out the ST3Gal5 gene in two murine CRC cell lines MC38 and CT26. Glycomics analysis confirmed the removal of sialic acids on glycolipids, with no discernible impact on glycoprotein sialylation. Although knocking out ST3Gal5 in both cell lines did not affect in vivo tumor growth, we observed enhanced levels of regulatory T cells in CT26 tumors lacking ST3Gal5. Moreover, we demonstrate that the absence of ST3Gal5 affected size and blood vessel density only in MC38 tumors. In summary, we ascertain that sialylation of glycosphingolipids has a limited influence on the anti-tumor immune response in CRC, despite detecting alterations in the tumor microenvironment, possibly due to a shift in ganglioside abundance.


Asunto(s)
Neoplasias Colorrectales , Gangliósidos , Sialiltransferasas , Sialiltransferasas/metabolismo , Sialiltransferasas/genética , Gangliósidos/metabolismo , Gangliósidos/inmunología , Animales , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Ratones , Línea Celular Tumoral , Humanos , beta-Galactosida alfa-2,3-Sialiltransferasa
2.
Cancer Metastasis Rev ; 42(3): 941-958, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37266839

RESUMEN

Gangliosides are sialylated glycolipids, mainly present at the cell surface membrane, involved in a variety of cellular signaling events. During malignant transformation, the composition of these glycosphingolipids is altered, leading to structural and functional changes, which are often negatively correlated to patient survival. Cancer cells have the ability to shed gangliosides into the tumor microenvironment, where they have a strong impact on anti-tumor immunity and promote tumor progression. Since most ganglioside species show prominent immunosuppressive activities, they might be considered checkpoint molecules released to counteract ongoing immunosurveillance. In this review, we highlight the current state-of-the-art on the ganglioside-mediated immunomodulation, specified for the different immune cells and individual gangliosides. In addition, we address the dual role that certain gangliosides play in the tumor microenvironment. Even though some ganglioside species have been more extensively studied than others, they are proven to contribute to the defense mechanisms of the tumor and should be regarded as promising therapeutic targets for inclusion in future immunotherapy regimens.


Asunto(s)
Gangliósidos , Neoplasias , Humanos , Gangliósidos/metabolismo , Microambiente Tumoral , Neoplasias/metabolismo , Glucolípidos , Glicoesfingolípidos
3.
J Am Chem Soc ; 145(24): 13027-13037, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37279388

RESUMEN

Mucin expression and glycosylation patterns on cancer cells differ markedly from healthy cells. Mucin 1 (MUC1) is overexpressed in several solid tumors and presents high levels of aberrant, truncated O-glycans (e.g., Tn antigen). Dendritic cells (DCs) express lectins that bind to these tumor-associated carbohydrate antigens (TACAs) to modulate immune responses. Selectively targeting these receptors with synthetic TACAs is a promising strategy to develop anticancer vaccines and to overcome TACA tolerance. In this work, we prepared, via a solid phase peptide synthesis approach, a modular tripartite vaccine candidate, incorporating a high-affinity glycocluster based on a tetraphenylethylene scaffold, to target the macrophage galactose-type lectin (MGL) on antigen presenting cells. MGL is a C-type lectin receptor that binds Tn antigens and can route them to human leukocyte antigen class II or I, making it an attractive target for anticancer vaccines. Conjugation of the glycocluster to a library of MUC1 glycopeptides bearing the Tn antigen is shown to promote uptake and recognition of the TACA by DCs via MGL. In vivo testing revealed that immunization with the newly designed vaccine construct bearing the GalNAc glycocluster induced a higher titer of anti-Tn-MUC1 antibodies compared to the TACAs alone. Additionally, the antibodies obtained bind a library of tumor-associated saccharide structures on MUC1 and MUC1-positive breast cancer cells. Conjugation of a high-affinity ligand for MGL to tumor-associated MUC1 glycopeptide antigens has a synergistic impact on antibody production.


Asunto(s)
Mucina-1 , Vacunas , Humanos , Mucina-1/química , Galactosa/metabolismo , Glicopéptidos/química , Antígenos de Carbohidratos Asociados a Tumores/química , Lectinas Tipo C/metabolismo , Células Dendríticas , Macrófagos/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(7): 3693-3703, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32019882

RESUMEN

Glioblastoma is the most aggressive brain malignancy, for which immunotherapy has failed to prolong survival. Glioblastoma-associated immune infiltrates are dominated by tumor-associated macrophages and microglia (TAMs), which are key mediators of immune suppression and resistance to immunotherapy. We and others demonstrated aberrant expression of glycans in different cancer types. These tumor-associated glycans trigger inhibitory signaling in TAMs through glycan-binding receptors. We investigated the glioblastoma glycocalyx as a tumor-intrinsic immune suppressor. We detected increased expression of both tumor-associated truncated O-linked glycans and their receptor, macrophage galactose-type lectin (MGL), on CD163+ TAMs in glioblastoma patient-derived tumor tissues. In an immunocompetent orthotopic glioma mouse model overexpressing truncated O-linked glycans (MGL ligands), high-dimensional mass cytometry revealed a wide heterogeneity of infiltrating myeloid cells with increased infiltration of PD-L1+ TAMs as well as distant alterations in the bone marrow (BM). Our results demonstrate that glioblastomas exploit cell surface O-linked glycans for local and distant immune modulation.


Asunto(s)
Asialoglicoproteínas/inmunología , Glioblastoma/inmunología , Lectinas Tipo C/inmunología , Proteínas de la Membrana/inmunología , Animales , Antígenos CD/genética , Antígenos CD/inmunología , Antígenos de Diferenciación Mielomonocítica/genética , Antígenos de Diferenciación Mielomonocítica/inmunología , Asialoglicoproteínas/química , Asialoglicoproteínas/genética , Glioblastoma/genética , Humanos , Lectinas Tipo C/química , Lectinas Tipo C/genética , Macrófagos/inmunología , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Microglía/inmunología , Polisacáridos/química , Polisacáridos/inmunología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/inmunología
5.
Int J Mol Sci ; 23(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36233358

RESUMEN

Lung cancer is the first leading cause of cancer-related deaths in the world. Aberrant glycosylation in lung tumors leads to the expression of tumor-associated carbohydrate structures, such as the Tn antigen, consisting of N-acetyl-galactosamine (GalNAc) linked to a serine or threonine residue in proteins (α-GalNAc-O-Ser/Thr). The Tn antigen can be recognized by the Macrophage Galactose/GalNAc lectin (MGL), which mediates various immune regulatory and tolerogenic functions, mainly by reprogramming the maturation of function of dendritic cells (DCs). In this work, we generated two different Tn-expressing variants from the Lewis-type lung murine cancer cell line LL/2, which showed different alterations in the O-glycosylation pathways that influenced the interaction with mouse MGL2 and the immunomodulatory properties of DCs. Thus, the identification of the biological programs triggered by Tn+ cancer cells might contribute to an improved understanding of the molecular mechanisms elicited by MGL-dependent immune regulatory circuits.


Asunto(s)
Galactosa , Neoplasias Pulmonares , Animales , Antígenos de Carbohidratos Asociados a Tumores/química , Galactosamina , Lectinas , Pulmón/metabolismo , Neoplasias Pulmonares/genética , Ratones , Serina , Treonina
6.
J Biol Chem ; 294(4): 1300-1311, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30504228

RESUMEN

The human macrophage galactose-type lectin (MGL) is a C-type lectin characterized by a unique specificity for terminal GalNAc residues present in the tumor-associated Tn antigen (αGalNAc-Ser/Thr) and its sialylated form, the sialyl-Tn antigen. However, human MGL has multiple splice variants, and whether these variants have distinct ligand-binding properties is unknown. Here, using glycan microarrays, we compared the binding properties of the short MGL 6C (MGLshort) and the long MGL 6B (MGLlong) splice variants, as well as of a histidine-to-threonine mutant (MGLshort H259T). Although the MGLshort and MGLlong variants displayed similar binding properties on the glycan array, the MGLshort H259T mutant failed to interact with the sialyl-Tn epitope. As the MGLshort H259T variant could still bind a single GalNAc monosaccharide on this array, we next investigated its binding characteristics to Tn-containing glycopeptides derived from the MGL ligands mucin 1 (MUC1), MUC2, and CD45. Strikingly, in the glycopeptide microarray, the MGLshort H259T variant lost high-affinity binding toward Tn-containing glycopeptides, especially at low probing concentrations. Moreover, MGLshort H259T was unable to recognize cancer-associated Tn epitopes on tumor cell lines. Molecular dynamics simulations indicated that in WT MGLshort, His259 mediates H bonds directly or engages the Tn-glycopeptide backbone through water molecules. These bonds were lost in MGLshort H259T, thus explaining its lower binding affinity. Together, our results suggest that MGL not only connects to the Tn carbohydrate epitope, but also engages the underlying peptide via a secondary binding pocket within the MGL carbohydrate recognition domain containing the His259 residue.


Asunto(s)
Neoplasias del Colon/metabolismo , Glicopéptidos/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Neoplasias del Colon/patología , Epítopos , Humanos , Ligandos , Análisis por Micromatrices , Unión Proteica , Conformación Proteica , Dominios Proteicos , Homología de Secuencia , Células Tumorales Cultivadas
7.
Int J Mol Sci ; 21(15)2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32752259

RESUMEN

Colorectal cancer (CRC) is the second-leading cause of cancer death worldwide due in part to a high proportion of patients diagnosed at advanced stages of the disease. For this reason, many efforts have been made towards new approaches for early detection and prognosis. Cancer-associated aberrant glycosylation, especially the Tn and STn antigens, can be detected using the macrophage galactose-type C-type lectin (MGL/CLEC10A/CD301), which has been shown to be a promising tool for CRC prognosis. We had recently identified the major MGL-binding glycoproteins in two high-MGL-binding CRC cells lines, HCT116 and HT29. However, we failed to detect the presence of O-linked Tn and STn glycans on most CRC glycoproteins recognized by MGL. We therefore investigated here the impact of N-linked and O-linked glycans carried by these proteins for the binding to MGL. In addition, we performed quantitative proteomics to study the major differences in proteins involved in glycosylation in these cells. Our results showed that N-glycans have a significant, previously underestimated, importance in MGL binding to CRC cell lines. Finally, we highlighted both common and cell-specific processes associated with a high-MGL-binding phenotype, such as differential levels of enzymes involved in protein glycosylation, and a transcriptional factor (CDX-2) involved in their regulation.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Glicoproteínas/metabolismo , Lectinas Tipo C/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Western Blotting , Factor de Transcripción CDX2/metabolismo , Cromatografía Líquida de Alta Presión , Neoplasias Colorrectales/patología , Glicosilación , Células HCT116 , Células HT29 , Humanos , Polisacáridos/metabolismo , Unión Proteica , Espectrometría de Masas en Tándem
8.
J Proteome Res ; 18(3): 1125-1132, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30582698

RESUMEN

C-type lectins are a diverse group of proteins involved in many human physiological and pathological processes. Most C-type lectins are glycan-binding proteins, some of which are pivotal for innate immune responses against pathogens. Other C-type lectins, such as the macrophage galactose-type lectin (MGL), have been shown to induce immunosuppressive responses upon the recognition of aberrant glycosylation on cancer cells. MGL is known to recognize terminal N-acetylgalactosamine (GalNAc), such as the Tn antigen, which is commonly found on malignant cells. Even though this glycan specificity of MGL is well described, there is a lack of understanding of the actual glycoproteins that bind MGL. We present a glycoproteomic workflow for the identification of MGL-binding proteins, which we applied to study MGL ligands on the human Jurkat leukemia cell line. In addition to the known MGL ligands and Tn antigen-carrying proteins CD43 and CD45 on these cells, we have identified a set of novel cell-surface ligands for MGL. Importantly, for several of these, O-glycosylation has hitherto not been described. Altogether, our data provide new insight into the identification and structure of novel MGL ligands that presumably act as modulatory molecules in cancer immune responses.


Asunto(s)
Glicoproteínas/genética , Lectinas Tipo C/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Acetilgalactosamina/genética , Acetilgalactosamina/metabolismo , Antígenos de Carbohidratos Asociados a Tumores/genética , Antígenos de Carbohidratos Asociados a Tumores/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Glicoproteínas/inmunología , Glicosilación , Humanos , Inmunidad Innata/genética , Células Jurkat , Lectinas Tipo C/inmunología , Antígenos Comunes de Leucocito/genética , Leucosialina/genética , Ligandos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología
9.
Glycobiology ; 29(2): 137-150, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30476078

RESUMEN

Aberrant fucosylation in cancer cells is considered as a signature of malignant cell transformation and it is associated with tumor progression, metastasis and resistance to chemotherapy. Specifically, in colorectal cancer cells, increased levels of the fucosylated Lewisx antigen are attributed to the deregulated expression of pertinent fucosyltransferases, like fucosyltransferase 4 (FUT4) and fucosyltransferase 9 (FUT9). However, the lack of experimental models closely mimicking cancer-specific regulation of fucosyltransferase gene expression has, so far, limited our knowledge regarding the substrate specificity of these enzymes and the impact of Lewisx synthesis on the glycome of colorectal cancer cells. Therefore, we sought to transcriptionally activate the Fut4 and Fut9 genes in the well-known murine colorectal cancer cell line, MC38, which lacks expression of the FUT4 and FUT9 enzymes. For this purpose, we utilized a physiologically relevant, guide RNA-based model of de novo gene expression, namely the CRISPR-dCas9-VPR system. Induction of the Fut4 and Fut9 genes in MC38 cells using CRISPR-dCas9-VPR resulted in specific neo-expression of functional Lewisx antigen on the cell surface. Interestingly, Lewisx was mainly carried by N-linked glycans in both MC38-FUT4 and MC38-FUT9 cells, despite pronounced differences in the biosynthetic properties and the expression stability of the induced enzymes. Moreover, Lewisx expression was found to influence core-fucosylation, sialylation, antennarity and the subtypes of N-glycans in the MC38-glycovariants. In conclusion, exploiting the CRISPR-dCas9-VPR system to augment glycosyltransferase expression is a promising method of transcriptional gene activation with broad application possibilities in glycobiology and oncology research.


Asunto(s)
Sistemas CRISPR-Cas/genética , Neoplasias Colorrectales/genética , Fucosiltransferasas/genética , Polisacáridos/genética , Activación Transcripcional , Animales , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Fucosiltransferasas/metabolismo , Ratones , Polisacáridos/metabolismo , Células Tumorales Cultivadas
10.
Int J Cancer ; 144(9): 2290-2302, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30578646

RESUMEN

Sialylated glycan structures are known for their immunomodulatory capacities and their contribution to tumor immune evasion. However, the role of aberrant sialylation in colorectal cancer and the consequences of complete tumor desialylation on anti-tumor immunity remain unstudied. Here, we report that CRISPR/Cas9-mediated knock out of the CMAS gene, encoding a key enzyme in the sialylation pathway, in the mouse colorectal cancer MC38 cell line completely abrogated cell surface expression of sialic acids (MC38-Sianull ) and, unexpectedly, significantly increased in vivo tumor growth compared to the control MC38-MOCK cells. This enhanced tumor growth of MC38-Sianull cells could be attributed to decreased CD8+ T cell frequencies in the tumor microenvironment only, as immune cell frequencies in tumor-draining lymph nodes remained unaffected. In addition, MC38-Sianull cells were able to induce CD8+ T cell apoptosis in an antigen-independent manner. Moreover, low CMAS gene expression correlated with reduced recurrence-free survival in a human colorectal cancer cohort, supporting the clinical relevance of our work. Together, these results demonstrate for the first time a detrimental effect of complete tumor desialylation on colorectal cancer tumor growth, which greatly impacts the design of novel cancer therapeutics aimed at altering the tumor glycosylation profile.


Asunto(s)
Apoptosis/inmunología , Linfocitos T CD8-positivos/inmunología , Neoplasias Colorrectales/patología , N-Acilneuraminato Citidililtransferasa/genética , Ácidos Siálicos/metabolismo , Escape del Tumor/inmunología , Animales , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Supervivencia sin Enfermedad , Glicosilación , Humanos , Recuento de Linfocitos , Ratones , Ratones Endogámicos C57BL , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
11.
J Neuroinflammation ; 16(1): 130, 2019 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-31248427

RESUMEN

BACKGROUND: Multiple sclerosis (MS) involves a misdirected immune attack against myelin in the brain and spinal cord, leading to profound neuroinflammation and neurodegeneration. While the mechanisms of disease pathogenesis have been widely studied, the suppression mechanisms that lead to the resolution of the autoimmune response are still poorly understood. Here, we investigated the role of the C-type lectin receptor macrophage galactose-type lectin (MGL), usually expressed on tolerogenic antigen-presenting cells (APCs), as a negative regulator of autoimmune-driven neuroinflammation. METHODS: We used in silico, immunohistochemical, immunofluorescence, quantitative real-time polymerase chain reaction (qRT-PCR) and flow cytometry analysis to explore the expression and functionality of MGL in human macrophages and microglia, as well as in MS post-mortem tissue. In vitro, we studied the capacity of MGL to mediate apoptosis of experimental autoimmune encephalomyelitis (EAE)-derived T cells and mouse CD4+ T cells. Finally, we evaluated in vivo and ex vivo the immunomodulatory potential of MGL in EAE. RESULTS: MGL plays a critical role in the resolution phase of EAE as MGL1-deficient (Clec10a-/-) mice showed a similar day of onset but experienced a higher clinical score to that of WT littermates. We demonstrate that the mouse ortholog MGL1 induces apoptosis of autoreactive T cells and diminishes the expression of pro-inflammatory cytokines and inflammatory autoantibodies. Moreover, we show that MGL1 but not MGL2 induces apoptosis of activated mouse CD4+ T cells in vitro. In human settings, we show that MGL expression is increased in active MS lesions and on alternatively activated microglia and macrophages which, in turn, induces the secretion of the immunoregulatory cytokine IL-10, underscoring the clinical relevance of this lectin. CONCLUSIONS: Our results show a new role of MGL-expressing APCs as an anti-inflammatory mechanism in autoimmune neuroinflammation by dampening pathogenic T and B cell responses, uncovering a novel clue for neuroprotective therapeutic strategies with relevance for in MS clinical applications.


Asunto(s)
Asialoglicoproteínas/biosíntesis , Encefalomielitis Autoinmune Experimental/metabolismo , Lectinas Tipo C/biosíntesis , Proteínas de la Membrana/biosíntesis , Microglía/metabolismo , Animales , Células Cultivadas , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/inmunología , Ratas
12.
Chemistry ; 25(61): 13945-13955, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31404475

RESUMEN

The human macrophage galactose-type lectin (MGL), expressed on macrophages and dendritic cells (DCs), modulates distinct immune cell responses by recognizing N-acetylgalactosamine (GalNAc) containing structures present on pathogens, self-glycoproteins, and tumor cells. Herein, NMR spectroscopy and molecular dynamics (MD) simulations were used to investigate the structural preferences of MGL against different GalNAc-containing structures derived from the blood group A antigen, the Forssman antigen, and the GM2 glycolipid. NMR spectroscopic analysis of the MGL carbohydrate recognition domain (MGL-CRD, C181-H316) in the absence and presence of methyl α-GalNAc (α-MeGalNAc), a simple monosaccharide, shows that the MGL-CRD is highly dynamic and its structure is strongly altered upon ligand binding. This plasticity of the MGL-CRD structure explains the ability of MGL to accommodate different GalNAc-containing molecules. However, key differences are observed in the recognition process depending on whether the GalNAc is part of the blood group A antigen, the Forssman antigen, or GM2-derived structures. These results are in accordance with molecular dynamics simulations that suggest the existence of a distinct MGL binding mechanism depending on the context of GalNAc moiety presentation. These results afford new perspectives for the rational design of GalNAc modifications that fine tune MGL immune responses in distinct biological contexts, especially in malignancy.


Asunto(s)
Acetilgalactosamina/química , Lectinas Tipo C/metabolismo , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/metabolismo , Mapeo Epitopo , Humanos , Lectinas Tipo C/química , Lectinas Tipo C/genética , Ligandos , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
13.
Biol Chem ; 399(7): 649-659, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29894293

RESUMEN

Colorectal cancer is the third most common cancer type worldwide. It is characterized by a high expression of aberrantly glycosylated ligands, such as the Tn antigen (GalNAcα1-Ser/Thr), which is a major ligand for the C-type lectin macrophage galactose-type lectin (MGL). We have previously determined that a high level of MGL ligands in colorectal tumors is associated with lower disease-free survival in patients with late stage disease, which we could attribute to the presence of oncogenic BRAFV600E mutations. Here we aimed to elucidate the downstream pathway of BRAFV600E governing high MGL ligand and Tn antigen expression. We focused on glycosylation-related enzymes involved in the synthesis or elongation of Tn antigen, N-acetylgalactosamine-transferases (GALNTs) and C1GalT1/COSMC, respectively. Both the activity and expression of C1GalT1 and COSMC were unrelated to the BRAF mutational status. In contrast, GALNT3, GALNT7 and GALNT12 were increased in colorectal cancer cells harboring the BRAFV600E mutation. Through CRISPR-Cas9 gene knockouts we could establish that GALNT3 increased MGL ligand synthesis in the HT29 cell line, while GALNT7 and GALNT12 appeared to have redundant roles. Together our results highlight a novel mechanistic pathway connecting BRAFV600E to aberrant glycosylation in colorectal cancer through GALNT3.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Lectinas Tipo C/metabolismo , N-Acetilgalactosaminiltransferasas/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Neoplasias Colorrectales/patología , Células HT29 , Humanos , Lectinas Tipo C/genética , Ligandos , Proteínas Proto-Oncogénicas B-raf/genética , Polipéptido N-Acetilgalactosaminiltransferasa
14.
Mol Cell Proteomics ; 15(1): 124-40, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26537799

RESUMEN

Various cancers such as colorectal cancer (CRC) are associated with alterations in protein glycosylation. CRC cell lines are frequently used to study these (glyco)biological changes and their mechanisms. However, differences between CRC cell lines with regard to their glycosylation have hitherto been largely neglected. Here, we comprehensively characterized the N-glycan profiles of 25 different CRC cell lines, derived from primary tumors and metastatic sites, in order to investigate their potential as glycobiological tumor model systems and to reveal glycans associated with cell line phenotypes. We applied an optimized, high-throughput membrane-based enzymatic glycan release for small sample amounts. Released glycans were derivatized to stabilize and differentiate between α2,3- and α2,6-linked N-acetylneuraminic acids, followed by N-glycosylation analysis by MALDI-TOF(/TOF)-MS. Our results showed pronounced differences between the N-glycosylation patterns of CRC cell lines. CRC cell line profiles differed from tissue-derived N-glycan profiles with regard to their high-mannose N-glycan content but showed a large overlap for complex type N-glycans, supporting their use as a glycobiological cancer model system. Importantly, we could show that the high-mannose N-glycans did not only occur as intracellular precursors but were also present at the cell surface. The obtained CRC cell line N-glycan features were not clearly correlated with mRNA expression levels of glycosyltransferases, demonstrating the usefulness of performing the structural analysis of glycans. Finally, correlation of CRC cell line glycosylation features with cancer cell markers and phenotypes revealed an association between highly fucosylated glycans and CDX1 and/or villin mRNA expression that both correlate with cell differentiation. Together, our findings provide new insights into CRC-associated glycan changes and setting the basis for more in-depth experiments on glycan function and regulation.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Glicómica/métodos , Proteínas de Homeodominio/metabolismo , Proteínas de Microfilamentos/metabolismo , Polisacáridos/metabolismo , Células CACO-2 , Diferenciación Celular/genética , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Fucosa/metabolismo , Regulación Neoplásica de la Expresión Génica , Glicosilación , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Células HCT116 , Células HT29 , Proteínas de Homeodominio/genética , Humanos , Proteínas de Microfilamentos/genética , Análisis de Componente Principal , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem
15.
J Immunol ; 194(4): 1856-66, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25582855

RESUMEN

During secondary immune responses, Ab-opsonized bacteria are efficiently taken up via FcRs by dendritic cells. We now demonstrate that this process induces cross-talk between FcRs and TLRs, which results in synergistic release of several inflammatory cytokines, as well as altered lipid metabolite profiles. This altered inflammatory profile redirects Th1 polarization toward Th17 cell responses. Interestingly, GM-CSF-producing Th cells were synergistically evoked as well, which suggests the onset of polyfunctional Th17 cells. Synergistic cytokine release was dependent on activation via MyD88 and ITAM signaling pathways through TLRs and FcRs, respectively. Cytokine regulation occurred via transcription-dependent mechanisms for TNF-α and IL-23 and posttranscriptional mechanisms for caspase-1-dependent release of IL-1ß. Furthermore, cross-talk between TLRs and FcRs was not restricted to dendritic cells. In conclusion, our results support that bacteria alone initiate fundamentally different immune responses compared with Ab-opsonized bacteria through the combined action of two classes of receptors and, ultimately, may refine new therapies for inflammatory diseases.


Asunto(s)
Células Dendríticas/inmunología , Receptor Cross-Talk/inmunología , Receptores Fc/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Receptores Toll-Like/inmunología , Anticuerpos Antibacterianos/inmunología , Western Blotting , Diferenciación Celular/inmunología , Separación Celular , Infecciones por Enterobacteriaceae/inmunología , Ensayo de Inmunoadsorción Enzimática , Escherichia coli/inmunología , Citometría de Flujo , Humanos , Memoria Inmunológica/inmunología , Inflamación/inmunología , Activación de Linfocitos/inmunología , Fenotipo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/inmunología , Subgrupos de Linfocitos T/inmunología
16.
Am J Physiol Heart Circ Physiol ; 309(10): H1667-78, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26432845

RESUMEN

Circulating angiogenic cells (CACs) are monocyte-derived cells with endothelial characteristics, which contribute to both angiogenesis and arteriogenesis in a paracrine way. Interferon-ß (IFN-ß) is known to inhibit these divergent processes in animals and patients. We hypothesized that IFN-ß might act by affecting the differentiation and function of CACs. CACs were cultured from peripheral blood mononuclear cells and phenotypically characterized by surface expression of monocytic and endothelial markers. IFN-ß significantly reduced the number of CACs by 18-64%. Apoptosis was not induced by IFN-ß, neither in mononuclear cells during differentiation, nor after maturation to CACs. Rather, IFN-ß impaired adhesion to, and spreading on, fibronectin, which was dependent on α5ß1 (VLA-5)-integrin. IFN-ß affected the function of VLA-5 in mature CACs, leading to rounding and detachment of cells, by induction of calpain 1 activity. Cell rounding and detachment was completely reversed by inhibition of calpain 1 activity in mature CACs. During in vitro capillary formation, CAC addition and calpain 1 inhibition enhanced sprouting of endothelial cells to a comparable extent, but were not sufficient to rescue tube formation in the presence of IFN-ß. We show that the IFN-ß-induced reduction of the numbers of in vitro differentiated CACs is based on activation of calpain 1, resulting in an attenuated adhesion to extracellular matrix proteins via VLA-5. In vivo, this could lead to inhibition of vessel formation due to reduction of the locally recruited CAC numbers and their paracrine angiogenic factors.


Asunto(s)
Calpaína/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Interferón beta/farmacología , Leucocitos Mononucleares/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Apoptosis/efectos de los fármacos , Calpaína/metabolismo , Células Cultivadas , Células Endoteliales/metabolismo , Fibronectinas , Humanos , Técnicas In Vitro , Integrina alfa5beta1/efectos de los fármacos , Integrina alfa5beta1/metabolismo , Leucocitos Mononucleares/metabolismo , Neovascularización Fisiológica/fisiología
17.
Dig Dis ; 33(3): 397-407, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26045275

RESUMEN

BACKGROUND: Destruction of cholangiocytes is the hallmark of chronic cholangiopathies such as primary biliary cirrhosis. Under physiologic conditions, cholangiocytes display a striking resistance to the high, millimolar concentrations of toxic bile salts present in bile. We recently showed that a 'biliary HCO3(-) umbrella', i.e. apical cholangiocellular HCO3(-) secretion, prevents cholangiotoxicity of bile acids, and speculated on a role for extracellular membrane-bound glycans in the stabilization of this protective layer. This paper summarizes published and thus far unpublished evidence supporting the role of the glycocalyx in stabilizing the 'biliary HCO3(-) umbrella' and thus preventing cholangiotoxicity of bile acids. KEY MESSAGES: The apical glycocalyx of a human cholangiocyte cell line and mouse liver sections were visualized by electron microscopy. FACS analysis was used to characterize the surface glycan profile of cultured human cholangiocytes. Using enzymatic digestion with neuraminidase the cholangiocyte glycocalyx was desialylated to test its protective function. Using lectin assays, we demonstrated that the main N-glycans in human and mouse cholangiocytes were sialylated biantennary structures, accompanied by high expression of the H-antigen (α1-2 fucose). Apical neuraminidase treatment induced desialylation without affecting cell viability, but lowered cholangiocellular resistance to bile acid-induced toxicity: both glycochenodeoxycholate and chenodeoxycholate (pKa ≥4), but not taurochenodeoxycholate (pKa <2), displayed cholangiotoxic effects after desialylation. A 24-hour reconstitution period allowed cholangiocytes to recover to a pretreatment bile salt susceptibility pattern. CONCLUSION: Experimental evidence indicates that an apical cholangiocyte glycocalyx with glycosylated mucins and other glycan-bearing membrane glycoproteins stabilizes the 'biliary HCO3(-) umbrella', thus aiding in the protection of human cholangiocytes against bile acid toxicity.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Glicocálix/metabolismo , Bicarbonato de Sodio/metabolismo , Animales , Conductos Biliares/citología , Supervivencia Celular , Células Cultivadas , Células Epiteliales/metabolismo , Glicocálix/efectos de los fármacos , Humanos , Glicoproteínas de Membrana/metabolismo , Mucinas/metabolismo , Neuraminidasa/farmacología
18.
J Biol Chem ; 288(38): 27519-27532, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-23918927

RESUMEN

The C-type lectin macrophage galactose-type lectin (MGL) exerts an immunosuppressive role reflected by its interaction with terminal GalNAc moieties, such as the Tn antigen, on CD45 of effector T cells, thereby down-regulating T cell receptor signaling, cytokine responses, and induction of T cell death. Here, we provide evidence for the pathways that control the specific expression of GalNAc moieties on human CD4(+) T cells. GalNAc epitopes were readily detectable on the cell surface after T cell activation and required de novo protein synthesis. Expression of GalNAc-containing MGL ligands was completely dependent on PKC and did not involve NF-κB. Instead, activation of the downstream ERK MAPK pathway led to decreased mRNA levels and activity of the core 1 ß3GalT enzyme and its chaperone Cosmc, favoring the expression of Tn antigen. In conclusion, expression of GalNAc moieties mirrors the T cell activation status, and thus only highly stimulated T cells are prone to the suppressive action of MGL.


Asunto(s)
Antígenos de Carbohidratos Asociados a Tumores/inmunología , Linfocitos T CD4-Positivos/inmunología , Calcineurina/inmunología , Quinasas MAP Reguladas por Señal Extracelular/inmunología , Lectinas Tipo C/inmunología , Activación de Linfocitos/fisiología , Sistema de Señalización de MAP Quinasas/inmunología , Antígenos de Carbohidratos Asociados a Tumores/genética , Antígenos de Carbohidratos Asociados a Tumores/metabolismo , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Galactosiltransferasas/biosíntesis , Galactosiltransferasas/genética , Galactosiltransferasas/inmunología , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Glucosiltransferasas/biosíntesis , Glucosiltransferasas/genética , Glucosiltransferasas/inmunología , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Antígenos Comunes de Leucocito/genética , Antígenos Comunes de Leucocito/inmunología , Antígenos Comunes de Leucocito/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Chaperonas Moleculares/biosíntesis , Chaperonas Moleculares/genética , Chaperonas Moleculares/inmunología , Proteína Quinasa C/genética , Proteína Quinasa C/inmunología , Proteína Quinasa C/metabolismo
19.
Acta Neuropathol ; 127(5): 699-711, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24429546

RESUMEN

The trafficking of cytotoxic CD8(+) T lymphocytes across the lining of the cerebral vasculature is key to the onset of the chronic neuro-inflammatory disorder multiple sclerosis. However, the mechanisms controlling their final transmigration across the brain endothelium remain unknown. Here, we describe that CD8(+) T lymphocyte trafficking into the brain is dependent on the activity of the brain endothelial adenosine triphosphate-binding cassette transporter P-glycoprotein. Silencing P-glycoprotein activity selectively reduced the trafficking of CD8(+) T cells across the brain endothelium in vitro as well as in vivo. In response to formation of the T cell-endothelial synapse, P-glycoprotein was found to regulate secretion of endothelial (C-C motif) ligand 2 (CCL2), a chemokine that mediates CD8(+) T cell migration in vitro. Notably, CCL2 levels were significantly enhanced in microvessels isolated from human multiple sclerosis lesions in comparison with non-neurological controls. Endothelial cell-specific elimination of CCL2 in mice subjected to experimental autoimmune encephalomyelitis also significantly diminished the accumulation of CD8(+) T cells compared to wild-type animals. Collectively, these results highlight a novel (patho)physiological role for P-glycoprotein in CD8(+) T cell trafficking into the central nervous system during neuro-inflammation and illustrate CCL2 secretion as a potential link in this mechanism.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Encéfalo/inmunología , Linfocitos T CD8-positivos/fisiología , Encefalomielitis Autoinmune Experimental/inmunología , Esclerosis Múltiple/inmunología , Migración Transendotelial y Transepitelial/fisiología , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Barrera Hematoencefálica/fisiología , Encéfalo/irrigación sanguínea , Encéfalo/patología , Linfocitos T CD4-Positivos/fisiología , Línea Celular , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Femenino , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Microvasos/patología , Microvasos/fisiopatología , Esclerosis Múltiple/patología , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
20.
Tissue Eng Regen Med ; 21(3): 369-377, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38113015

RESUMEN

INTRODUCTION: Since small intestine is one of the major barriers of the human body, there is a need to develop reliable in vitro human small intestinal models. These models should incorporate both the epithelial and lamina propria compartments and have similar barrier properties compared to that of the human tissue. These properties are essential for various applications, such as studying cell-cell interaction, intestinal diseases and testing permeability and metabolism of drugs and other compounds. The small intestinal lamina propria contains multiple stromal cell populations with several important functions, such as secretion of extracellular matrix proteins and soluble mediators. In addition, stromal cells influence the intestinal epithelial barrier, support the intestinal stem cell niche and interact with immune cells. METHODS: In this review, we provide an extensive overview on the different types of lamina propria stromal cells found in small intestine and describe a combination of molecular markers that can be used to distinguish each different stromal cell type. We focus on studies that incorporated stromal cells into human representative small intestine models cultured on transwells. RESULTS AND CONCLUSION: These models display enhanced epithelial morphology, increased cell proliferation and human-like barrier properties, such as low transepithelial electrical resistance (TEER) and intermediate permeability, thus better mimicking the native human small intestine than models only consisting of an epithelium which generally show high TEER and low permeability.


Asunto(s)
Mucosa Intestinal , Intestino Delgado , Humanos , Intestino Delgado/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proliferación Celular , Células del Estroma/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda