RESUMEN
Self-sustaining vegetation in metal-contaminated areas is essential for rebuilding ecological resilience and community stability in degraded lands. Metal-tolerant plants originating from contaminated post-mining areas may hold the key to successful plant establishment and growth. Yet, little is known about the impact of metal toxicity on reproductive strategies, metal accumulation, and allocation patterns at the seed stage. Our research focused on the metal tolerant Atriplex lentiformis. Specifically, we examined the effects of toxic metal(loid) concentration in soils on variability in its reproductive strategies, including germination patterns, elemental uptake, and allocation within the seeds. We employed advanced imaging techniques like synchrotron X-ray fluorescence microscopy (2D scans and 3D tomograms) combined with inductively coupled plasma mass spectrometry to reveal significant differences in metal(loid) concentration and distribution within the seed structures of A. lentiformis from contrasting habitats. Exclusive Zn hotspots of high concentrations were found in the seeds of the metallicolous accession, primarily in the sensitive tissues of shoot apical meristems and root zones of the seed embryos. Our findings offer novel insights into phenotypic variability and metal tolerance and accumulation in plants from extreme environments. This knowledge can be applied to enhance plant survival and performance in land restoration efforts.
Asunto(s)
Atriplex , Ecosistema , Semillas , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/fisiología , Atriplex/fisiología , Atriplex/efectos de los fármacos , Adaptación Fisiológica , Contaminantes del Suelo/toxicidad , Germinación/efectos de los fármacos , Metales/toxicidad , Metales/metabolismo , Metales Pesados/toxicidad , Metales Pesados/metabolismoRESUMEN
The tropical shrub Coelospermum decipiens (Rubiaceae) is an extreme selenium (Se) hyperaccumulator, reported to accumulate up to 1140 µg Se g-1 when found growing on soils with Se
RESUMEN
BACKGROUND: Rare earth elements (REEs) are increasingly crucial for modern technologies. Plants could be used as a biogeochemical pathfinder and a tool to extract REEs from deposits. However, a paucity of information on suitable plants for these tasks exists. METHODS: We aimed to discover new REE-(hyper)accumulating plant species by performing an X-ray fluorescence (XRF) survey at the Herbarium of the Muséum national d'Histoire naturelle (MNHN, Paris, France). We selected specific families based on the likelihood of containing REE-hyperaccumulating species, using known taxa that accumulate REEs. A total of 4425 specimens, taken in the two main evolutionary lineages of extant vascular plants, were analysed, including the two fern families Blechnaceae (n = 561) and Gleicheniaceae (n = 1310), and the two flowering plant families Phytolaccaceae (n = 1137) and Juglandaceae (n = 1417). KEY RESULTS: Yttrium (Y) was used as a proxy for REEs for methodological reasons, and a total of 268 specimens belonging to the genera Blechnopsis (n = 149), Dicranopteris (n = 75), Gleichenella (n = 32), Phytolacca (n = 6), Carya (n = 4), Juglans (n = 1) and Sticherus (n = 1) were identified with Y concentrations ranging from the limit of detection (LOD) >49 µg g-1 up to 1424 µg g-1. Subsequently, analysis of fragments of selected specimens by inductively coupled plasma atomic emission spectroscopy (ICP-AES) revealed that this translated to up to 6423 µg total REEs g-1 in Dicranopteris linearis and up to 4278 µg total REEs g-1 in Blechnopsis orientalis which are among the highest values ever recorded for REE hyperaccumulation in plants. It also proved the validity of Y as an indicator for REEs in XRF analysis of herbarium specimens. The presence of manganese (Mn) and zinc (Zn) was also studied by XRF in the selected specimens. Mn was detected in 1440 specimens ranging from the detection limit at 116 µg g-1 up to 3807 µg g-1 whilst Zn was detected in 345 specimens ranging from the detection limit at 77 µg g-1 up to 938 µg g-1. CONCLUSIONS AND IMPLICATIONS: This study led to the discovery of REE accumulation in a range of plant species, substantially higher concentrations in species known to be REE hyperaccumulators, and records of REE hyperaccumulators outside of the well-studied populations in China.
Asunto(s)
Metales de Tierras Raras , Espectrometría por Rayos X , Metales de Tierras Raras/metabolismo , Metales de Tierras Raras/análisis , Espectrometría por Rayos X/métodos , Paris , Helechos/metabolismo , Helechos/químicaRESUMEN
BACKGROUND AND AIMS: Thallium (Tl) is extremely toxic to all lifeforms and an emerging pollutant. Plants in the Brassicaceae family, including edible crops, have an enhanced capacity for Tl accumulation, even from soils with low thallium concentration. The most extreme Tl hyperaccumulator is Biscutella laevigata, capable of attaining >32,000 µg Tl g-1 DW in its leaves. METHODS: Biscutella laevigata from a non-metallicolous accession (Feltre, Italy) and a metallicolous accession (Les Malines, France) were subjected to a dosing experiment in hydroponics (0, 5, 30 µM Tl), followed by synchrotron-based µXRF analysis to elucidate tissue and cellular-level Tl distribution. KEY RESULTS: Flow cytometric data on the two used accessions showed the Feltre accession has a genome size twice of that of the Les Malines accession (256 and 125 pg/2C respectively), suggesting they are phylogenetically distant populations. The Feltre accession does not accumulate Tl (125 µg Tl g-1 DW on average in leaves) at the 5 µM Tl dose level, whereas the Les Malines accession had a mean of 1750 µg Tl g-1 DW, with peaks of 24,130 µg Tl g-1 DW at the 30 µM Tl dose level. At 30 µM Tl the non-metallicolous accession did not grow, and at 5 µM Tl showed reduced biomasss compared to the metallicolous one. In Les Malines accession, the synchrotron-based µXRF analysis revealed that Tl is localised in the vacuoles of epidermal cells, especially underneath trichomes and in trichome basal cells. Thallium also occurs in solid crystalline deposits (3-5 µm in size, ~40 wt% Tl) that are mainly found in foliar margins and under trichome bases. CONCLUSIONS: Biscutella laevigata is an attractive model for studying Tl hypertolerance and hyperaccumulation on account of the extreme expression of this trait, and its marked intraspecific variability.
RESUMEN
Most nonoccupational human exposure to thallium (Tl) occurs via consumption of contaminated food crops. Brassica cultivars are common crops that can accumulate more than 500 µg Tl g-1. Knowledge of Tl uptake and translocation mechanisms in Brassica cultivars is fundamental to developing methods to inhibit Tl uptake or conversely for potential use in phytoremediation of polluted soils. Brassica cultivars (25 in total) were subjected to Tl dosing to screen for Tl accumulation. Seven high Tl-accumulating varieties were selected for follow-up Tl dosing experiments. The highest Tl accumulating Brassica cultivars were analyzed by synchrotron-based micro-X-ray fluorescence to investigate the Tl distribution and synchrotron-based X-ray absorption near-edge structure spectroscopy (XANES) to unravel Tl chemical speciation. The cultivars exhibited different Tl tolerance and accumulation patterns with some reaching up to 8300 µg Tl g-1. The translocation factors for all the cultivars were >1 with Brassica oleracea var. acephala (kale) having the highest translocation factor of 167. In this cultivar, Tl is preferentially localized in the venules toward the apex and along the foliar margins and in minute hot spots in the leaf blade. This study revealed through scanning electron microscopy and X-ray fluorescence analysis that highly Tl-enriched crystals occur in the stoma openings of the leaves. The finding is further validated by XANES spectra that show that Tl(I) dominates in the aqueous as well as in the solid form. The high accumulation of Tl in these Brassica crops has important implications for food safety and results of this study help to understand the mechanisms of Tl uptake and translocation in these crops.
Asunto(s)
Brassica , Contaminantes del Suelo , Humanos , Brassica/química , Talio/análisis , Verduras , Rayos X , Fluorescencia , Biodegradación Ambiental , Productos AgrícolasRESUMEN
Toxic metals and metalloids, especially from anthropogenic sources, now pollute substantial areas of our planet. Phytoextraction is a proven technology with the potential to reduce metal/metalloid pollution, and where financially viable, recover valuable metals ('phytomining'). Toward these aims, there has been a surge of publications over the last two decades. While important progress is being made, ongoing propagation of poor practice, and the resultant drain from funding sources, is hindering this promising research area. This includes mis-ascribing hyperaccumulator species, hydroponics with extremely high dose levels, misuse of Bioconcentration Factors, use of food or biomass crops with low accumulation for phytoextraction, the phenomenon of 'template papers' in which a known hyperaccumulator for element X is dosed with element Y, or a common weed species dosed with any variety of elements to make it 'hyperaccumulate'. Here we highlight these misconceptions with the hope that this will help to: (i) disseminate accurate definitions for in planta metal accumulation; (ii) quash the propagation of poor practice by limiting the inflation of unnecessary publications via the practice of 'template paper' writing; (iii) be used by journal editors and reviewers to validate their reasoning to authors; and (iv) contribute to faster progress in delivering this technology to in-the-field practitioners.
In this note, we highlight some common misconceptions with the hope that this will help to disseminate accurate definitions for hyperaccumulation, promote the appropriate use of hydroponics, and limit template paper writing.
Asunto(s)
Biodegradación Ambiental , Contaminantes del Suelo/metabolismo , Terminología como Asunto , Metales/metabolismo , Plantas/metabolismoRESUMEN
Extraction and processing of disseminated metalliferous ores, porphyry copper in particular, results in significant tonnages of waste and can cause severe disturbances and contamination in natural ecosystems. This is particularly important in semi-arid climates where natural soils are often deprived of organic matter and nutrients. This study was conducted on seven sites around Sungun Copper Mine, northwest Iran. Soil texture, EC, pH, and concentrations of nutrients, organic matter, along with 16 metal and metalloids were measured in 94 soil samples. Results showed a gradient of contamination from low contamination in natural hillsides to high contamination in mine waste depositories, Waste Dump and Oxide Dump, alongside Pakhir and Sungun Rivers. Nutrient deficiency occurred in disturbed sites. The main contaminant point sources were Waste Dump, mine pit drainage, and Oxide Dump. The results of Non-metric multidimensional scaling ordination showed elevated Cd, Zn, Fe, Cu, Pb, As, Mo, Mn, Co, S concentrations, high EC, and higher sand percentage in the sites affected by mine waste and acid mine drainage. Geo-Accumulation and Potential Ecological Risk Indices indicated that Pakhir riverside, Sungun riverside, and Oxide Dump have severe to moderate levels of environmental risks. Positive correlations between certain metal elements suggest common sources and similar reaction pathways, which may contribute to their similar geochemical behaviour in transport, deposition, and interdependence. Overall, the deficiency of organic matter and nutrients along with the soil sandy texture in contaminated sites of Sungun Copper Mine are the main limiting factors in managing metal mobility and soil remediation.
Asunto(s)
Metales Pesados , Contaminantes del Suelo , Cobre/análisis , Suelo , Metales Pesados/análisis , Ecosistema , Monitoreo del Ambiente/métodos , Óxidos , Contaminantes del Suelo/análisisRESUMEN
MAIN CONCLUSION: The VNIR reflectance spectra of nickel hyperaccumulator plant leaves have spectral variations due to high nickel concentrations and this property could potentially be used for discovery of these plants. Hyperaccumulator plants accumulate high concentrations of certain metals, including manganese, cobalt, or nickel. Of these metals, the divalent ions of nickel have three absorption bands in the visible to near-infrared region which may cause variations in the spectral reflectance of nickel hyperaccumulator plant leaves, but this has not been investigated previously. In this shortproof-of-concept study, the spectral reflectance of eight different nickel hyperaccumulator plant species leaves were subjected to visible and near-infrared and shortwave infrared (VNIR-SWIR) reflectance spectrum measurements in dehydrated state, and for one species, it was also assessed in hydrated state. Nickel concentrations in the plant leaves were determined with other methods and then correlated to the spectral reflectance data. Spectral variations centred at 1000 ± 150 nm were observed and had R-values varying from 0.46 to 0.96 with nickel concentrations. The extremely high nickel concentrations in nickel hyperaccumulator leaves reshape their spectral reflectance features, and the electronic transition of nickel-ions directly contributes to absorption at ~ 1000 nm. Given that spectral variations are correlated with nickel concentrations it make VNIR-SWIR reflectance spectrometry a potential promising technique for discovery of hyperaccumulator plants, not only in the laboratory or herbarium, but also in the field using drone-based platforms. This is a preliminary study which we hope will instigate further detailed research on this topic to validate the findings and to explore possible applications.
Asunto(s)
Metales , Níquel , Análisis Espectral/métodos , Cobalto , Manganeso , Hojas de la Planta/química , PlantasRESUMEN
BACKGROUND AND AIMS: Selenium hyperaccumulator species are of primary interest for studying the evolution of hyperaccumulation and for use in biofortification because selenium is an essential element in human nutrition. In this study, we aimed to determine whether the distributions of selenium in the three most studied hyperaccumulating taxa (Astragalus bisulcatus, Stanleya pinnata and Neptunia amplexicaulis) are similar or contrasting, in order to infer the underlying physiological mechanisms. METHODS: This study used synchrotron-based micro-X-ray fluorescence (µXRF) techniques to visualize the distribution of selenium and other elements in fresh hydrated plant tissues of A. racemosus, S. pinnata and N. amplexicaulis. KEY RESULTS: Selenium distribution differed widely in the three species: in the leaves of A. racemosus and N. amplexicaulis selenium was mainly concentrated in the pulvini, whereas in S. pinnata it was primarilylocalized in the leaf margins. In the roots and stems of all three species, selenium was absent in xylem cells, whereas it was particularly concentrated in the pith rays of S. pinnata and in the phloem cells of A. racemosus and N. amplexicaulis. CONCLUSIONS: This study shows that Astragalus, Stanleya and Neptunia have different selenium-handling physiologies, with different mechanisms for translocation and storage of excess selenium. Important dissimilarities among the three analysed species suggest that selenium hyperaccumulation has probably evolved multiple times over under similar environmental pressures in the US and Australia.
Asunto(s)
Planta del Astrágalo , Brassicaceae , Fabaceae , Selenio , Humanos , Hojas de la PlantaRESUMEN
Rare earth elements (REEs) are critical for numerous modern technologies, and demand is increasing globally; however, production steps are resource-intensive and environmentally damaging. Some plant species are able to hyperaccumulate REEs, and understanding the biology behind this phenomenon could play a pivotal role in developing more environmentally friendly REE recovery technologies. Here, we identified a REE transporter NRAMP REE Transporter 1 (NREET1) from the REE hyperaccumulator fern Dicranopteris linearis. Although NREET1 belongs to the natural resistance-associated macrophage protein (NRAMP) family, it shares a low similarity with other NRAMP members. When expressed in yeast, NREET1 exhibited REE transport capacity, but it could not transport divalent metals, such as zinc, nickel, manganese, or iron. NREET1 is mainly expressed in D. linearis roots and predominantly localized in the plasma membrane. Expression studies in Arabidopsis thaliana revealed that NREET1 functions as a transporter mediating REE uptake and transfer from root cell walls into the cytoplasm. Moreover, NREET1 has a higher affinity for transporting light REEs compared to heavy REEs, which is consistent to the preferential enrichment of light REEs in field-grown D. linearis. We therefore conclude that NREET1 may play an important role in the uptake and consequently hyperaccumulation of REEs in D. linearis. These findings lay the foundation for the use of synthetic biology techniques to design and produce sustainable, plant-based REE recovery systems.
Asunto(s)
Helechos , Proteínas de Transporte de Membrana , Metales de Tierras Raras , Membrana Celular , Helechos/metabolismo , Zinc/metabolismoRESUMEN
The profiles of trace and major elements in three Odontarrhena species from the ultramafics of Western Iran (O. callichroa, O. penjwinensis and O. inflata) were evaluated to provide detailed information on their soil-plant relationships and potentials for agromining. The mean concentrations of Ni in leaf dry matter of these three species were 877, 3,270 and 2,720 mg kg-1, respectively. The mean concentrations of total soil Ni at sites Mazi Ban, Kamyaran and Ghala Ga were 1,470, 2,480, 1,030 mg kg-1, respectively. The Bioconcentration Factor (BCF) for Ni was >1 in O. penjwinensis and O. inflata, but not in O. callichroa. A positive relationship between shoot Ni and soil pH was found for all three species. They display Ni hyperaccumulation in the leaves, but with pronounced variation in the Ni concentrations attained. Odontarrhena penjwinensis emerged as the most promising potential candidate for future Ni agromining. The progress made in this study will enable further consideration of the three Odontarrhena species, especially O. penjwinensis, for any future commercial Ni agromining of the serpentinic ultramafic soils in Western Iran.
This pioneering study in a remote part of Western Iran is the first to evaluate nickel hyperaccumulating species of Odontarrhena (Alyssum) in relation to their soil-plant relationships and potential for agromining.
Asunto(s)
Brassicaceae , Contaminantes del Suelo , Níquel/análisis , Irán , Contaminantes del Suelo/análisis , Biodegradación Ambiental , SueloRESUMEN
The hyperaccumulator Pycnandra acuminata is a New Caledonian rainforest tree known to have the highest concentration of nickel in any living organism, with 25 wt% nickel in its latex. All trees (with a diameter of >10 cm) and soil profiles in a 0.25-hectare permanent plot were sampled to assess the biogeochemical compartmentalisation of nickel in a dense stand of P. acuminata trees. Nickel stable isotope analysis permitted insights into the cycling of nickel in this ecosystem. The total tree biomass of the plot was calculated to be 281 tonnes ha-1 , which contained 0.44 kg of cobalt, 49.1 kg of manganese, 257 kg of nickel and 6.76 kg of zinc. Nickel stable isotope analysis identified the biotic origin of the nickel in the soil upper layers, with P. acuminata shoots enriched in lighter nickel isotopes. The δ60 Ni latex signature suggests that long-distance transport, radial xylem and phloem loading are at play in P. acuminata.
Asunto(s)
Bosques , Níquel/análisis , Níquel/farmacocinética , Sapotaceae/metabolismo , Suelo/química , Biomasa , Isótopos/análisis , Látex/química , Metales Pesados/análisis , Nueva Caledonia , Hojas de la Planta/química , Sapotaceae/efectos de los fármacos , Oligoelementos/análisis , Oligoelementos/farmacocinética , Árboles , Clima Tropical , Xilema/químicaRESUMEN
MAIN CONCLUSION: Micro-analytical techniques to untangle Se distribution and chemical speciation in plants coupled with molecular biology analysis enable the deciphering of metabolic pathways responsible for Se tolerance and accumulation. Selenium (Se) is not essential for plants and is toxic at high concentrations. However, Se hyperaccumulator plants have evolved strategies to both tolerate and accumulate > 1000 µg Se g-1 DW in their living above-ground tissues. Given the complexity of the biochemistry of Se, various approaches have been adopted to study Se metabolism in plants. These include X-ray-based techniques for assessing distribution and chemical speciation of Se, and molecular biology techniques to identify genes implicated in Se uptake, transport, and assimilation. This review presents these techniques, synthesises the current state of knowledge on Se metabolism in plants, and highlights future directions for research into Se (hyper)accumulation and tolerance. We conclude that powerful insights may be gained from coupling information on the distribution and chemical speciation of Se to genome-scale studies to identify gene functions and molecular mechanisms that underpin Se tolerance and accumulation in these ecologically and biotechnologically important plants species. The study of Se metabolism is challenging and is a useful testbed for developing novel analytical approaches that are potentially more widely applicable to the study of the regulation of a wide range of metal(loid)s in hyperaccumulator plants.
Asunto(s)
Selenio , Plantas/genética , Plantas/metabolismo , Biología Molecular , Transporte BiológicoRESUMEN
BACKGROUND AND AIMS: While isotopic enrichment of nitrogen (15N) and carbon (13C) is often used to determine whether carnivorous plant species capture and assimilate nutrients from supplemental sources such as invertebrate prey or mammal excreta (heterotrophic nutrition), little is known about how successful the different strategies deployed by carnivorous plants are at obtaining supplemental nutrition. The collection of mammalian faeces by Nepenthes (tropical pitcher plants) is the result of a highly specialized biological mutualism that results in heterotrophic nitrogen gain; however, it remains unknown how effective this strategy is in comparison to Nepenthes species not known to collect mammalian faeces. METHODS: We examined how isotopic enrichment varied in the diverse genus Nepenthes, among species producing pitchers for invertebrate capture and species exhibiting mutualisms for the collection of mammal excreta. Enrichment factors were calculated from δ15N and δ13C values from eight Nepenthes species and naturally occurring hybrids along with co-occurring reference (non-carnivorous) plants from three mountain massifs in Borneo: Mount Kinabalu, Mount Tambuyukon and Mount Trus Madi. RESULTS: All Nepenthes examined, except N. edwardsiana, were significantly enriched in 15N compared to co-occurring non-carnivorous plants, and 15N enrichment was more than two-fold higher in species with adaptations for the collection of mammal excreta compared with other Nepenthes. CONCLUSIONS: The collection of mammal faeces clearly represents a highly effective strategy for heterotrophic nitrogen gain in Nepenthes. Species with adaptations for capturing mammal excreta occur exclusively at high elevation (i.e. are typically summit-occurring) where previous studies suggest invertebrate prey are less abundant and less frequently captured. As such, we propose this strategy may maximize nutritional return by specializing towards ensuring the collection and retention of few but higher-value N sources in environments where invertebrate prey may be scarce.
Asunto(s)
Carnivoría , Mamíferos , Animales , NitrógenoRESUMEN
Mining activities can result in a pollution legacy of metal and metalloid containing soils and wastes. In this study concentrations of the metals and metalloids Al, As, Ca, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Zn, and the non-metals (P, S) were measured in the shoots of 35 different plant species spontaneously growing at four contaminated sites around the Sungun Copper Mine in East Azerbaijan (Iran) in order to evaluate their potential in phytoremediation of this area. The results show that metal and metalloid accumulation differed between the different species. None of the plant species exceeded the relevant trace element hyperaccumulation thresholds. Plant accumulation of Al was found to be relatively high in Achillea vermicularis (Asteraceae, with up to 5,280 µg g-1) and in Trifolium fragiferum (Fabaceae, with up to 4,895 µg g-1). Papaver dubium (Papaveraceae) had relatively high foliar Cu concentrations (with up to 294 µg g-1) while growing in the waste Rrock dump. Teucrium polium (Lamiaceae) had the highest concentrations of Pb (with up to 62 µg g-1). Most of the native species can be classed as metal-tolerant "excluder"-type species, and may, therefore, be suitable for phytostabilization of the mining wastes around the Sungun Copper Mine.
Plants growing on metalliferous soils are threatened by mining and mineral extraction. Identifying the flora in metal-contaminated soils and mineral wastes is of great importance for biodiversity conservation and for their use in future reclamation programs. This study adds valuable information on the potential of native plants for use in the phytoremediation of copper mines in Iran, as well as in other parts of the world with a similar geology and climate.
Asunto(s)
Metaloides , Metales Pesados , Contaminantes del Suelo , Biodegradación Ambiental , Cobre , Plomo , Metales Pesados/análisis , Plantas , Suelo , Contaminantes del Suelo/análisisRESUMEN
BACKGROUND: Some subspecies of Dichapetalum gelonioides are the only tropical woody zinc (Zn)-hyperaccumulator plants described so far and the first Zn hyperaccumulators identified to occur exclusively on non-Zn enriched 'normal' soils. The aim of this study was to investigate Zn cycling in the parent rock-soil-plant interface in the native habitats of hyperaccumulating Dichapetalum gelonioides subspecies (subsp. pilosum and subsp. sumatranum). We measured the Zn isotope ratios (δ66Zn) of Dichapetalum plant material, and associated soil and parent rock materials collected from Sabah (Malaysian Borneo). RESULTS: We found enrichment in heavy Zn isotopes in the topsoil (δ66Zn 0.13 ) relative to deep soil (δ66Zn -0.15 ) and bedrock (δ66Zn -0.90 ). This finding suggests that both weathering and organic matter influenced the Zn isotope pattern in the soil-plant system, with leaf litter cycling contributing significantly to enriched heavier Zn in topsoil. Within the plant, the roots were enriched in heavy Zn isotopes (δ66Zn ~ 0.60 ) compared to mature leaves (δ66Zn ~ 0.30 ), which suggests highly expressed membrane transporters in these Dichapetalum subspecies preferentially transporting lighter Zn isotopes during root-to-shoot translocation. The shoots, mature leaves and phloem tissues were enriched in heavy Zn isotopes (δ66Zn 0.34-0.70 ) relative to young leaves (δ66Zn 0.25 ). Thisindicates that phloem sources are enriched in heavy Zn isotopes relative to phloem sinks, likely because of apoplastic retention and compartmentalization in the Dichapetalum subspecies. CONCLUSIONS: The findings of this study reveal Zn cycling in the rock-soil-plant continuum within the natural habitat of Zn hyperaccumulating subspecies of Dichapetalum gelonioides from Malaysian Borneo. This study broadens our understanding of the role of a tropical woody Zn hyperaccumulator plant in local Zn cycling, and highlights the important role of leaf litter recycling in the topsoil Zn budget. Within the plant, phloem plays key role in Zn accumulation and redistribution during growth and development. This study provides an improved understanding of the fate and behaviour of Zn in hyperaccumulator soil-plant systems, and these insights may be applied in the biofortification of crops with Zn.
Asunto(s)
Transporte Biológico/fisiología , Malpighiaceae/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Suelo/química , Isótopos de Zinc/metabolismo , Borneo , Malpighiaceae/química , Hojas de la Planta/química , Raíces de Plantas/química , Isótopos de Zinc/químicaRESUMEN
Understanding the distribution of elements in plants is important for researchers across a broad range of fields, including plant molecular biology, agronomy, plant physiology, plant nutrition, and ionomics. However, it is often challenging to evaluate the applicability of the wide range of techniques available, with each having its own strengths and limitations. Here, we compare scanning/transmission electron microscopy-based energy-dispersive x-ray spectroscopy, x-ray fluorescence microscopy, particle-induced x-ray emission, laser ablation inductively coupled plasma-mass spectrometry, nanoscale secondary ion mass spectroscopy, autoradiography, and confocal microscopy with fluorophores. For these various techniques, we compare their accessibility, their ability to analyze hydrated tissues (without sample preparation) and suitability for in vivo analyses, as well as examining their most important analytical merits, such as resolution, sensitivity, depth of analysis, and the range of elements that can be analyzed. We hope that this information will assist other researchers to select, access, and evaluate the approach that is most useful in their particular research program or application.
Asunto(s)
Plantas/química , Espectrometría de Masas , Microscopía Confocal , Microscopía Electrónica , Espectrometría por Rayos XRESUMEN
Trichomes are potentially important for absorption of foliar fertilizers. A study has shown that the non-glandular trichromes (NGTs) of sunflower (Helianthus annuus) accumulated high concentrations of foliar-applied zinc (Zn); however, the mechanisms of Zn accumulation in the NGTs and the fate of this Zn are unclear. Here we investigated how foliar-applied Zn accumulates in the NGTs and the subsequent translocation of this Zn. Time-resolved synchrotron-based X-ray fluorescence microscopy and transcriptional analyses were used to probe the movement of Zn in the NGTs, with the cuticle composition of the NGTs examined using confocal Raman microscopy. The accumulation of Zn in the NGTs is both an initial preferential absorption process and a subsequent translocation process. This preferred absorption is likely because the NGT base has a higher hydrophilicity, whilst the subsequent translocation is due to the presence of plasmodesmata, Zn-chelating ligands, and Zn transporters in the NGTs. Furthermore, the Zn sequestered in the NGTs was eventually translocated out of the trichome once the leaf Zn concentration had decreased, suggesting that the NGTs are also important in maintaining leaf Zn homeostasis. This study demonstrates for the first time that trichomes have a key structural and functional role in the absorption and translocation of foliar-applied Zn.
Asunto(s)
Helianthus , Tricomas , Fertilizantes , Hojas de la Planta , ZincRESUMEN
BACKGROUND: The fern Dicranopteris linearis is a hyperaccumulator of rare earth elements (REEs), aluminium (Al) and silicon (Si). However, the physiological mechanisms of tissue-level tolerance of high concentrations of REE and Al, and possible interactions with Si, are currently incompletely known. METHODS: A particle-induced X-ray emission (µPIXE) microprobe with the Maia detector, scanning electron microscopy with energy-dispersive spectroscopy and chemical speciation modelling were used to decipher the localization and biochemistry of REEs, Al and Si in D. linearis during uptake, translocation and sequestration processes. RESULTS: In the roots >80 % of REEs and Al were in apoplastic fractions, among which the REEs were most significantly co-localized with Si and phosphorus (P) in the epidermis. In the xylem sap, REEs were nearly 100 % present as REEH3SiO42+, without significant differences between the REEs, while 24-45 % of Al was present as Al-citrate and only 1.7-16 % Al was present as AlH3SiO42+. In the pinnules, REEs were mainly concentrated in necrotic lesions and in the epidermis, and REEs and Al were possibly co-deposited within phytoliths (SiO2). Different REEs had similar spatial localizations in the epidermis and exodermis of roots, the necrosis, veins and epidermis of pinnae of D. linearis. CONCLUSIONS: We posit that Si plays a critical role in REE and Al tolerance within the root apoplast, transport within the vascular bundle and sequestration within the blade of D. linearis.
Asunto(s)
Helechos , Metales de Tierras Raras , Aluminio , Humanos , Silicio , Dióxido de SilicioRESUMEN
The aim of this study was to assess the potential of the woody nickel hyperaccumulator species Blepharidium guatemalense (Standl.) Standl. for agromining in southeastern Mexico. Pot trials consisting of nickel dosing (0, 20, 50, 100, and 250 mg Ni kg-1), and synthetic and organic fertilization were conducted. Field trials were also undertaken with different harvesting regimes of B. guatemalense. Foliar nickel concentrations increased significantly with rising nickel additions, with a 300-fold increase at 250 mg Ni kg-1 treatment relative to the control. Synthetic fertilization strongly increased nickel uptake without any change in plant growth or biomass, whereas organic fertilization enhanced plant shoot biomass with a negligible effect on foliar nickel concentrations. A 5-year-old stand which was subsequently harvested twice per year produced the maximum nickel yield tree-1 yr-1, with an estimated total nickel yield of 142 kg ha-1 yr-1. Blepharidium guatemalense is a prime candidate for nickel agromining on account of its high foliar Ni concentrations, high bioconcentration (180) and translocation factors (3.3), fast growth rate and high shoot biomass production. Future studies are needed to test the outcomes of the pot trials in the field. Extensive geochemical studies are needed to identify potential viable agromining locations. Novelty Statement Our research team is a pioneer in the discovery of metal hyperaccumulator plants in Mesoamerica with at least 13 species discovered in the last 2 years. This study is the first to assess the potential of nickel agromining (phytomining) in Mexico (and in all the American continent), using one of the strongest nickel hyperaccumulators reported so far. The promising results of this study are the basis for optimal agricultural management of Blepharidium guatemalense.