Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
BMC Microbiol ; 24(1): 114, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575861

RESUMEN

BACKGROUND: Diarrhea poses a major threat to bovine calves leading to mortality and economic losses. Among the causes of calf diarrhea, bovine rotavirus is a major etiological agent and may result in dysbiosis of gut microbiota. The current study was designed to investigate the effect of probiotic Limosilactobacillus fermentum (Accession No.OR504458) on the microbial composition of rotavirus-infected calves using 16S metagenomic analysis technique. Screening of rotavirus infection in calves below one month of age was done through clinical signs and Reverse Transcriptase PCR. The healthy calves (n = 10) were taken as control while the infected calves (n = 10) before treatment was designated as diarrheal group were treated with Probiotic for 5 days. All the calves were screened for the presence of rotavirus infection on each day and fecal scoring was done to assess the fecal consistency. Infected calves after treatment were designated as recovered group. Fecal samples from healthy, recovered and diarrheal (infected calves before sampling) were processed for DNA extraction while four samples from each group were processed for 16S metagenomic analysis using Illumina sequencing technique and analyzed via QIIME 2. RESULTS: The results show that Firmicutes were more abundant in the healthy and recovered group than in the diarrheal group. At the same time Proteobacteria was higher in abundance in the diarrheal group. Order Oscillospirales dominated healthy and recovered calves and Enterobacterials dominated the diarrheal group. Alpha diversity indices show that diversity indices based on richness were higher in the healthy group and lower in the diarrheal group while a mixed pattern of clustering between diarrheal and recovered groups samples in PCA plots based on beta diversity indices was observed. CONCLUSION: It is concluded that probiotic Limosilactobacillus Fermentum N-30 ameliorate the dysbiosis caused by rotavirus diarrhea and may be used to prevent diarrhea in pre-weaned calves after further exploration.


Asunto(s)
Enfermedades de los Bovinos , Microbioma Gastrointestinal , Limosilactobacillus fermentum , Probióticos , Infecciones por Rotavirus , Rotavirus , Animales , Bovinos , Rotavirus/genética , Infecciones por Rotavirus/tratamiento farmacológico , Infecciones por Rotavirus/veterinaria , Microbioma Gastrointestinal/genética , Disbiosis , Diarrea/tratamiento farmacológico , Diarrea/veterinaria , Heces/microbiología , Probióticos/uso terapéutico , Enfermedades de los Bovinos/tratamiento farmacológico , Enfermedades de los Bovinos/microbiología
2.
Chem Biodivers ; 21(2): e202301374, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38230544

RESUMEN

Kurut is a traditional dry dairy product mostly consumed in Central Asia. In this study, the distribution of the dominant bacteria present in kurut samples (n=84) originated from seven (Chuy, Issyk-Kul, Talas, Naryn, Jalal-Abad, Osh, and Batken) regions in Kyrgyzstan were analyzed with Illumina iSeq100 platform. The dominant phylum detected was Firmicutes followed by Proteobacteria, Actinobacteria, Cyanobacteria/Chloroplast, and Tenericutes. The most abundant family detected was Lactobacillaceae followed by Streptococcaceae, Enterococcaceae, Chloroplast, and Leuconostocaceae. At the genus level, Lactobacillus was the predominant one in samples and Streptococcus, Enterococcus, Lactococcus, and Streptophyta followed this. Further comprehensive characterization analyses in kurut samples may have potential applications both in industrial starter culture developments and also future therapeutic approaches based on potential strains with probiotic properties.


Asunto(s)
Bacterias , Leche , Animales , Bovinos , Femenino , Leche/microbiología , Kirguistán , Lactobacillus , Streptococcus
3.
Microb Pathog ; 181: 106202, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37327948

RESUMEN

Cutaneous Leishmaniasis (CL) affects millions of people globally and has a significant impact on morbidity and mortality. Innate immune mediators are likely to influence the clinical phenotype of CL through primary responses that restrict or facilitate parasite spread. The aim of this preliminary study was to bring to attention the significance of microbiota in the development of CL and emphasized the necessity of including the role of microbiota in CL while promoting a One Health approach for managing diseases. To achieve this, we used 16S amplicon metagenome sequencing and QIIME2 pipeline to analyze the microbiome composition of CL-infected patients compared to non-infected, healthy subjects. 16S sequencing analysis showed serum microbiome was dominated by Firmicutes, Proteobacteria, Bacteroidota, and Actinobacteria. CL-infected individuals, Proteobacteria were the most prevalent (27.63 ± 9.79), with the relative abundance (10.73 ± 5.33) of Proteobacteria in control. Bacilli class was found to be the most prevalent in healthy controls (30.71 ± 8.44) while (20.57 ± 9.51) in CL-infected individuals. The class Alphaproteobacteria was found to be more in CL-infected individuals (5.47 ± 2.07) as compared to healthy controls (1.85 ± 0.39). The CL-infected individuals had a significantly lower relative abundance of the Clostridia class (p < 0.0001). An altered serum microbiome of CL infection and higher microbial abundance in the serum of healthy individuals was observed.


Asunto(s)
Leishmaniasis Cutánea , Microbiota , Humanos , Microbiota/genética , Bacterias/genética , Metagenoma , Proteobacteria/genética , Inflamación/genética , ARN Ribosómico 16S/genética
4.
Microb Cell Fact ; 22(1): 232, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37950185

RESUMEN

BACKGROUND: Several reports demonstrated anti-inflammatory properties of minocycline in various inflammatory disorders including colitis. We have experimental evidence suggesting synergistic anti-inflammatory effect of minocycline with methyl prednisolone in reducing colitis severity in mice, but if this effect is in part related to modulating the composition of colonic microbiota is still unknown. METHODS: the effect of vehicle (V), minocycline (M), methyl prednisolone (MP), or combination (C) regimen on the composition of the microbiota of mice in a state of colon inflammation compared to untreated (UT) healthy mice was determined using 16s metagenomic sequencing, and the taxonomic and functional profiles were summarized. RESULTS: Overall, the bacterial flora from the phylum Firmicutes followed by Bacteroidota were found to be predominant in all the samples. However, the composition of Firmicutes was decreased relatively in all the treatment groups compared to UT group. A relatively higher percentage of Actinobacteriota was observed in the samples from the C group. At the genus level, Muribaculaceae, Bacteroides, Bifidobacterium, and Lactobacillus were found to be predominant in the samples treated with both drugs (C). Whereas "Lachnospiraceae NK4A136 group" and Helicobacter in the M group, and Helicobacter in the MP group were found to be predominant. But, in the UT group, Weissella and Staphylococcus were found to be predominant. Eubacterium siraeum group, Clostridia vadinBB60 group, Erysipelatoclostridium and Anaeroplasma genera were identified to have a significant (FDR p < 0.05) differential abundance in V compared to C and UT groups. While at the species level, the abundance of Helicobacter mastomyrinus, Massiliomicrobiota timonensis and uncultured Anaeroplasma were identified as significantly low in UT, C, and M compared to V group. Functional categories related to amino acid, carbohydrate, and energy metabolism, cell motility and cell cycle control were dominated overall across all the samples. Methane metabolism was identified as an enriched pathway. For the C group, "Colitis (decrease)" was among the significant (p = 1.81E-6) associations based on the host-intrinsic taxon set. CONCLUSION: Combination regimen of minocycline plus methyl prednisolone produces a synergistic anti-inflammatory effect which is part related to alternation in the colonic microbiota composition.


Asunto(s)
Colitis , Minociclina , Ratones , Animales , Minociclina/farmacología , Minociclina/uso terapéutico , Minociclina/metabolismo , Sulfato de Dextran/metabolismo , Sulfato de Dextran/farmacología , Sulfato de Dextran/uso terapéutico , Metilprednisolona/metabolismo , Metilprednisolona/farmacología , Metilprednisolona/uso terapéutico , Colon , Colitis/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Bacterias , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
5.
Microb Ecol ; 85(1): 197-208, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35034142

RESUMEN

The 2,3,7,8-tetrachlorodibenzodioxin (TCDD), a contaminant in Agent Orange released during the US-Vietnam War, led to a severe environmental crisis. Approximately, 50 years have passed since the end of this war, and vegetation has gradually recovered from the pollution. Soil bacterial communities were investigated by 16S metagenomics in habitats with different vegetation physiognomies in Central Vietnam, namely, forests (S0), barren land (S1), grassland (S2), and developing woods (S3). Vegetation complexity was negatively associated with TCDD concentrations, revealing the reasoning behind the utilization of vegetation physiognomy as an indicator for ecological succession along the gradient of pollutants. Stark changes in bacterial composition were detected between S0 and S1, with an increase in Firmicutes and a decrease in Acidobacteria and Bacteroidetes. Notably, dioxin digesters Arthrobacter, Rhodococcus, Comamonadaceae, and Bacialles were detected in highly contaminated soil (S1). Along the TCDD gradients, following the dioxin decay from S1 to S2, the abundance of Firmicutes and Actinobacteria decreased, while that of Acidobacteria increased; slight changes occurred at the phylum level from S2 to S3. Although metagenomics analyses disclosed a trend toward bacterial communities before contamination with vegetation recovery, non-metric multidimensional scaling analysis unveiled a new trajectory deviating from the native state. Recovery of the bacterial community may have been hindered, as indicated by lower bacterial diversity in S3 compared to S0 due to a significant loss of bacterial taxa and recruitment of fewer colonizers. The results indicate that dioxins significantly altered the soil microbiomes into a state of disorder with a deviating trajectory in restoration.


Asunto(s)
Dioxinas , Microbiota , Dibenzodioxinas Policloradas , Agente Naranja , Suelo , Dibenzodioxinas Policloradas/análisis , Bacterias/genética , Acidobacteria/genética , Firmicutes , Microbiología del Suelo , ARN Ribosómico 16S/genética
6.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37175619

RESUMEN

The basis of any animal experimentation begins with the housing of animals that should take into account the need for splitting animals into similar groups. Even if it is generally recommended to use the minimum number of animals necessary to obtain reliable and statistically significant results (3Rs rule), the allocation of animals is currently mostly based on randomness. Since variability in gut microbiota is an important confounding factor in animal experiments, the main objective of this study was to develop a new approach based on 16S rRNA gene sequencing analysis of the gut microbiota of animals participating in an experiment, in order to correctly assign the animals across batches. For this purpose, a pilot study was performed on 20 mouse faecal samples with the aim of establishing two groups of 10 mice as similar as possible in terms of their faecal microbiota fingerprinting assuming that this approach limits future analytical bias and ensures reproducibility. The suggested approach was challenged with previously published data from a third-party study. This new method allows to embrace the unavoidable microbiota variability between animals in order to limit artefacts and to provide an additional assurance for the reproducibility of animal experiments.


Asunto(s)
Microbiota , Proyectos de Investigación , Ratones , Animales , ARN Ribosómico 16S/genética , Reproducibilidad de los Resultados , Proyectos Piloto , Microbiota/genética , Heces
7.
Genomics ; 113(6): 4015-4021, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34637930

RESUMEN

HIV infects the CD4 cells which marks the suppression of our immune system. DNA from serum of healthy, treated and untreated HIV infected individuals was extracted. The DNA was subjected to 16S metagenomic sequencing and analyzed using QIIME2 pipeline. 16S sequencing analysis showed serum microbiome was dominated by Firmicutes, Proteobacteria, Bacteroidota and Actinobacteria. Treated HIV infection showed highest abundance of Firmicutes (66.40%) significantly higher than untreated HIV infection (35.88%) and control (41.89%). Bacilli was most abundant class in treated (63.59%) and second most abundant in untreated (34.53%) while control group showed highest abundance of class Gamma-proteobacteria (45.86%). Untreated HIV infection group showed Enterococcus (10.72%) and Streptococcus (6.599%) as the most abundant species. Untreated HIV infection showed significantly higher (p = 0.0039) species richness than treated and control groups. An altered serum microbiome of treated HIV infection and higher microbial abundance in serum of untreated HIV infection was observed.


Asunto(s)
Infecciones por VIH , Microbiota , Infecciones por VIH/genética , Humanos , Metagenoma , Metagenómica , ARN Ribosómico 16S/genética
8.
Appl Microbiol Biotechnol ; 105(24): 9273-9284, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34773153

RESUMEN

The human gastrointestinal tract contains a complex and dynamic population of microorganisms, known as the gut microbiota. Although interest in the role of the gut microbiota in human health has increased in recent years, there remains no standard sampling protocol for analyzing these organisms. Here, we aimed to characterize the microbial composition of distinct segments of the large intestine and to determine whether rectal swabs are suitable for identifying colon microbiota. A total of 100 participants who underwent screening colonoscopy from October 2019 to October 2020 were included in this study. Large intestinal samples (ascending colon, descending colon, sigmoid colon, and rectum) were aspirated by colonoscopy. Rectal swabs were collected before colonoscopy, and stool samples were collected before patients began colonoscopy preparation. All samples were subjected to 16S ribosomal RNA gene sequencing. We identified differences in the number of phylum-level operational taxonomic units among large intestinal samples, rectal swabs, and stool. Five major phyla were detected in all samples (Firmicutes, Bacteroides, Proteobacteria, Actinobacteria, Fusobacteria), although their relative abundances varied. Notably, we found that the microbial compositions of rectal swabs were most similar to those of the sigmoid colon and rectum, whereas the microbiota in stool were relatively different than those from the large intestine and rectal swabs. Our results reveal the existence of microbial heterogeneity within different large intestinal compartments and further suggest that rectal swabs are an acceptable and practical tool for gut microbiota analysis. KEY POINTS: • Our findings highlight local microbiome variations within different regions of the large intestine. • Stool samples do not appear to fully recapitulate the gut microbiome. • Our data from a large population-based cohort indicate that rectal swabs can be used to study the gut microbiome.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Bacterias/genética , Heces , Humanos , ARN Ribosómico 16S/genética , Recto
9.
BMC Bioinformatics ; 21(Suppl 12): 303, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32703166

RESUMEN

BACKGROUND: Illumina paired-end reads are often used for 16S analysis in metagenomic studies. Since DNA fragment size is usually smaller than the sum of lengths of paired reads, reads can be merged for downstream analysis. In spite of development of several tools for merging of paired-end reads, poor quality at the 3' ends within the overlapping region prevents the accurate combining of significant portion of read pairs. Recently CD-HIT-OTU-Miseq was presented as a new approach for 16S analysis using the paired-end reads, it completely avoids the reads merging process due to separate clustering of paired reads. CD-HIT-OTU-Miseq is a set of tools which are supposed to be successively launched by auxiliary shell scripts. This launch mode is not suitable for processing of big amounts of data generated in modern omics experiments. To solve this issue we created CDSnake - Snakemake pipeline utilizing CD-HIT tools for easier consecutive launch of CD-HIT-OTU-Miseq tools for complete processing of paired end reads in metagenomic studies. Usage of pipeline make 16S analysis easier due to one-command launch and helps to yield reproducible results. RESULTS: We benchmarked our pipeline against two commonly used pipelines for OTU retrieval, incorporated into popular workflow for microbiome analysis, QIIME2 - DADA2 and deblur. Three mock datasets having highly overlapping paired-end 2 × 250 bp reads were used for benchmarking - Balanced, HMP, and Extreme. CDSnake outputted less OTUs than DADA2 and deblur. However, on Balanced and HMP datasets number of OTUs outputted by CDSnake was closer to real number of strains which were used for mock community generation, than those outputted by DADA2 and deblur. Though generally slower than other pipelines, CDSnake outputted higher total counts, preserving more information from raw data. Inheriting this properties from original CD-HIT-OTU-MiSeq utilities, CDSnake made their usage handier due to simple scalability, easier automated runs and other Snakemake benefits. CONCLUSIONS: We developed Snakemake pipeline for OTU-MiSeq utilities, which simplified and automated data analysis. Benchmarking showed that this approach is capable to outperform popular tools in certain conditions.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Programas Informáticos , Bases de Datos Genéticas , Humanos , Microbiota/genética , ARN Ribosómico 16S/genética
10.
Appl Environ Microbiol ; 86(6)2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31924616

RESUMEN

Diabetic foot ulcer (DFU) is a major complication of diabetes with high morbidity and mortality rates. The pathogenesis of DFUs is governed by a complex milieu of environmental and host factors. The empirical treatment is initially based on wound severity since culturing and profiling the antibiotic sensitivity of wound-associated microbes is time-consuming. Hence, a thorough and rapid analysis of the microbial landscape is a major requirement toward devising evidence-based interventions. Toward this, 122 wound (100 diabetic and 22 nondiabetic) samples were sampled for their bacterial community structure using both culture-based and next-generation 16S rRNA-based metagenomics approach. Both the approaches showed that the Gram-negative microbes were more abundant in the wound microbiome. The core microbiome consisted of bacterial genera, including Alcaligenes, Pseudomonas, Burkholderia, and Corynebacterium in decreasing order of average relative abundance. Despite the heterogenous nature and extensive sharing of microbes, an inherent community structure was apparent, as revealed by a cluster analysis based on Euclidean distances. Facultative anaerobes (26.5%) were predominant in Wagner grade 5, while strict anaerobes were abundant in Wagner grade 1 (26%). A nonmetric dimensional scaling analysis could not clearly discriminate samples based on HbA1c levels. Sequencing approach revealed the presence of major culturable species even in samples with no bacterial growth in culture-based approach. Our study indicates that (i) the composition of core microbial community varies with wound severity, (ii) polymicrobial species distribution is individual specific, and (iii) antibiotic susceptibility varies with individuals. Our study suggests the need to evolve better-personalized care for better wound management therapies.IMPORTANCE Chronic nonhealing diabetic foot ulcers (DFUs) are a serious complication of diabetes and are further exacerbated by bacterial colonization. The microbial burden in the wound of each individual displays diverse morphological and physiological characteristics with unique patterns of host-pathogen interactions, antibiotic resistance, and virulence. Treatment involves empirical decisions until definitive results on the causative wound pathogens and their antibiotic susceptibility profiles are available. Hence, there is a need for rapid and accurate detection of these polymicrobial communities for effective wound management. Deciphering microbial communities will aid clinicians to tailor their treatment specifically to the microbes prevalent in the DFU at the time of assessment. This may reduce DFUs associated morbidity and mortality while impeding the rise of multidrug-resistant microbes.


Asunto(s)
Bacterias/aislamiento & purificación , Pie Diabético/microbiología , Microbiota , Adulto , Anciano , Anciano de 80 o más Años , Bacterias/clasificación , Femenino , Humanos , Masculino , Persona de Mediana Edad , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis , Factores Sexuales , Adulto Joven
11.
Indian J Microbiol ; 60(2): 196-205, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32255852

RESUMEN

Respiratory bacterial microbiota plays a key role in human health. Lung cancer microbiome is a significant yet an understudied area while bronchiectasis microbiome is often studied. We assessed the bacterial microbiota in the upper and lower respiratory tract of the patients with lung cancer and bronchiectasis against a healthy group and their variations in individuality. 16S rRNA gene based metagenomic sequencing was used to detect entire bacterial community along with conventional aerobic bacterial culturing. In comparison to healthy, increased bacterial diversity was observed in diseased population. Abundance of more than 1% was considered and bacteria were identified in 97% similarity. Only lung cancer patients exhibited bacteria specific to the disease: Corynebacterium tuberculostearicum and Keratinibaculum paraultunense. However, Enterococcus faecalis and Delftia tsuruhatensis were also observed limited to lung cancer and bronchiectasis respectively, in less than 1% but supported with bacterial culturing. In conclusion the disease condition and intra-group variability should be considered in future with larger cohorts to understand individual patient variability highlighting the social habits and gender of the individual.

12.
Oral Dis ; 25(3): 898-910, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30561093

RESUMEN

OBJECTIVE: Recently, a significant association between dental caries and the severity of bronchial asthma in children has been revealed. This finding indicates a possible relationship between the oral microbiome and the pathogenesis of asthma. The purpose of our study was to estimate differences in the dental plaque microbiota of asthmatic children with and without dental caries by 16S rDNA sequencing. MATERIAL AND METHODS: Dental plaque samples were obtained with a spoon excavator from the occlusal surface of one deciduous tooth (the second mandibular left molar in caries-free children and the most affected tooth in caries-affected children). Total DNA was extracted from dental plaque. DNA libraries were analysed by 16S rRNA gene sequencing on the MiSeq (Illumina) platform. RESULTS: There were no significant differences in the composition of bacterial communities from both caries-affected and caries-free children with asthma. The "caries-enriched" genus was Veillonella (Veillonellaceae, Selenomonadales, Negativicutes). Relative abundance of Neisseria was significantly higher in caries-free children with asthma (p < 0.05). CONCLUSIONS: The most significant difference in compared bacterial communities was a higher relative abundance of Veillonella in caries-affected plaques that suggests its involvement in pathogenesis of caries. Potential respiratory pathogens are present in oral cavity of both caries-affected and caries-free asthmatic children.


Asunto(s)
Asma/complicaciones , Caries Dental/complicaciones , Placa Dental/microbiología , Microbiota , Asma/microbiología , Estudios de Casos y Controles , Preescolar , Biología Computacional , Caries Dental/microbiología , Femenino , Humanos , Masculino , Neisseria/aislamiento & purificación , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis , Análisis de Secuencia de ARN , Veillonella/aislamiento & purificación
13.
BMC Microbiol ; 18(1): 124, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30285625

RESUMEN

BACKGROUND: The presence of microrganisms in pharmaceutical production plant environments is typically monitored by cultural methods, however these cannot detect the unculturable fraction of the microbial community. To get more accurate information on the composition of these indoor microbial communities, both water and air microbiome from a pharmaceutical production plant were profiled by 16S amplicon sequencing. RESULTS: In the water system, we found taxa which typically characterize surface freshwater, groundwater and oligotrophic environments. The airborne microbiome resulted dominated by taxa usually found in outdoor air in combination with human-associated taxa. The alpha- and beta- diversity values showed that the heat-based sanitization process of the water plant affects the composition of the water microbiome by transiently increasing both diversity and evenness. Taxonomic compositional shifts were also detected in response to sanitization, consisting in an increase of Firmicutes and α-Proteobacteria. On the other hand, seasonality seems to be the main driver of bacterial community composition in air of this work environment. CONCLUSIONS: This approach resulted useful to describe the taxonomy of these indoor microbiomes and could be further applied to other built environments, in which the knowledge of the microbiome composition is of relevance. In addition, this study could assist in the design of new guidelines to improve microbiological quality control in indoor work environments.


Asunto(s)
Bacterias/aislamiento & purificación , Agua Dulce/microbiología , Agua Subterránea/microbiología , Microbiota , Plantas Medicinales/microbiología , Microbiología del Aire , Bacterias/clasificación , Bacterias/genética , ADN Bacteriano/genética , Filogenia , ARN Ribosómico 16S/genética
14.
BMC Genomics ; 18(1): 574, 2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28774270

RESUMEN

BACKGROUND: Enterohemorrhagic Escherichia coli (EHEC) are zoonotic agents associated with outbreaks worldwide. Growth of EHEC strains in ground beef could be inhibited by background microbiota that is present initially at levels greater than that of the pathogen E. coli. However, how the microbiota outcompetes the pathogenic bacteria is unknown. Our objective was to identify metabolic pathways of EHEC that were altered by natural microbiota in order to improve our understanding of the mechanisms controlling the growth and survival of EHECs in ground beef. RESULTS: Based on 16S metagenomics analysis, we identified the microbial community structure in our beef samples which was an essential preliminary for subtractively analyzing the gene expression of the EHEC strains. Then, we applied strand-specific RNA-seq to investigate the effects of this microbiota on the global gene expression of EHEC O2621765 and O157EDL933 strains by comparison with their behavior in beef meat without microbiota. In strain O2621765, the expression of genes connected with nitrate metabolism and nitrite detoxification, DNA repair, iron and nickel acquisition and carbohydrate metabolism, and numerous genes involved in amino acid metabolism were down-regulated. Further, the observed repression of ftsL and murF, involved respectively in building the cytokinetic ring apparatus and in synthesizing the cytoplasmic precursor of cell wall peptidoglycan, might help to explain the microbiota's inhibitory effect on EHECs. For strain O157EDL933, the induced expression of the genes implicated in detoxification and the general stress response and the repressed expression of the peR gene, a gene negatively associated with the virulence phenotype, might be linked to the survival and virulence of O157:H7 in ground beef with microbiota. CONCLUSION: In the present study, we show how RNA-Seq coupled with a 16S metagenomics analysis can be used to identify the effects of a complex microbial community on relevant functions of an individual microbe within it. These findings add to our understanding of the behavior of EHECs in ground beef. By measuring transcriptional responses of EHEC, we could identify putative targets which may be useful to develop new strategies to limit their shedding in ground meat thus reducing the risk of human illnesses.


Asunto(s)
Escherichia coli Enterohemorrágica/genética , Escherichia coli Enterohemorrágica/fisiología , Perfilación de la Expresión Génica , Microbiota/genética , Carne Roja/microbiología , Aminoácidos/biosíntesis , Aminoácidos/metabolismo , Transporte Biológico/genética , Membrana Celular/metabolismo , Pared Celular/metabolismo , Regulación hacia Abajo , Escherichia coli Enterohemorrágica/citología , Escherichia coli Enterohemorrágica/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Especificidad de la Especie
15.
BMC Microbiol ; 16(1): 284, 2016 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-27894251

RESUMEN

BACKGROUND: In Japan, a variety of traditional dietary habits and daily routines have developed in many regions. The effects of these behaviors, and the regional differences in the composition of the gut microbiota, are yet to be sufficiently studied. To characterize the Japanese gut microbiota and identify the factors shaping its composition, we conducted 16S metagenomics analysis of fecal samples collected from healthy Japanese adults residing in various regions of Japan. Each participant also completed a 94-question lifestyle questionnaire. RESULTS: We collected fecal samples from 516 healthy Japanese adults (325 females, 191 males; age, 21-88). Heatmap and biplot analyses based on the bacterial family composition of the fecal microbiota showed that subjects' region of residence or gender were not strongly correlated with the general composition of the fecal microbiota. Although clustering analysis for the whole cohort did not reveal any distinct clusters, two enterotype-like clusters were observed in the male, but not the female, subjects. In the whole subject population, the scores for bowel movement frequency were significantly correlated with the abundances of Christensenellaceae, Mogibacteriaceae, and Rikenellaceae in the fecal microbiota (P < 0.001). These three bacterial families were also significantly more abundant (P < 0.05 or 0.01) in lean subjects (body mass index (BMI) < 25) than in obese subjects (BMI > 30), which is consistent with previously published results. However, a previously reported correlation between BMI and bowel movement frequency was not observed. In addition, the abundances of these three families were positively correlated with each other and comprised a correlative network with 14 other bacterial families. CONCLUSIONS: The present study showed that the composition of the fecal microbiota of healthy Japanese adults at the national level was not strongly correlated with subjects' area of residence or gender. In addition, enterotype partitioning was ambiguous in this cohort of healthy Japanese adults. Finally, the results implied that the abundances of Christensenellaceae, Mogibacteriaceae, and Rikenellaceae, along with several other bacterial components that together comprised a correlative network, contributed to a phenotype characterized by a high frequency of bowel movements and a lean body type.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Heces/microbiología , Microbiota , Actividades Cotidianas , Adulto , Anciano , Anciano de 80 o más Años , Bacterias/genética , ADN Bacteriano/genética , Defecación , Conducta Alimentaria , Femenino , Microbioma Gastrointestinal , Humanos , Japón , Masculino , Metagenómica , Persona de Mediana Edad , Fenotipo , Filogenia , ARN Ribosómico 16S/genética , Somatotipos
16.
Open Life Sci ; 19(1): 20220897, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39071489

RESUMEN

To date, the association of potato tuber microbiota is poorly understood. In this study, the endophytic bacterial flora of seed potato tubers was identified and the diversity of healthy and unhealthy tubers was compared. Metagenomic DNA extracted from healthy and unhealthy samples of seed potato tubers was used for the analysis of microbial communities. Next generation sequencing of the ∼460 bp v3-v4 region of the 16S rRNA gene was carried out using the Illumina Miseq platform. The data were analysed using the Divisive Amplicon Denoising Algorithm 2 pipeline. Sequence analysis of the potato metagenome identified amplicon sequence variants (ASVs) assigned to 745 different taxa belonging to eight Phyla: Firmicutes (46.2%), Proteobacteria (36.9%), Bacteroidetes (1.8%), Actinobacteria (0.1%), Tenericutes (0.005%), Saccharibacteria (0.003%), Verrucomicrobiota (0.003%), and Acidobacteria (0.001%). In healthy seed potato tubers, 55-99% of ASVs belonged to Firmicutes, including Bacillus, Salinibacillus, Staphylococcus, Lysinibacillus, Paenibacillus, and Brevibacillus genera within the taxonomic order Bacillales. However, in the visually unhealthy tubers, only 0.5-3.9% of ASVs belonged to Firmicutes while 84.1-97% of ASVs belonged to Proteobacteria. This study highlights that diverse bacterial communities colonize potato tubers, which contributes to the understanding of plant-microbe interactions and underscores the significance of metagenomic approaches in agricultural research.

17.
Front Microbiol ; 14: 1224910, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274751

RESUMEN

The vaginal microbiota plays a key role in animals' health. Understanding its diversity and composition and associated changes occurring through the reproductive cycle represents valuable knowledge to disclose the mechanisms leading to dysbiosis and eventually to infection. Even if the human vaginal microbiota has been thoroughly studied, scarce research has been conducted on the vaginal microbiota of livestock. In this study, 16S rRNA gene-based sequencing was performed on vaginal samples of ten nulliparous ewes at three different sampling points: before the estrus synchronization protocol (T0), at the time of estrus before mating (Testrus), and the day of the pregnancy diagnosis (Tpreg). Preputial samples from the three males collected pre and post-mating were also analyzed. Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria were the most abundant phyla in vaginal samples. The most abundant genera were Porphyromonas, Anaerococcus, and Peptinophilius. Vaginal microbiota biodiversity decreased during pregnancy. Tenericutes (Ureaplasma spp.) increased significantly at Tpreg in both pregnant and non-pregnant ewes. Differences were observed between pregnant and non-pregnant ewes at Tpreg where pregnant ewes had a significantly higher abundance of Actinobacillus spp. and Ureaplasma spp. Ewes that were diagnosed with pregnancy at Tpreg showed a decreased abundance of gram-negative bacteria such as Bacteroidales, Campylobacterales, and Enterobacteriales. In addition, a significant decrease in the relative abundances of genera within Firmicutes, such as Alloicoccus (Lactobacillales), Atopostipes (Lactobacillales), and an uncultured bacteria W5053 from Family XI (Firmicutes, Clostridiales) was observed in non-pregnant ewes at Tpreg. The four most abundant phyla in the rams' prepuce were the same as in the ewes' vagina. The most abundant genus was Corynebacterium. No major differences were observed in the ram's preputial microbiota between pre and post-mating samples. Nevertheless, the differences in the taxonomic composition of ewes' vaginal microbiota between Testrus and Tpreg could be explained by the exposure to the preputial microbiota. This study offers new insights into the effects of several key steps of the ewe's reproductive cycle such as estrus-synchronization protocol, mating, and pregnancy on ovine vaginal microbiota. The knowledge of the microbiota dynamics during the reproductive cycle can help improve the reproductive outcomes of dams by identifying biomarkers and putative probiotics.

18.
Plants (Basel) ; 13(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38202388

RESUMEN

Candidatus Liberibacter asiaticus (CLas) is associated with Citrus Huanglongbing (HLB), a devastating disease in the US. Previously, we conducted a two-year-long monthly HLB survey by quantitative real-time PCR using root DNA fractions prepared from 112 field grapefruit trees grafted on sour orange rootstock. Approximately 10% of the trees remained CLas-free during the entire survey period. This study conducted 16S metagenomics using the time-series root DNA fractions, monthly prepared during twenty-four consecutive months, followed by microbial co-occurrence network analysis to investigate the microbial factors contributing to the CLas-free phenotype of the aforementioned trees. Based on the HLB status and the time when the trees were first diagnosed as CLas-positive during the survey, the samples were divided into four groups, Stage H (healthy), Stage I (early), II (mid), and III (late) samples. The 16S metagenomics data using Silva 16S database v132 revealed that HLB compromised the diversity of rhizosphere microbiota. At the phylum level, Actinobacteria and Proteobacteria were the predominant bacterial phyla, comprising >93% of total bacterial phyla, irrespective of HLB status. In addition, a temporal change in the rhizosphere microbe population was observed during a two-year-long survey, from which we confirmed that some bacterial families differently responded to HLB disease status. The clustering of the bacterial co-occurrence network data revealed the presence of a subnetwork composed of Streptomycetaceae and bacterial families with plant growth-promoting activity in Stage H and III samples. These data implicated that the Streptomycetaceae subnetwork may act as a functional unit against HLB.

19.
Parasit Vectors ; 15(1): 468, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522762

RESUMEN

BACKGROUND: Visceral leishmaniasis (VL) is the most severe form of all leishmanial infections and is caused by infection with protozoa of Leishmania donovani and Leishmania infantum. This parasitic disease occurs in over 80 countries and its geographic distribution is on the rise. Although the interaction between the intestinal microbiome and the immune response has been established in several pathologies, it has not been widely studied in leishmaniasis. The Syrian hamster is the most advanced laboratory model for developing vaccines and new drugs against VL. In the study reported here, we explored the relationship between the intestinal microbiome and infection with L. infantum in this surrogate host. METHODS: Male Syrian hamsters (120-140 g) were inoculated with 108 promastigotes of a canine-derived L. infantum strain or left as uninfected control animals. Infection was maintained for 19 weeks (endpoint) and monitored by an immunoglobulin G (IgG) enyzme-linked immunosorbent assay throughout the experiment. Individual faecal samples, obtained at weeks 16, 18 and 19 post-inoculation, were analysed to determine the 16S metagenomic composition (the operational taxonomic units [OTUs] of the intestinal microbiome and the comparison between groups were FDR (false discovery rate)-adjusted). RESULTS: Leishmania infantum infection elicited moderate clinical signs and lesions and a steady increase in specific anti-Leishmania serum IgG. The predominant phyla (Firmicutes + Bacteriodetes: > 90%), families (Muribaculaceae + Lachnospiraceae + Ruminococcaceae: 70-80%) and genera found in the uninfected hamsters showed no significant variations throughout the experiment. Leishmania infantum infection provoked a slightly higher-albeit non-significant-value for the Firmicutes/Bacteriodetes ratio but no notable differences were found in the relative abundance or diversity of phyla and families. The microbiome of the infected hamsters was enriched in CAG-352, whereas Lachnospiraceae UCG-004, the [Eubacterium] ventriosum group and Allobaculum were less abundant. CONCLUSIONS: The lack of extensive significant differences between hamsters infected and uninfected with L. infantum in the higher taxa (phyla, families) and the scarce variation found, which was restricted to genera with a low relative abundance, suggest that there is no clear VL infection-intestinal microbiome axis in hamsters. Further studies are needed (chronic infections, co-abundance analyses, intestinal sampling, functional analysis) to confirm these findings and to determine more precisely the possible relationship between microbiome composition and VL infection.


Asunto(s)
Microbioma Gastrointestinal , Leishmania infantum , Leishmaniasis Visceral , Leishmaniasis , Cricetinae , Perros , Masculino , Animales , Mesocricetus , Leishmaniasis Visceral/parasitología , Leishmaniasis/parasitología , Inmunoglobulina G
20.
Int J Food Microbiol ; 372: 109696, 2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35526357

RESUMEN

With the availability of high-throughput sequencing techniques our knowledge of the structure and dynamics of food microbial communities has made a quantum leap. However, this knowledge is dispersed in a large number of papers and hard data are only partly available through powerful on-line databases and tools such as QIITA, MGnify and the Integrated Microbial Next Generation Sequencing platform, whose annotation is not optimized for foods. Here, we present the 4th iteration of FoodMicrobionet, a database of the composition of bacterial microbial communities of foods and food environments. With 180 studies and 10,151 samples belonging to 8 major food groups FoodMicrobionet 4.1.2 is arguably the largest and best annotated database on food bacterial communities. This version includes 1684 environmental samples and 8467 food samples, belonging to 16 L1 categories and 196 L6 categories of the EFSA FoodEx2 classification and is approximately 4 times larger than previous version (3.1, https://doi.org/10.1016/j.ijfoodmicro.2019.108249). As a representative case study among the many potential applications of FoodMicrobionet, we confirm that taxonomic assignment at the genus level can be performed confidently for the majority of amplicon sequence variants using the most commonly used 16S RNA gene target regions (V1-V3, V3-V4, V4), with best results with higher quality sequences and longer fragment lengths, but that care should be exercised in confirming the assignment at species level. Both FoodMicrobionet and related data and software conform to FAIR (findable, accessible, interoperable, reusable/reproducible) criteria for scientific data and software and are freely available on public repositories (GitHub, Mendeley data). Even if FoodMicrobionet does not have the sophistication of QIITA, IMNGS and MGnify, we feel that this iteration, due to its size and diversity, provides a valuable asset for both the scientific community and industrial and regulatory stakeholders.


Asunto(s)
Bacterias , Microbiota , Bacterias/genética , ADN Bacteriano/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Microbiota/genética , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda