Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Biomed Opt Express ; 9(2): 453-471, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29552386

RESUMEN

Early identification of premalignant and malignant gastric mucosa is crucial to decrease the incidence and mortality of stomach cancer. Spectrum- and time-resolved multiphoton microscopy are capable of providing not only structural but also biochemical information at the subcellular level. Based on this multidimensional imaging technique, we performed a systematic investigation on fresh human tissue specimens at the typical stages of gastric carcinogenesis, including normal, chronic gastritis with erosion, chronic gastritis with intestinal metaplasia, and intestinal-type adenocarcinoma. The results demonstrate that this technique is available to characterize the three-dimensional subcellular morphological and biochemical properties of gastric mucosa and further provide quantitative indicators of different gastric disorders, by using endogenous contrast. With advances in multiphoton endoscopy, it has the potential to allow noninvasive, label-free, real-time histological and functional diagnosis of premalignant and malignant lesions of stomach in the future.

2.
Biomed Opt Express ; 9(7): 3373-3390, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29984103

RESUMEN

The femtosecond laser ablation in biological tissue produces highly fluorescent compounds that are of great significance for intrinsically labelling ablated tissue in vivo and achieving imaging-guided laser microsurgery. In this study, we analyzed the molecular structures of femtosecond laser-ablated tissues using Raman spectroscopy and transmission electron microscopy. The results showed that though laser ablation caused carbonization, no highly fluorescent nanostructures were found in the ablated tissues. Further, we found that the fluorescence properties of the newly formed compounds were spatially heterogeneous across the ablation site and the dominant fluorescent signals exhibited close similarity to the tissue directly heated at a temperature of 200 °C. The findings of our study indicated that the new fluorescent compounds were produced via the laser heating effect and their formation mechanism likely originated from the Maillard reaction, a chemical reaction between amino acids and reducing sugars in tissue.

3.
Biomed Opt Express ; 9(2): 581-590, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29552395

RESUMEN

Femtosecond laser microsurgery has become an advanced method for clinical procedures and biological research. The tissue treated by femtosecond laser can become highly fluorescent, indicating the formation of new fluorescent compounds that can naturally label the treated tissue site. We systematically characterized the fluorescence signals produced by femtosecond laser ablation in biological tissues in vivo. Our findings showed that they possess unique fluorescence properties and can be clearly differentiated from endogenous signals and major fluorescent proteins. We further demonstrated that the new fluorescent compounds can be used as in vivo labelling agent for biological imaging and guided laser microsurgery.

4.
5.
Biomed Opt Express ; 8(11): 4987-5000, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29188096

RESUMEN

The reproducibility of cerebral time-domain near-infrared spectroscopy (TD-NIRS) has not been investigated so far. Besides, reference intervals of cerebral optical properties, of absolute concentrations of deoxygenated-hemoglobin (HbR), oxygenated-hemoglobin (HbO), total hemoglobin (HbT) and tissue oxygen saturation (StO2) and their variability have not been reported. We have addressed these issues on a sample of 88 adult healthy subjects. TD-NIRS measurements at 690, 785, 830 nm were fitted with the diffusion model for semi-infinite homogenous media. Reproducibility, performed on 3 measurements at 5 minutes intervals, ranges from 1.8 to 6.9% for each of the hemoglobin species. The mean ± SD global values of HbR, HbO, HbT, StO2 are respectively 24 ± 7 µM, 33.3 ± 9.5 µM, 57.4 ± 15.8 µM, 58 ± 4.2%. StO2 displays the narrowest range of variability across brain regions.

6.
Biomed Opt Express ; 7(10): 3826-3842, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27867696

RESUMEN

Fitness is known to have beneficial effects on brain anatomy and function. However, the understanding of mechanisms underlying immediate and long-term neurophysiological changes due to exercise is currently incomplete due to the lack of tools to investigate brain function during physical activity. In this study, we used time-domain near infrared spectroscopy (TD-NIRS) to quantify and discriminate extra-cerebral and cerebral hemoglobin concentrations and oxygen saturation (SO2) in young adults at rest and during incremental intensity exercise. In extra-cerebral tissue, an increase in deoxy-hemoglobin (HbR) and a decrease in SO2 were observed while only cerebral HbR increased at high intensity exercise. Results in extra-cerebral tissue are consistent with thermoregulatory mechanisms to dissipate excess heat through skin blood flow, while cerebral changes are in agreement with cerebral blood flow (CBF) redistribution mechanisms to meet oxygen demand in activated regions during exercise. No significant difference was observed in oxy- (HbO2) and total hemoglobin (HbT). In addition HbO2, HbR and HbT increased with subject's peak power output (equivalent to the maximum oxygen volume consumption; VO2 peak) supporting previous observations of increased total mass of red blood cells in trained individuals. Our results also revealed known gender differences with higher hemoglobin in men. Our approach in quantifying both extra-cerebral and cerebral absolute hemoglobin during exercise may help to better interpret past and future continuous-wave NIRS studies that are prone to extra-cerebral contamination and allow a better understanding of acute cerebral changes due to physical exercise.

7.
Biomed Opt Express ; 7(10): 4210-4219, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27867726

RESUMEN

Actinic cheilitis is a potentially malignant disorder of the lips. Its first cause is believed to be UV sun radiation. The lesion is highly heterogeneous, making the choice of area to be biopsied difficult. This study exploits the capabilities of time-resolved fluorescence spectroscopy for the identification of the most representative area to be biopsied. A preliminary study was performed on fourteen patients. A classification algorithm was used on data acquired on nine different biopsies. The algorithm discriminated between absent, mild, and moderate dysplasia with a sensitivity of 92.9%, 90.0%, and 80.0%, respectively. The false positive rate for healthy tissue (specificity) was 88.8%.

8.
Biomed Opt Express ; 6(3): 987-1002, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25798320

RESUMEN

We report a novel technique for continuous acquisition, processing and display of fluorescence lifetimes enabling real-time tissue diagnosis through a single hand held or biopsy fiber-optic probe. A scanning multispectral time-resolved fluorescence spectroscopy (ms-TRFS) with self-adjustable photon detection range was developed to account for the dynamic changes of fluorescence intensity typically encountered in clinical application. A fast algorithm was implemented in the ms-TRFS software platform, providing up to 15 Hz continuous display of fluorescence lifetime values. Potential applications of this technique, including biopsy guidance, and surgical margins delineation were demonstrated in proof-of-concept experiments. Current results showed accurate display of fluorescence lifetimes values and discrimination of distinct fluorescence markers and tissue types in real-time (< 100 ms per data point).

9.
Biomed Opt Express ; 6(2): 324-46, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25780727

RESUMEN

We investigate the potential of an instrument combining time-resolved spectrofluorometry and diffuse reflectance spectroscopy to measure structural and metabolic changes in cardiac tissue in vivo in a 16 week post-myocardial infarction heart failure model in rats. In the scar region, we observed changes in the fluorescence signal that can be explained by increased collagen content, which is in good agreement with histology. In areas remote from the scar tissue, we measured changes in the fluorescence signal (p < 0.001) that cannot be explained by differences in collagen content and we attribute this to altered metabolism within the myocardium. A linear discriminant analysis algorithm was applied to the measurements to predict the tissue disease state. When we combine all measurements, our results reveal high diagnostic accuracy in the infarcted area (100%) and border zone (94.44%) as well as in remote regions from the scar (> 77%). Overall, our results demonstrate the potential of our instrument to characterize structural and metabolic changes in a failing heart in vivo without using exogenous labels.

10.
Biomed Opt Express ; 5(9): 3080-9, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25401022

RESUMEN

Melanoma is the most aggressive skin cancer type. It is characterized by pigmented lesions with high tissue invasion and metastatic potential. The early detection of melanoma is extremely important to improve patient prognosis and survival rate, since it can progress to the deadly metastatic stage. Presently, the melanoma diagnosis is based on the clinical analysis of the macroscopic lesion characteristics such as shape, color, borders following the ABCD rules. The aim of this study is to evaluate the time-resolved fluorescence lifetime of NADH and FAD molecules to detect cutaneous melanoma in an experimental in vivo model. Forty-two lesions were analyzed and the data was classified using linear discriminant analysis, a sensitivity of 99.4%, specificity of 97.4% and accuracy of 98.4% were achieved. These results show the potential of this fluorescence spectroscopy for melanoma detection.

11.
Biomed Opt Express ; 5(2): 515-38, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24575345

RESUMEN

We present an ex vivo study of temporally and spectrally resolved autofluorescence in a total of 47 endoscopic excision biopsy/resection specimens from colon, using pulsed excitation laser sources operating at wavelengths of 375 nm and 435 nm. A paired analysis of normal and neoplastic (adenomatous polyp) tissue specimens obtained from the same patient yielded a significant difference in the mean spectrally averaged autofluorescence lifetime -570 ± 740 ps (p = 0.021, n = 12). We also investigated the fluorescence signature of non-neoplastic polyps (n = 6) and inflammatory bowel disease (n = 4) compared to normal tissue in a small number of specimens.

12.
Biomed Opt Express ; 4(9): 1724-41, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24049693

RESUMEN

This work reports a multimodal system for label-free tissue diagnosis combining fluorescence lifetime imaging (FLIm), ultrasound backscatter microscopy (UBM), and photoacoustic imaging (PAI). This system provides complementary biochemical, structural and functional features allowing for enhanced in vivo detection of oral carcinoma. Results from a hamster oral carcinoma model (normal, precancer and carcinoma) are presented demonstrating the ability of FLIm to delineate biochemical composition at the tissue surface, UBM and related radiofrequency parameters to identify disruptions in the tissue microarchitecture and PAI to map optical absorption associated with specific tissue morphology and physiology.

13.
Biomed Opt Express ; 3(7): 1521-33, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22808425

RESUMEN

This study describes a scanning time-resolved fluorescence spectroscopy (TRFS) system designed to continuously acquire fluorescence emission and to reconstruct fluorescence lifetime images (FLIM) from a luminal surface by using a catheter-based optical probe with rotary joint and pull-back device. The ability of the system to temporally and spectrally resolve the fluorescence emission from tissue was validated using standard dyes and tissue phantoms (e.g., ex vivo pig aorta phantom). Current results demonstrate that this system is capable to reliably resolve the fluorescence emission of multiple fluorophores located in the lumen; and suggest its potential for intravascular detection of distinct biochemical features of atherosclerotic plaques.

14.
Biomed Opt Express ; 2(8): 2288-98, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21833365

RESUMEN

Detection of atherosclerotic plaque vulnerability has critical clinical implications for avoiding sudden death in patients with high risk of plaque rupture. We report on multimodality imaging of ex-vivo human carotid plaque samples using a system that integrates fluorescence lifetime imaging (FLIM), ultrasonic backscatter microscopy (UBM), and photoacoustic imaging (PAI). Biochemical composition is differentiated with a high temporal resolution and sensitivity at the surface of the plaque by the FLIM subsystem. 3D microanatomy of the whole plaque is reconstructed by the UBM. Functional imaging associated with optical absorption contrast is evaluated from the PAI component. Simultaneous recordings of the optical, ultrasonic, and photoacoustic data present a wealth of complementary information concerning the plaque composition, structure, and function that are related to plaque vulnerability. This approach is expected to improve our ability to study atherosclerotic plaques. The multimodal system presented here can be translated into a catheter based intraluminal system for future clinical studies.

15.
Biomed Opt Express ; 2(1): 71-9, 2010 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-21326637

RESUMEN

We discovered that hemoglobin emits high energy Soret fluorescence when two-photon excited by the visible femtosecond light sources. The unique spectral and temporal characteristics of hemoglobin fluorescence were measured by using a time-resolved spectroscopic detection system. The high energy Soret fluorescence of hemoglobin shows the spectral peak at 438 nm with extremely short lifetime. This discovery enables two-photon excitation fluorescence microscopy to become a potentially powerful tool for in vivo label-free imaging of blood cells and vessels.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda