Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Plant J ; 115(4): 1100-1113, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37177875

RESUMEN

Phyllosphere-associated microbes play a crucial role in plant-pathogen interactions while their composition and diversity are strongly influenced by drought stress. As dioecious plant species exhibited secondary dimorphism between the two sexes in response to drought stress, whether such difference will lead to sex-specific differences in phyllosphere microbiome and associated pathogen resistance between male and female conspecifics is still unknown. In this study, we subjected female and male full siblings of a dioecious poplar species to a short period of drought treatment followed by artificial infection of a leaf pathogenic fungus. Our results showed that male plants grew better than females with or without drought stress. Female control plants had more leaf lesion area than males after pathogen infection, whereas drought stress reversed such a difference. Further correlation and in vitro toxicity tests suggested that drought-mediated sexual differences in pathogen resistance between the two plant sexes could be attributed to the shifts in structure and function of phyllosphere-associated microbiome rather than the amount of leaf main defensive chemicals contained in plant leaves. Supportively, the microbiome analysis through high-throughput sequencing indicated that female phyllosphere enriched a higher abundance of ecologically beneficial microbes that serve as biological plant protectants, while males harbored abundant phytopathogens under drought-stressed conditions. The results could provide potential implications for the selection of suitable poplar sex to plants in drought or semi-drought habitats.


Asunto(s)
Microbiota , Populus , Sequías , Hojas de la Planta/fisiología , Hongos , Populus/genética
2.
Plant Cell Environ ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809156

RESUMEN

In epiphytes, aerial roots are important to combat water-deficient, nutrient-poor, and high-irradiance microhabitats. However, whether aerial roots can respond to gravity and whether auxin plays a role in regulating aerial root development remain open-ended questions. Here, we investigated the gravitropic response of the epiphytic orchid Phalaenopsis aphrodite. Our data showed that aerial roots of P. aphrodite failed to respond to gravity, and this was correlated with a lack of starch granules/statolith sedimentation in the roots and the absence of the auxin efflux carrier PIN2 gene. Using an established auxin reporter, we discovered that auxin maximum was absent in the quiescent center of aerial roots of P. aphrodite. Also, gravity failed to trigger auxin redistribution in the root caps. Hence, loss of gravity sensing and gravity-dependent auxin redistribution may be the genetic factors contributing to aerial root development. Moreover, the architectural and functional innovations that achieve fast gravitropism in the flowering plants appear to be lost in both terrestrial and epiphytic orchids, but are present in the early diverged orchid subfamilies. Taken together, our findings provide physiological and molecular evidence to support the notion that epiphytic orchids lack gravitropism and suggest diverse geotropic responses in the orchid family.

3.
Mol Phylogenet Evol ; 199: 108138, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38977041

RESUMEN

Cypripedioideae (slipper orchids; Orchidaceae) currently consist of âˆ¼200 herbaceous species with a strikingly disjunctive distribution in tropical and temperate regions of both hemispheres. In this study, an updated phylogeny with representatives from all five cypripedioid genera was presented based on maximum likelihood and Bayesian inference of plastome and low-copy nuclear genes. Phylogenomic analyses indicated that each genus is monophyletic, but some relationships (e.g., those among Cypripedium sects. Acaulia, Arietinum, Bifolia, Flabellinervia, Obtusipetala and Palangshanensia) conflict with those in previous studies based on Sanger data. Cypripedioideae appeared to have arisen in South America and/or the adjacent Qinghai-Tibet Plateau and Hengduan Mountains âˆ¼35 Mya. We inferred multiple dispersal events between East Asia and North America in Cypripedium, and between mainland Southeast Asia and the Malay Archipelago in Paphiopedilum. In the Americas, divergences among four genera (except Cypripedium) occurred around 31-20 Mya, long before the closure of the Isthmus of Panama, indicating the importance of long-distance dispersal. Evolutionary patterns between morphological and plastome character evolution suggested several traits, genome size and NDH genes, which are likely to have contributed to the success of slipper orchids in alpine floras and low-elevation forests. Species diversification rates were notably higher in epiphytic clades of Paphiopedilum than in other, terrestrial cypripedioids, paralleling similar accelerations associated with epiphytism in other groups. This study also suggested that sea-level fluctuations and mountain-building processes promoted the diversification of the largest genera, Paphiopedilum and Cypripedium.

4.
Am J Bot ; 111(1): e16266, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38038342

RESUMEN

PREMISE: Bryophytes and lichens have important functional roles in many ecosystems. Insight into their CO2 -exchange responses to climatic conditions is essential for understanding current and predicting future productivity and biomass patterns, but responses are hard to quantify at time scales beyond instantaneous measurements. We present PoiCarb 1.0, a model to study how CO2 -exchange rates of these poikilohydric organisms change through time as a function of weather conditions. METHODS: PoiCarb simulates diel fluctuations of CO2 exchange and estimates long-term carbon balances, identifying optimal and limiting climatic patterns. Modelled processes were net photosynthesis, dark respiration, evaporation and water uptake. Measured CO2 -exchange responses to light, temperature, atmospheric CO2 concentration, and thallus water content (calculated in a separate module) were used to parameterize the model's carbon module. We validated the model by comparing modelled diel courses of net CO2 exchange to such courses from field measurements on the tropical lichen Crocodia aurata. To demonstrate the model's usefulness, we simulated potential climate-change effects. RESULTS: Diel patterns were reproduced well, and the modelled and observed diel carbon balances were strongly positively correlated. Simulated warming effects via changes in metabolic rates were consistently negative, while effects via faster drying were variable, depending on the timing of hydration. CONCLUSIONS: Reproducing weather-dependent variation in diel carbon balances is a clear improvement compared to simply extrapolating short-term measurements or potential photosynthetic rates. Apart from predicting climate-change effects, future uses of PoiCarb include testing hypotheses about distribution patterns of poikilohydric organisms and guiding conservation strategies for species.


Asunto(s)
Ecosistema , Líquenes , Líquenes/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Fotosíntesis , Agua/metabolismo
5.
J Environ Manage ; 367: 121996, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39088905

RESUMEN

Monitoring forest canopies is vital for ecological studies, particularly for assessing epiphytes in rain forest ecosystems. Traditional methods for studying epiphytes, such as climbing trees and building observation structures, are labor, cost intensive and risky. Unmanned Aerial Vehicles (UAVs) have emerged as a valuable tool in this domain, offering botanists a safer and more cost-effective means to collect data. This study leverages AI-assisted techniques to enhance the identification and mapping of epiphytes using UAV imagery. The primary objective of this research is to evaluate the effectiveness of AI-assisted methods compared to traditional approaches in segmenting/identifying epiphytes from UAV images collected in a reserve forest in Costa Rica. Specifically, the study investigates whether Deep Learning (DL) models can accurately identify epiphytes during complex backgrounds, even with a limited dataset of varying image quality. Systematically, this study compares three traditional image segmentation methods Auto Cluster, Watershed, and Level Set with two DL-based segmentation networks: the UNet and the Vision Transformer-based TransUNet. Results obtained from this study indicate that traditional methods struggle with the complexity of vegetation backgrounds and variability in target characteristics. Epiphyte identification results were quantitatively evaluated using the Jaccard score. Among traditional methods, Watershed scored 0.10, Auto Cluster 0.13, and Level Set failed to identify the target. In contrast, AI-assisted models performed better, with UNet scoring 0.60 and TransUNet 0.65. These results highlight the potential of DL approaches to improve the accuracy and efficiency of epiphyte identification and mapping, advancing ecological research and conservation.

6.
New Phytol ; 237(5): 1495-1504, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36511294

RESUMEN

Nonvascular photoautotrophs (NVP), including bryophytes, lichens, terrestrial algae, and cyanobacteria, are increasingly recognized as being essential to ecosystem functioning in many regions of the world. Current research suggests that climate change may pose a substantial threat to NVP, but the extent to which this will affect the associated ecosystem functions and services is highly uncertain. Here, we propose a research agenda to address this urgent question, focusing on physiological and ecological processes that link NVP to ecosystem functions while also taking into account the substantial taxonomic diversity across multiple ecosystem types. Accordingly, we developed a new categorization scheme, based on microclimatic gradients, which simplifies the high physiological and morphological diversity of NVP and world-wide distribution with respect to several broad habitat types. We found that habitat-specific ecosystem functions of NVP will likely be substantially affected by climate change, and more quantitative process understanding is required on: (1) potential for acclimation; (2) response to elevated CO2 ; (3) role of the microbiome; and (4) feedback to (micro)climate. We suggest an integrative approach of innovative, multimethod laboratory and field experiments and ecophysiological modelling, for which sustained scientific collaboration on NVP research will be essential.


Asunto(s)
Briófitas , Líquenes , Ecosistema , Cambio Climático , Plantas , Briófitas/fisiología , Líquenes/fisiología
7.
Glob Chang Biol ; 29(14): 3990-4000, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37086082

RESUMEN

At the interface between atmosphere and vegetation, epiphytic floras have been largely used as indicators of air quality. The recovery of epiphytes from high levels of SO2 pollution has resulted in major range changes, whose interpretation has, however, been challenged by concomitant variation in other pollutants as well as climate change. Here, we combine historical and contemporary information on epiphytic bryophyte species distributions, climatic conditions, and pollution loads since the 1980s in southern Belgium to disentangle the relative impact of climate change and air pollution on temporal shifts in species composition. The relationship between the temporal variation of species composition, climatic conditions, SO2 , NO2 , O3 , and fine particle concentrations, was analyzed by variation partitioning. The temporal shift in species composition was such, that it was, on average, more than twice larger than the change in species composition observed today among communities scattered across the study area. The main driver, contributing to 38% of this temporal shift in species composition, was the variation of air quality. Climate change alone did not contribute to the substantial compositional shifts in epiphytic bryophyte communities in the course of the last 40 years. As a consequence of the substantial drop of N and S loads over the last decades, present-day variations of epiphytic floras were, however, better explained by the spatial variation of climatic conditions than by extant pollution loads. The lack of any signature of recolonization delays of formerly polluted areas in the composition of modern floras suggests that epiphytic bryophytes efficiently disperse at the landscape scale. We suggest that a monitoring of epiphyte communities at 10-year intervals would be desirable to assess the impact of raising pollution sources, and especially pesticides, whose impact on bryophytes remains poorly documented.


Asunto(s)
Contaminación del Aire , Briófitas , Cambio Climático , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Bélgica , Monitoreo del Ambiente/métodos , Contaminación Ambiental , Briófitas/fisiología
8.
Ann Bot ; 132(4): 685-698, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36617243

RESUMEN

BACKGROUND AND SCOPE: The epiphytic life form characterizes almost 10 % of all vascular plants. Defined by structural dependence throughout their life and their non-parasitic relationship with the host, the term epiphyte describes a heterogeneous and taxonomically diverse group of plants. This article reviews the importance of crassulacean acid metabolism (CAM) among epiphytes in current climatic conditions and explores the prospects under global change. RESULTS AND CONCLUSIONS: We question the view of a disproportionate importance of CAM among epiphytes and its role as a 'key innovation' for epiphytism but do identify ecological conditions in which epiphytic existence seems to be contingent on the presence of this photosynthetic pathway. Possibly divergent responses of CAM and C3 epiphytes to future changes in climate and land use are discussed with the help of experimental evidence, current distributional patterns and the results of several long-term descriptive community studies. The results and their interpretation aim to stimulate a fruitful discussion on the role of CAM in epiphytes in current climatic conditions and in altered climatic conditions in the future.


Asunto(s)
Metabolismo Ácido de las Crasuláceas , Tracheophyta , Plantas/metabolismo , Fotosíntesis/fisiología
9.
Ann Bot ; 132(4): 699-715, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-37897046

RESUMEN

BACKGROUND AND SCOPE: Vascular epiphytes have a variety of mechanisms to trap and retain water, including crassulacean acid metabolism (CAM). Niche segregation was investigated for epiphytic bromeliads on the tropical Caribbean island of Trinidad, where habitats range from lowland deciduous forests to high-rainfall montane tropical forests, ~1000 m in elevation. METHODS: Four tank-impounding bromeliad epiphytes in the genus Aechmea (Ae. aquilega, Ae. fendleri, Ae. nudicaulis and Ae. dichlamydea) with CAM were mapped across their distinct geographical and elevational zonations in northern Trinidad and Tobago. Species distribution modelling was used to determine environmental limitations for each species. Anatomical and physiological measurements included leaf succulence traits, gas exchange and CAM activity; hydraulic conductance and vulnerability; stomatal sensitivity and quantum yield responses to nocturnal temperature and long-term water deficits. KEY RESULTS: A total of 2876 field observations identified the transitions between the lowland Ae. aquilega and montane Ae. fendleri, occurring >500 m a.s.l. at the drier western end of the Northern Mountain Range and at progressively lower elevations towards the wetter, eastern region. Anatomical and physiological sensitivities of gas exchange, CAM activity and water use, and responses to elevated nocturnal temperatures and drought, were markedly different for Ae. fendleri compared with Ae. aquilega or the ubiquitous Ae. nudicaulis. CONCLUSIONS: The species distribution model highlighted the susceptibility of Ae. fendleri to a changing climate. For each species, physiological and anatomical traits were tailored to environmental tolerances, consistent with specialist or generalist niche preferences. Using Intergovernmental Panel on Climate Change scenarios, we predict that rapid rainfall and temperature changes will lead to the loss of Ae. fendleri and associated lower (and upper) montane forest communities from Trinidad, seriously impacting both biodiversity and critical ecosystem functions here and in other tropical island habitats. Epiphytic bromeliads act as markers for threatened communities, and their physiological tolerances represent key indicators of climate change impacts.


Asunto(s)
Metabolismo Ácido de las Crasuláceas , Ecosistema , Cambio Climático , Bosques , Agua/metabolismo , Clima Tropical
10.
Am J Bot ; 110(1): e16104, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36571428

RESUMEN

PREMISE: The consequences of acidity for plant performance are profound, yet the prevalence and causes of low pH in bromeliad tank water are unknown despite its functional relevance to key members of many neotropical plant communities. METHODS: We investigated tank water pH for eight bromeliad species in the field and for the widely occurring Guzmania monostachia in varying light. We compared pH changes over time between plant and artificial tanks containing a solution combined from several plants. Aquaporin transcripts were measured for field plants at two levels of pH. We investigated relationships between pH, leaf hydraulic conductance, and CO2 concentration in greenhouse plants and tested proton pump activity using a stimulator and inhibitor. RESULTS: Mean tank water pH for the eight species was 4.7 ± 0.06 and was lower for G. monostachia in higher light. The pH of the solution in artificial tanks, unlike in plants, did not decrease over time. Aquaporin transcription was higher for plants with lower pH, but leaf hydraulic conductance did not differ, suggesting that the pH did not influence water uptake. Tank pH and CO2 concentration were inversely related. Fusicoccin enhanced a decrease in tank pH, whereas orthovanadate did not. CONCLUSIONS: Guzmania monostachia acidified its tank water via leaf proton pumps, which appeared responsive to light. Low pH increased aquaporin transcripts but did not influence leaf hydraulic conductance, hence may be more relevant to nutrient uptake.


Asunto(s)
Acuaporinas , Bromeliaceae , Dióxido de Carbono/metabolismo , Hojas de la Planta/metabolismo , Agua/metabolismo , Acuaporinas/genética
11.
Microb Ecol ; 86(1): 261-270, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36048179

RESUMEN

While it is now well established that fungal community composition varies spatially at a variety of scales, temporal turnover of fungi is less well understood. Here we studied inter-annual community compositional changes of fungi in a rainforest tree canopy environment. We tracked fungal community shifts over 3 years in three substrate types (live bryophytes, dead bryophytes, and host tree bark) and compared these changes to amounts of community turnover seen at small spatial scales in the same system. The effect of substrate type on fungal community composition was stronger than that of sampling year, which was very small but significant. Although levels of temporal turnover varied among substrates, with greater turnover in live bryophytes than other substrates, the amount of turnover from year to year was comparable to what is seen at spatial distances between 5 and 9 cm for the same substrate. Stability of communities was largely driven by a few fungi with high relative abundances. A majority of fungal occurrences were at low relative abundances (≤ 0.1%). These fungi tended to be short lived and persisted to following years ≤ 50% of the time, depending on substrate. Their presence and persistence are likely impacted by stochastic processes like dispersal limitation and disturbance. Most samples contained only one or a few fungi at high relative abundance (≥ 10%) that persisted half or more of the time. These more abundant and persistent fungi are expected to have sustained functional interactions within the canopy ecosystem.


Asunto(s)
Ecosistema , Micobioma , Hongos , Árboles/microbiología , Bosque Lluvioso , Microbiología del Suelo , Biodiversidad
12.
Microb Ecol ; 85(1): 157-167, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35037090

RESUMEN

To explore the main factors affecting the distribution of microbes on leaf surfaces, the relationship between population sizes of epiphytes and the morphological structure and main physical and chemical properties of leaves from stylo (Stylosanthes guianensis), alfalfa (Medicago sativa), maize (Zea mays), and cocksfoot (Dactylis glomerata) were investigated. The research results showed that the contents of soluble sugar and total phenolics on the leaf surfaces were positively correlated with those in the leaf tissues (P < 0.001). The leaves with high wax content had better moisture retention capacity. The content of soluble sugar on the leaf surfaces was positively correlated with population sizes of lactic acid bacteria (LAB), aerobic bacteria, yeasts, and molds (P < 0.001). Likewise, a positive correlation was found between the content of inorganic phosphorus on the leaf surfaces and population sizes of LAB and aerobic bacteria. The total amount of wax on leaf surfaces was negatively related to population sizes of microbes, especially aerobic bacteria (P < 0.01) and molds (P < 0.001). On the contrary, the presence of trichomes provides a shelter for epiphytes and was positively correlated with population sizes of epiphytes at different degrees of significance. In conclusion, population sizes of epiphytes on the leaf surfaces were not only affected by chemical properties, but also by morphological traits of leaves.


Asunto(s)
Carbohidratos , Hojas de la Planta , Densidad de Población , Hojas de la Planta/microbiología , Carbohidratos/análisis , Medicago sativa , Zea mays , Azúcares/análisis
13.
J Integr Plant Biol ; 65(5): 1204-1225, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36738233

RESUMEN

Orchidaceae (with >28,000 orchid species) are one of the two largest plant families, with economically and ecologically important species, and occupy global and diverse niches with primary distribution in rainforests. Among orchids, 70% grow on other plants as epiphytes; epiphytes contribute up to ~50% of the plant diversity in rainforests and provide food and shelter for diverse animals and microbes, thereby contributing to the health of these ecosystems. Orchids account for over two-thirds of vascular epiphytes and provide an excellent model for studying evolution of epiphytism. Extensive phylogenetic studies of Orchidaceae and subgroups have ;been crucial for understanding relationships among many orchid lineages, although some uncertainties remain. For example, in the largest subfamily Epidendroideae with nearly all epiphytic orchids, relationships among some tribes and many subtribes are still controversial, hampering evolutionary analyses of epiphytism. Here we obtained 1,450 low-copy nuclear genes from 610 orchid species, including 431 with newly generated transcriptomes, and used them for the reconstruction of robust Orchidaceae phylogenetic trees with highly supported placements of tribes and subtribes. We also provide generally well-supported phylogenetic placements of 131 genera and 437 species that were not sampled by previous plastid and nuclear phylogenomic studies. Molecular clock analyses estimated the Orchidaceae origin at ~132 million years ago (Ma) and divergences of most subtribes from 52 to 29 Ma. Character reconstruction supports at least 14 parallel origins of epiphytism; one such origin was placed at the most recent common ancestor of ~95% of epiphytic orchids and linked to modern rainforests. Ten occurrences of rapid increase in the diversification rate were detected within Epidendroideae near and after the K-Pg boundary, contributing to ~80% of the Orchidaceae diversity. This study provides a robust and the largest family-wide Orchidaceae nuclear phylogenetic tree thus far and new insights into the evolution of epiphytism in vascular plants.


Asunto(s)
Ecosistema , Orchidaceae , Animales , Filogenia , Orchidaceae/genética , Plastidios
14.
Mol Plant Microbe Interact ; 35(8): 672-680, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35343250

RESUMEN

Efflux transporters such as MexAB-OprM contribute to bacterial resistance to diverse antimicrobial compounds. Here, we show that MexB contributes to epiphytic and late-stage apoplastic growth of Pseudomonas syringae strain B728a, as well as lesion formation in common bean (Phaseolus vulgaris). Although a ∆mexB mutant formed fewer lesions after topical application to common bean, these lesions contain the same number of cells (105 to 107 cells) as those caused by the wild-type strain. The internalized population size of both the wild-type and the ∆mexB mutant within small samples of surface-sterilized asymptomatic portions of leaves varied from undetectably low to as high as 105 cells/cm2. Localized bacterial populations within individual lesions consistently exceeded 105 cells/cm2. Strain B728a was capable of moderate to extensive apoplastic growth in diverse host plants, including lima bean (P. lunatus), fava bean (Vicia faba), pepper (Capsicum annuum), Nicotiana benthamiana, sunflower (Helianthus annuus), and tomato (Solanum lycopersicum), but MexB was not required for growth in a subset of these plant species. A model is proposed that MexB provides resistance to as-yet-unidentified antimicrobials that differ between plant species. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Phaseolus , Pseudomonas syringae , Transporte Biológico , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Phaseolus/microbiología , Pseudomonas aeruginosa/metabolismo , Pseudomonas syringae/metabolismo , Virulencia
15.
Mol Ecol ; 31(6): 1879-1891, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35060231

RESUMEN

Fungal species have numerous important environmental functions. Where these functions occur will depend on how fungi are spatially distributed, but the spatial structures of fungal communities are largely unknown, especially in understudied hyperdiverse tropical tree canopy systems. Here we explore fungal communities in a Costa Rican tropical rainforest canopy, with a focus on local-scale spatial structure and substrate specificity of fungi. Samples of ~1 cm3 were collected from 135 points along five adjacent tree branches, with intersample distances from 1 to 800 cm, and dissected into four substrates: outer host tree bark, inner bark, dead bryophytes and living bryophytes. We sequenced the ITS2 region to characterize total fungal communities. Fungal community composition and diversity varied among substrate types, even when multiple substrates were in direct contact. Fungi were most diverse in living bryophytes, with 39% of all operational taxonomic units (OTUs) found exclusively in this substrate, and the least diverse in inner bark. Fungal communities had significant positive spatial autocorrelation and distance decay of similarity only at distances less than 1 m. Similarity among samples declined by half in less than 10 cm, and even at these short distances, similarities were low with few OTUs shared among samples. These results indicate that community turnover is high and occurs at very small spatial scales, with any two locations sharing very few fungi in common. High heterogeneity of fungal communities in space and among substrates may have implications for the distributions, population dynamics and diversity of other tree canopy organisms, including epiphytic plants.


Asunto(s)
Micobioma , Biodiversidad , Hongos/genética , Micobioma/genética , Plantas/microbiología , Bosque Lluvioso , Árboles
16.
Am J Bot ; 109(6): 874-886, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35608083

RESUMEN

PREMISE: For vascular epiphytes, secure attachment to their hosts is vital for survival. Yet studies detailing the adhesion mechanism of epiphytes to their substrate are scarce. Examination of the root hair-substrate interface is essential to understand the attachment mechanism of epiphytes to their substrate. This study also investigated how substrate microroughness relates to the root-substrate attachment strength and the underlying mechanism(s). METHODS: Seeds of Anthurium obtusum were germinated, and seedlings were transferred onto substrates made of epoxy resin with different defined roughness. After 2 months of growth, roots that adhered to the resin tiles were subjected to anchorage tests, and root hair morphology at different roughness levels was analyzed using light and cryo scanning electron microscopy. RESULTS: The highest maximum peeling force was recorded on the smooth surface (glass replica, 0 µm). Maximum peeling force was significantly higher on fine roughness (0, 0.3, 12 µm) than on coarse (162 µm). Root hair morphology varied according to the roughness of the substrate. On smoother surfaces, root hairs were flattened to achieve large surface contact with the substrate. Attachment was mainly by adhesion with the presence of a glue-like substance. On coarser surfaces, root hairs were tubular and conformed to spaces between the asperities on the surface. Attachment was mainly via mechanical interlocking of root hairs and substrate. CONCLUSIONS: This study demonstrates for the first time that the attachment mechanism of epiphytes varies depending on substrate microtopography, which is important for understanding epiphyte attachment on natural substrates varying in roughness.


Asunto(s)
Araceae , Plantones , Microscopía Electrónica de Rastreo
17.
Am J Bot ; 109(12): 2068-2081, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36310350

RESUMEN

PREMISE: Approximately 14% of all fern species have physiologically active chlorophyllous spores that are much more short-lived than the more common and dormant achlorophyllous spores. Most chlorophyllous-spored species (70%) are epiphytes and account for almost 37% of all epiphytic ferns. Chlorophyllous-spored ferns are also overrepresented among fern species in habitats with waterlogged soils, of which nearly 60% have chlorophyllous spores. Ferns in these disparate habitat types also have a low incidence of mycorrhizal associations. We therefore hypothesized that autotrophic chlorophyllous spores represent an adaptation of ferns to habitats with scarce mycorrhizal associations. METHODS: We evaluated the coevolution of chlorophyllous spores and mycorrhizal associations in ferns and their relation to habitat type using phylogenetic comparative methods. RESULTS: Although we did not find support for the coevolution of spore type and mycorrhizal associations, we did find that chlorophyllous spores and the absence of mycorrhizal associations have coevolved with epiphytic and waterlogged habitats. Transition rates to epiphytic and waterlogged habitats were significantly higher in species with chlorophyllous spores compared to achlorophyllous lineages. CONCLUSIONS: Spore type and mycorrhizal associations appear to play important roles in the radiation of ferns into different habitat types. Future work should focus on clarifying the functional significance of these associations.


Asunto(s)
Helechos , Micorrizas , Micorrizas/fisiología , Helechos/fisiología , Filogenia , Esporas Fúngicas , Evolución Biológica , Esporas/fisiología
18.
Oecologia ; 199(1): 205-215, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35526202

RESUMEN

Environmental heterogeneity is a key component in explaining the megadiversity of tropical forests. Despite its importance, knowledge about local drivers of environmental heterogeneity remains a challenge for ecologists. In Neotropical forests, epiphytic tank bromeliads store large amounts of water and nutrients in the tree canopy, and their tank overflow may create nutrient-rich patches in the soil. However, the effects of this nutrient flux on environmental heterogeneity and plant community structure in the understory remain unexplored. In a Brazilian coastal sandy forest, we investigated the effects of the presence of epiphytic tank bromeliads on throughfall chemistry, soil chemistry, soil litter biomass, light, and seedling community structure. In the presence of epiphytic tank bromeliads, the throughfall nitrogen concentration increased twofold, the throughfall phosphorus concentration increased threefold, and the soil patches had a 3.96% higher pH, a 50% higher calcium concentration, and 11.88% less light. By altering the availability of soil resources and conditions, the presence of bromeliads partially shifted the available niche spaces for plant species and indirectly affected the structure of the seedling communities, decreasing their diversity, density, and biomass. For the first time, we showed that the presence of tank bromeliads in the canopy can create characteristic soil patches in the understory, affecting the structure of seedling communities via fertilization. Our results reveal a novel local driver of environmental heterogeneity, reinforcing and expanding the key role of tank bromeliads both in nutrient cycling and plant community structuring of Neotropical coastal sandy forests.


Asunto(s)
Plantones , Suelo , Bosques , Fósforo , Suelo/química , Árboles
19.
J Appl Microbiol ; 133(3): 1808-1820, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35751483

RESUMEN

AIM: The plant-growth-promoting putative competitive endophytes offer significant benefits to sustainable agriculture. The unworthy opportunistic and passenger endophytes are inevitable during the isolation of putative competitive endophytes. This study aimed to discriminate the putative competitive endophytes undoubtedly from the opportunistic and passenger endophytes. METHODS AND RESULTS: The newly isolated endophytes from field-grown rice were inoculated to 5-days old rice seedlings under gnotobiotic conditions. Re-isolation of the inoculated strains from the root surface, inner tissues of the whole plant, root and shoot was performed after 5-days. All the re-isolated colonies were compared with native isolates for homology by BOX-A1R-based repetitive extragenic palindromic-PCR (BOX-PCR) and enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) DNA fingerprints. The results revealed that the putative competitive endophytes (RE25 and RE10) showed positive for re-isolation and BOX and ERIC fingerprints for the whole plant, root and shoot. The opportunistic (RE27 and RE8) and passenger endophytes (RE44 and RE18) failed in re-isolation either from root or shoot. The epiphytes (ZSB15 and Az204) showed negative for endophytic re-isolation and positive for surface colonization. CONCLUSION: This modified procedure can discriminate the putative competitive endophytes from others. SIGNIFICANCE AND IMPACT OF THE STUDY: Eliminating the opportunistic and passenger endophytes and epiphytes early by this method would help develop endophytic inoculants to enhance rice productivity.


Asunto(s)
Endófitos , Oryza , Bacterias/genética , Dermatoglifia del ADN , ADN Bacteriano/genética , Endófitos/genética , Oryza/microbiología , Raíces de Plantas/microbiología , Plantones/microbiología
20.
Proc Natl Acad Sci U S A ; 116(38): 18900-18910, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31484768

RESUMEN

The foliar plant pathogen Pseudomonas syringae can establish large epiphytic populations on leaf surfaces before apoplastic colonization. However, the bacterial genes that contribute to these lifestyles have not been completely defined. The fitness contributions of 4,296 genes in P. syringae pv. syringae B728a were determined by genome-wide fitness profiling with a randomly barcoded transposon mutant library that was grown on the leaf surface and in the apoplast of the susceptible plant Phaseolus vulgaris Genes within the functional categories of amino acid and polysaccharide (including alginate) biosynthesis contributed most to fitness both on the leaf surface (epiphytic) and in the leaf interior (apoplast), while genes involved in type III secretion system and syringomycin synthesis were primarily important in the apoplast. Numerous other genes that had not been previously associated with in planta growth were also required for maximum epiphytic or apoplastic fitness. Fourteen hypothetical proteins and uncategorized glycosyltransferases were also required for maximum competitive fitness in and on leaves. For most genes, no relationship was seen between fitness in planta and either the magnitude of their expression in planta or degree of induction in planta compared to in vitro conditions measured in other studies. A lack of association of gene expression and fitness has important implications for the interpretation of transcriptional information and our broad understanding of plant-microbe interactions.


Asunto(s)
Genes Bacterianos , Interacciones Huésped-Patógeno/genética , Hojas de la Planta/microbiología , Pseudomonas syringae/fisiología , Espacio Extracelular/microbiología , Perfilación de la Expresión Génica , Aptitud Genética , Genoma Bacteriano/genética , Mutación , Enfermedades de las Plantas/microbiología , Hojas de la Planta/citología , Pseudomonas syringae/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda