Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-35882668

RESUMEN

The transient receptor potential (TRP) channels, classified into six (-A, -V, -P, -C, -M, -ML, -N and -Y) subfamilies, are important membrane sensors and mediators of diverse stimuli including pH, light, mechano-force, temperature, pain, taste, and smell. The mammalian TRP superfamily of 28 members share similar membrane topology with six membrane-spanning helices (S1-S6) and cytosolic N-/C-terminus. Abnormal function or expression of TRP channels is associated with cancer, skeletal dysplasia, immunodeficiency, and cardiac, renal, and neuronal diseases. The majority of TRP members share common functional regulators such as phospholipid PIP2, 2-aminoethoxydiphenyl borate (2-APB), and cannabinoid, while other ligands are more specific, such as allyl isothiocyanate (TRPA1), vanilloids (TRPV1), menthol (TRPM8), ADP-ribose (TRPM2), and ML-SA1 (TRPML1). The mechanisms underlying the gating and regulation of TRP channels remain largely unclear. Recent advances in cryogenic electron microscopy provided structural insights into 19 different TRP channels which all revealed close proximity of the C-terminus with the N-terminus and intracellular S4-S5 linker. Further studies found that some highly conserved residues in these regions of TRPV, -P, -C and -M members mediate functionally critical intramolecular interactions (i.e., within one subunit) between these regions. This review provides an overview on (1) intramolecular interactions in TRP channels and their effect on channel function; (2) functional roles of interplays between PIP2 (and other ligands) and TRP intramolecular interactions; and (3) relevance of the ligand-induced modulation of intramolecular interaction to diseases.


Asunto(s)
Canales de Potencial de Receptor Transitorio , Animales , Humanos , Canales de Potencial de Receptor Transitorio/química , Canales de Potencial de Receptor Transitorio/metabolismo , Estructura Secundaria de Proteína , Mentol , Temperatura , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/metabolismo , Mamíferos/metabolismo
2.
Exp Physiol ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38979869

RESUMEN

Gut motility undergoes a switch from myogenic to neurogenic control in late embryonic development. Here, we report on the electrical events that underlie this transition in the enteric nervous system, using the GCaMP6f reporter in neural crest cell derivatives. We found that spontaneous calcium activity is tetrodotoxin (TTX) resistant at stage E11.5, but not at E18.5. Motility at E18.5 was characterized by periodic, alternating high- and low-frequency contractions of the circular smooth muscle; this frequency modulation was inhibited by TTX. Calcium imaging at the neurogenic-motility stages E18.5-P3 showed that CaV1.2-positive neurons exhibited spontaneous calcium activity, which was inhibited by nicardipine and 2-aminoethoxydiphenyl borate (2-APB). Our protocol locally prevented muscle tone relaxation, arguing for a direct effect of nicardipine on enteric neurons, rather than indirectly by its relaxing effect on muscle. We demonstrated that the ENS was mechanosensitive from early stages on (E14.5) and that this behaviour was TTX and 2-APB resistant. We extended our results on L-type channel-dependent spontaneous activity and TTX-resistant mechanosensitivity to the adult colon. Our results shed light on the critical transition from myogenic to neurogenic motility in the developing gut, as well as on the intriguing pathways mediating electro-mechanical sensitivity in the enteric nervous system. HIGHLIGHTS: What is the central question of this study? What are the first neural electric events underlying the transition from myogenic to neurogenic motility in the developing gut, what channels do they depend on, and does the enteric nervous system already exhibit mechanosensitivity? What is the main finding and its importance? ENS calcium activity is sensitive to tetrodotoxin at stage E18.5 but not E11.5. Spontaneous electric activity at fetal and adult stages is crucially dependent on L-type calcium channels and IP3R receptors, and the enteric nervous system exhibits a tetrodotoxin-resistant mechanosensitive response. Abstract figure legend Tetrodotoxin-resistant Ca2+ rise induced by mechanical stimulation in the E18.5 mouse duodenum.

3.
Ultrastruct Pathol ; 48(1): 29-41, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37970647

RESUMEN

Investigation the protective effect of transient receptor potential channel modulator 2-Aminoethoxydiphenyl Borate (2-APB) on aminoglycoside nephrotoxicity caused by reactive oxygen species, calcium-induced apoptosis and inflammation was aimed. Forty Wistar rats were divided (n=8) as follows: Control group; DMSO group; 2-APB group; Gentamicin group (injected 100 mg/kg gentamicin intramuscularly for 10 days); Gentamicin+ 2-APB group (injected 2 mg/kg 2-APB intraperitoneally, then after 30 minutes 100 mg/kg gentamicin was injected intramuscularly for 10 days). Blood samples were collected for biochemical analyses, kidney tissue samples were collected for light, electron microscopic and immunohistochemical investigations. In gentamicin group glomerular degeneration, tubular dilatation, vacuolization, desquamation of tubular cells and hyaline cast formation in luminal space and leukocyte infiltration were seen. Disorganization of microvilli of tubular cells, apical cytoplasmic blebbing, lipid accumulation, myelin figure like structure formation, increased lysosomes, mitochondrial swelling and disorganization of cristae structures, apoptotic changes and widening of intercellular space were found. TNF-α, IL-6 and caspase 3 expressions were increased. BUN and creatinine concentrations were increased. Increase in MDA levels and decrease in SOD activities were determined. Even though degeneration still continues in gentamicin+2-APB treatment group, severity and the area it occupied were decreased and the glomerular and tubule structures were generally preserved. TNF-α, IL-6, caspase 3 immunoreactivities and BUN, creatinine, MDA concentrations were reduced and SOD activities were increased markedly compared to gentamicin group. In conclusion, it has been considered that 2-APB can prevent gentamicin mediated nephrotoxicity with its anti-oxidant, anti-apoptotic and anti-inflammatory effects.


Asunto(s)
Enfermedades Renales , Riñón , Ratas , Animales , Caspasa 3/metabolismo , Caspasa 3/farmacología , Aminoglicósidos/efectos adversos , Aminoglicósidos/metabolismo , Ratas Wistar , Creatinina/metabolismo , Creatinina/farmacología , Factor de Necrosis Tumoral alfa , Interleucina-6 , Enfermedades Renales/inducido químicamente , Enfermedades Renales/prevención & control , Antibacterianos/efectos adversos , Antioxidantes/farmacología , Gentamicinas/toxicidad , Gentamicinas/metabolismo , Superóxido Dismutasa/metabolismo , Estrés Oxidativo
4.
J Biol Chem ; 298(3): 101706, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35150742

RESUMEN

Transient receptor potential vanilloid 3 (TRPV3), robustly expressed in the skin, is a nonselective calcium-permeable cation channel activated by warm temperature, voltage, and certain chemicals. Natural monoterpenoid carvacrol from plant oregano is a known skin sensitizer or allergen that specifically activates TRPV3 channel. However, how carvacrol activates TRPV3 mechanistically remains to be understood. Here, we describe the molecular determinants for chemical activation of TRPV3 by the agonist carvacrol. Patch clamp recordings reveal that carvacrol activates TRPV3 in a concentration-dependent manner, with an EC50 of 0.2 mM, by increasing the probability of single-channel open conformation. Molecular docking of carvacrol into cryo-EM structure of TRPV3 combined with site-directed mutagenesis further identified a unique binding pocket formed by the channel S2-S3 linker important for mediating this interaction. Within the binding pocket consisting of four residues (Ile505, Leu508, Arg509, and Asp512), we report that Leu508 is the most critical residue for the activation of TRPV3 by carvacrol, but not 2-APB, a widely used nonspecific agonist and TRP channel modulator. Our findings demonstrate a direct binding of carvacrol to TRPV3 by targeting the channel S2-S3 linker that serves as a critical domain for chemical-mediated activation of TRPV3. We also propose that carvacrol can function as a molecular tool in the design of novel specific TRPV3 modulators for the further understanding of TRPV3 channel pharmacology.


Asunto(s)
Cimenos , Monoterpenos , Canales Catiónicos TRPV , Cimenos/farmacología , Simulación del Acoplamiento Molecular , Monoterpenos/farmacología , Canales Catiónicos TRPV/metabolismo
5.
Adv Exp Med Biol ; 1427: 53-60, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37322335

RESUMEN

Obstructive sleep apnea (OSA), a sleep breathing disorder featured by chronic intermittent hypoxia (CIH), is associated with pulmonary hypertension (PH). Rats exposed to CIH develop systemic and lung oxidative stress, pulmonary vascular remodeling, and PH and overexpress Stim-activated TRPC-ORAI channels (STOC) in the lung. Previously, we demonstrated that 2-aminoethyl-diphenylborinate (2-APB)-treatment, a STOC-blocker, prevents PH and the overexpression of STOC induced by CIH. However, 2-APB did not prevent systemic and pulmonary oxidative stress. Accordingly, we hypothesize that the contribution of STOC in the development of PH induced by CIH is independent of oxidative stress. We measured the correlation between right ventricular systolic pressure (RVSP) and lung malondialdehyde (MDA) with the gene expression of STOC and morphological parameters in the lung from control, CIH-treated, and 2-APB-treated rats. We found correlations between RVSP and increased medial layer and STOC pulmonary levels. 2-APB-treated rats showed a correlation between RVSP and the medial layer thickness, α-actin-ir, and STOC, whereas RVSP did not correlate with MDA levels in CIH and 2-APB-treated rats. CIH rats showed correlations between lung MDA levels and the gene expression of TRPC1 and TRPC4. These results suggest that STOC channels play a key role in developing CIH-induced PH that is independent from lung oxidative stress.


Asunto(s)
Hipertensión Pulmonar , Hipertensión , Ratas , Animales , Hipertensión Pulmonar/etiología , Remodelación Vascular , Estrés Oxidativo , Hipoxia
6.
Molecules ; 28(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36677928

RESUMEN

2-Aminoethoxydiphenyl borate (2-APB), a boron-containing compound, is a multitarget compound with potential as a drug precursor and exerts various effects in systems of the human body. Ion channels are among the reported targets of 2-APB. The effects of 2-APB on voltage-gated potassium channels (KV) have been reported, but the types of KV channels that 2-APB inhibits and the inhibitory mechanism remain unknown. In this paper, we discovered that 2-APB acted as an inhibitor of three representative human KV1 channels. 2-APB significantly blocked A-type Kv channel KV1.4 in a concentration-dependent manner, with an IC50 of 67.3 µM, while it inhibited the delayed outward rectifier channels KV1.2 and KV1.3, with IC50s of 310.4 µM and 454.9 µM, respectively. Further studies on KV1.4 showed that V549, T551, A553, and L554 at the cavity region and N-terminal played significant roles in 2-APB's effects on the KV1.4 channel. The results also indicated the importance of fast inactivation gating in determining the different effects of 2-APB on three channels. Interestingly, a current facilitation phenomenon by a short prepulse after 2-APB application was discovered for the first time. The docked modeling revealed that 2-APB could form hydrogen bonds with different sites in the cavity region of three channels, and the inhibition constants showed a similar trend to the experimental results. These findings revealed new molecular targets of 2-APB and demonstrated that 2-APB's effects on KV1 channels might be part of the reason for the diverse bioactivities of 2-APB in the human body and in animal models of human disease.


Asunto(s)
Canales de Potasio con Entrada de Voltaje , Animales , Humanos , Compuestos de Boro/farmacología , Canales Iónicos
7.
Pflugers Arch ; 474(3): 315-342, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35098357

RESUMEN

The ruminal epithelium absorbs large quantities of NH4+ and Ca2+. A role for TRPV3 has emerged, but data on TRPV4 are lacking. Furthermore, short-chain fatty acids (SCFA) stimulate ruminal Ca2+ and NH4+ uptake in vivo and in vitro, but the pathway is unclear. Sequencing of the bovine homologue (bTRPV4) revealed 96.79% homology to human TRPV4. Two commercial antibodies were tested using HEK-293 cells overexpressing bTRPV4, which in ruminal protein detected a weak band at the expected ~ 100 kDa and several bands ≤ 60 kDa. Immunofluorescence imaging revealed staining of the apical membrane of the stratum granulosum for bTRPV3 and bTRPV4, with cytosolic staining in other layers of the ruminal epithelium. A similar expression pattern was observed in a multilayered ruminal cell culture which developed resistances of > 700 Ω · cm2 with expression of zonula occludens-1 and claudin-4. In Ussing chambers, 2-APB and the TRPV4 agonist GSK1016790A stimulated the short-circuit current across native bovine ruminal epithelia. In whole-cell patch-clamp recordings on HEK-293 cells, bTRPV4 was shown to be permeable to NH4+, K+, and Na+ and highly sensitive to GSK1016790A, while effects of butyrate- were insignificant. Conversely, bTRPV3 was strongly stimulated by 2-APB and by butyrate- (pH 6.4 > pH 7.4), but not by GSK1016790A. Fluorescence calcium imaging experiments suggest that butyrate- stimulates both bTRPV3 and bTRPV4. While expression of bTRPV4 appears to be weaker, both channels are candidates for the ruminal transport of NH4+ and Ca2+. Stimulation by SCFA may involve cytosolic acidification (bTRPV3) and cell swelling (bTRPV4).


Asunto(s)
Butiratos , Canales Catiónicos TRPV , Animales , Transporte Biológico/fisiología , Butiratos/metabolismo , Bovinos , Epitelio/metabolismo , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Canales Catiónicos TRPV/metabolismo
8.
Neurobiol Learn Mem ; 188: 107587, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35051621

RESUMEN

Intracellular calcium stores (ICS) play a dynamic role in neuronal calcium (Ca2+) homeostasis both by buffering Ca2+ excess in the cytoplasm or providing an additional source of Ca2+ when concentration increase is needed. However, in spite of the large body of evidence showing Ca2+ as an essential second messenger in many signaling cascades underlying synaptic plasticity, the direct involvement of the intracellular Ca2+-release channels (ICRCs) in memory processing has been highly overlooked. Here we investigated the role of the ICRC inositol 1,4,5-trisphosphate receptor (IP3R) activity during different memory phases using pharmacological inhibition in the dorsal hippocampus during contextual fear conditioning. We first found that post-training administration of the IP3R antagonist 2-aminoethyl diphenylborinate (2-APB) impaired memory consolidation in a dose and time-dependent manner. Inhibiting IP3Rs also disrupted memory retrieval. Contextual fear memory reconsolidation or extinction, however, were not sensitive to IP3R blockade. Taken together, our results indicate that hippocampal IP3Rs play an important role in contextual fear memory consolidation and retrieval.


Asunto(s)
Calcio , Miedo/fisiología , Hipocampo/fisiología , Receptores de Inositol 1,4,5-Trifosfato , Consolidación de la Memoria/fisiología , Plasticidad Neuronal , Animales , Región CA3 Hipocampal , Extinción Psicológica/fisiología , Inhibición Psicológica , Masculino , Ratas
9.
Cell Mol Neurobiol ; 42(4): 1211-1223, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33219878

RESUMEN

ß-Amyloid (Aß) peptide is a characteristic feature of Alzheimer's disease (AD) and accumulation of Aß is associated with loss of synaptic plasticity and neuronal cell death. Aggregation of Aß initiates numerous molecular signalling pathways leading to oxidative stress, mitochondrial dysfunction as well as an imbalance of calcium ion influx homeostasis. Recently, it has been shown that transient receptor potential melastatin 2 (TRPM2), a non-selective calcium-permeable cation channel has been postulated to play a vital role in the neuronal death, indicating the potential of TRPM2 inhibition in CNS disease. In this study, neuroprotective potential of 2-aminoethoxydiphenyl borate (2-APB), a broad-spectrum calcium channels blocker was investigated in Aß-induced memory deficits in rats. In addition, effect of 2-APB on TRPM2 channels gene and protein expressions and also on calcium and memory related proteins was investigated in the hippocampus. Intracerebroventricular (I.C.V.) administration of Aß (Aß25-35, 10 µg) markedly induced cognitive impairment and upregulation of mRNA and protein expression of TRPM2 in the hippocampus. In addition, AChE activity was also increased in the cortex of the Aß administered animals. Three-week treatment with 2-APB led to the down-regulation of TRPM2 mRNA and protein expression in the hippocampus and also improved the cognitive functions which was evident from the behavioral parameters. Moreover, 2-APB treatment also increased the calcium and memory associated proteins namely p-CaMKII, p-GSK-3ß, p-CREB and PSD-95 in the hippocampus and reduced the mRNA level of calcium buffering proteins and calcineurin A (PPP3CA) in the hippocampus. Furthermore, 2-APB treatment significantly reduced the AChE activity in the cortex. Thus, our findings suggest the neuroprotective effect of 2-APB in Aß-induced cognitive impairment.


Asunto(s)
Péptidos beta-Amiloides , Fármacos Neuroprotectores , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/toxicidad , Animales , Compuestos de Boro/farmacología , Compuestos de Boro/uso terapéutico , Glucógeno Sintasa Quinasa 3 beta , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratas
10.
Int J Mol Sci ; 23(13)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35806455

RESUMEN

Brain stroke is a highly prevalent pathology and a main cause of disability among older adults. If not promptly treated with recanalization therapies, primary and secondary mechanisms of injury contribute to an increase in the lesion, enhancing neurological deficits. Targeting excitotoxicity and oxidative stress are very promising approaches, but only a few compounds have reached the clinic with relatively good positive outcomes. The exploration of novel targets might overcome the lack of clinical translation of previous efficient preclinical neuroprotective treatments. In this study, we examined the neuroprotective properties of 2-aminoethoxydiphenyl borate (2-APB), a molecule that interferes with intracellular calcium dynamics by the antagonization of several channels and receptors. In a permanent model of cerebral ischemia, we showed that 2-APB reduces the extent of the damage and preserves the functionality of the cortical territory, as evaluated by somatosensory evoked potentials (SSEPs). While in this permanent ischemia model, the neuroprotective effect exerted by the antioxidant scavenger cholesteronitrone F2 was associated with a reduction in reactive oxygen species (ROS) and better neuronal survival in the penumbra, 2-APB did not modify the inflammatory response or decrease the content of ROS and was mostly associated with a shortening of peri-infarct depolarizations, which translated into better cerebral blood perfusion in the penumbra. Our study highlights the potential of 2-APB to target spreading depolarization events and their associated inverse hemodynamic changes, which mainly contribute to extension of the area of lesion in cerebrovascular pathologies.


Asunto(s)
Isquemia Encefálica , Depresión de Propagación Cortical , Anciano , Boratos/farmacología , Isquemia Encefálica/patología , Circulación Cerebrovascular/fisiología , Humanos , Infarto , Neuroprotección , Especies Reactivas de Oxígeno
11.
Acta Pharmacol Sin ; 42(2): 290-300, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32747719

RESUMEN

Cutaneous T-cell lymphoma (CTCL) is characterized by a heterogeneous group of extranodal non-Hodgkin lymphomas, in which monoclonal T lymphocytes infiltrate the skin. LW-213, a derivative of wogonin, was found to induce cell apoptosis in chronic myeloid leukemia (CML). In this study, we investigated the effects of LW-213 on CTCL cells and the underlying mechanisms. We showed that LW-213 (1-25 µM) dose-dependently inhibited human CTCL cell lines (Hut-102, Hut-78, MyLa, and HH) with IC50 values of around 10 µM, meanwhile it potently inhibited primary leukemia cells derived from peripheral blood of T-cell lymphoma patients. We revealed that LW-213-induced apoptosis was accompanied by ROS formation and the release of calcium from endoplasmic reticulum (ER) through IP3R-1channel. LW-213 selectively activated CHOP and induced apoptosis in Hut-102 cells via activating PERK-eIF2α-ATF4 pathway. Interestingly, the degree of apoptosis and expression of ER stress-related proteins were alleviated in the presence of either N-acetyl cysteine (NAC), an ROS scavenger, or 2-aminoethyl diphenylborinate (2-APB), an IP3R-1 inhibitor, implicating ROS/calcium-dependent ER stress in LW-213-induced apoptosis. In NOD/SCID mice bearing Hut-102 cell line xenografts, administration of LW-213 (10 mg/kg, ip, every other day for 4 weeks) markedly inhibited the growth of Hut-102 derived xenografts and prolonged survival. In conclusion, our study provides a new insight into the mechanism of LW-213-induced apoptosis, suggesting the potential of LW-213 as a promising agent against CTCL.


Asunto(s)
Antineoplásicos/farmacología , Flavanonas/farmacología , Linfoma Cutáneo de Células T/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Factor de Transcripción Activador 4/metabolismo , Animales , Antineoplásicos/administración & dosificación , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Factor 2 Eucariótico de Iniciación/metabolismo , Femenino , Flavanonas/administración & dosificación , Flavanonas/química , Humanos , Concentración 50 Inhibidora , Linfoma Cutáneo de Células T/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Cutáneas/patología , Factor de Transcripción CHOP/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , eIF-2 Quinasa/metabolismo
12.
Biopolymers ; 111(10): e23392, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33460071

RESUMEN

Calcium release-activated calcium (CRAC) channels are highly calcium ion (Ca2+)-selective channels in the plasma membrane. The transient drop of endoplasmic reticulum Ca2+ level activates its calcium sensor stromal interaction molecule (STIM) and then triggers the gating of the CRAC channel pore unit Orai. This process involves a variety of activities of the immune system. Therefore, understanding how the activation and regulation of the CRAC channel can be accomplished is essential. Here we briefly summarize the recent progress on Orai gating and its regulation by 2-aminoethoxydiphenylborate (2-APB) obtained from structural biology studies, biochemical and electrophysiological measurements, as well as molecular modeling. Indeed, integration between experiments and computations has further deepened our understanding of the channel gating and regulation.


Asunto(s)
Canales de Calcio Activados por la Liberación de Calcio/química , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Activación del Canal Iónico/fisiología , Animales , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Modelos Moleculares
13.
Pharmacol Res ; 156: 104804, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32278040

RESUMEN

Herpesviruses encode transmembrane G protein-coupled receptors (GPCRs), which share structural homology to human chemokine receptors. These viral GPCRs include KSHV-encoded ORF74, EBV-encoded BILF1, and HCMV-encoded US28, UL33, UL78 and US27. Viral GPCRs hijack various signaling pathways and cellular networks, including pathways involved in the so-called cancer hallmarks as defined by Hanahan and Weinberg. These hallmarks describe cellular characteristics crucial for transformation and tumor progression. The cancer hallmarks involve growth factor-independent proliferation, angiogenesis, avoidance of apoptosis, invasion and metastasis, metabolic reprogramming, genetic instability and immune evasion amongst others. The role of beta herpesviruses modulating these cancer hallmarks is clearly highlighted by the proliferative and pro-angiogenic phenotype associated with KSHV infection which is largely ascribed to the ORF74-mediated modulation of signaling networks in host cells. For HCMV and Epstein-Bar encoded GPCRs, oncomodulatory effects have been described which contribute to the cancer hallmarks, thereby enhancing oncogenic development. In this review, we describe the main signaling pathways controlling the hallmarks of cancer which are affected by the betaherpesvirus encoded GPCRs. Most prominent among these involve the JAK-STAT, PI(3)K-AKT, NFkB and MAPK signaling nodes. These insights are important to effectively target these viral GPCRs and their signaling networks in betaherpesvirus-associated malignancies.


Asunto(s)
Transformación Celular Viral , Infecciones por Herpesviridae/metabolismo , Herpesviridae/metabolismo , Neoplasias/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Infecciones Tumorales por Virus/metabolismo , Proteínas Virales/metabolismo , Animales , Anticarcinógenos/uso terapéutico , Antivirales/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Herpesviridae/efectos de los fármacos , Infecciones por Herpesviridae/tratamiento farmacológico , Infecciones por Herpesviridae/virología , Interacciones Huésped-Patógeno , Humanos , Neoplasias/patología , Neoplasias/prevención & control , Neoplasias/virología , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Transducción de Señal , Infecciones Tumorales por Virus/virología , Proteínas Virales/antagonistas & inhibidores
14.
Pharmacol Res ; 159: 105026, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32562815

RESUMEN

Central nervous system (CNS) disorders like Alzheimer's disease (AD), Parkinson disease (PD), stroke, epilepsy, depression, and bipolar disorder have a high impact on both medical and social problems due to the surge in their prevalence. All of these neuronal disorders share some common etiologies including disruption of Ca2+ homeostasis and accumulation of misfolded proteins. These misfolded proteins further disrupt the intracellular Ca2+ homeostasis by disrupting the activity of several ion channels including transient receptor potential (TRP) channels. TRP channel families include non-selective Ca2+ permeable channels, which act as cellular sensors activated by various physio-chemical stimuli, exogenous, and endogenous ligands responsible for maintaining the intracellular Ca2+ homeostasis. TRP channels are abundantly expressed in the neuronal cells and disturbance in their activity leads to various neuronal diseases. Under the pathological conditions when the activity of TRP channels is perturbed, there is a disruption of the neuronal homeostasis through increased inflammatory response, generation of reactive oxygen species, and mitochondrial dysfunction. Therefore, there is a potential of pharmacological interventions targeting TRP channels in CNS disorders. This review focuses on the role of TRP channels in neurological diseases; also, we have highlighted the current insights into the pharmacological modulators targeting TRP channels.


Asunto(s)
Fármacos del Sistema Nervioso Central/uso terapéutico , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Sistema Nervioso Central/efectos de los fármacos , Moduladores del Transporte de Membrana/uso terapéutico , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores , Animales , Señalización del Calcio , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/fisiopatología , Fármacos del Sistema Nervioso Central/efectos adversos , Enfermedades del Sistema Nervioso Central/metabolismo , Enfermedades del Sistema Nervioso Central/fisiopatología , Humanos , Moduladores del Transporte de Membrana/efectos adversos , Estrés Oxidativo , Pliegue de Proteína , Especies Reactivas de Oxígeno/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo
15.
Int J Mol Sci ; 21(7)2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32252254

RESUMEN

Store-operated heteromeric Orai1/Orai3 channels have been discussed in the context of aging, cancer, and immune cell differentiation. In contrast to homomeric Orai1 channels, they exhibit a different pharmacology upon application of reactive oxygen species (ROS) or 2-aminoethoxydiphenyl borate (2-APB) in various cell types. In endogenous cells, subunit composition and arrangement may vary and cannot be defined precisely. In this study, we used patch-clamp electrophysiology to investigate the 2-APB profile of store-operated and store-independent homomeric Orai1 and heteromeric Orai1/Orai3 concatenated channels with defined subunit compositions. As has been shown previous, one or more Orai3 subunit(s) within the channel result(s) in decreased Ca2+ release activated Ca2+ current (ICRAC). Upon application of 50 µM 2-APB, channels with two or more Orai3 subunits exhibit large outward currents and can be activated by 2-APB independent from storedepletion and/or the presence of STIM1. The number and position of Orai3 subunits within the heteromeric store-operated channel change ion conductivity of 2-APB-activated outward current. Compared to homomeric Orai1 channels, one Orai3 subunit within the channel does not alter 2-APB pharmacology. None of the concatenated channel constructs were able to exactly simulate the complex 2-APB pharmacology observed in prostate cancer cells. However, 2-APB profiles of prostate cancer cells are similar to those of concatenated channels with Orai3 subunit(s). Considering the presented and previous results, this indicates that distinct subtypes of heteromeric SOCE channels may be selectively activated or blocked. In the future, targeting distinct heteromeric SOCE channel subtypes may be the key to tailored SOCE-based therapies.


Asunto(s)
Canales de Calcio/metabolismo , Activación del Canal Iónico , Multimerización de Proteína , Canales de Calcio/química , Línea Celular Tumoral , Humanos , Activación del Canal Iónico/efectos de los fármacos , Masculino , Potenciales de la Membrana , Proteína ORAI1/química , Proteína ORAI1/metabolismo , Unión Proteica , Multimerización de Proteína/efectos de los fármacos
16.
Int J Mol Sci ; 21(21)2020 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-33114331

RESUMEN

Transient receptor potential melastatin 7 (TRPM7) is an ion channel that mediates monovalent cations out of cells, as well as the entry of divalent cations, such as zinc, magnesium, and calcium, into the cell. It has been reported that inhibitors of TRPM7 are neuroprotective in various neurological diseases. Previous studies in our lab suggested that seizure-induced neuronal death may be caused by the excessive release of vesicular zinc and the subsequent accumulation of zinc in the neurons. However, no studies have evaluated the effects of carvacrol and 2-aminoethoxydiphenyl borate (2-APB), both inhibitors of TRPM7, on the accumulation of intracellular zinc in dying neurons following seizure. Here, we investigated the therapeutic efficacy of carvacrol and 2-APB against pilocarpine-induced seizure. Carvacrol (50 mg/kg) was injected once per day for 3 or 7 days after seizure. 2-APB (2 mg/kg) was also injected once per day for 3 days after seizure. We found that inhibitors of TRPM7 reduced seizure-induced TRPM7 overexpression, intracellular zinc accumulation, and reactive oxygen species production. Moreover, there was a suppression of oxidative stress, glial activation, and the blood-brain barrier breakdown. In addition, inhibitors of TRPM7 remarkably decreased apoptotic neuron death following seizure. Taken together, the present study demonstrates that TRPM7-mediated zinc translocation is involved in neuron death after seizure. The present study suggests that inhibitors of TRPM7 may have high therapeutic potential to reduce seizure-induced neuron death.


Asunto(s)
Compuestos de Boro/administración & dosificación , Cimenos/administración & dosificación , Neuronas/metabolismo , Convulsiones/prevención & control , Canales Catiónicos TRPM/metabolismo , Zinc/metabolismo , Animales , Transporte Biológico , Barrera Hematoencefálica/metabolismo , Compuestos de Boro/farmacología , Cimenos/farmacología , Modelos Animales de Enfermedad , Masculino , Neuronas/efectos de los fármacos , Pilocarpina/efectos adversos , Ratas , Especies Reactivas de Oxígeno/metabolismo , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Canales Catiónicos TRPM/antagonistas & inhibidores , Resultado del Tratamiento
17.
Int J Mol Sci ; 21(16)2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32764353

RESUMEN

Calcium ions regulate a wide array of physiological functions including cell differentiation, proliferation, muscle contraction, neurotransmission, and fertilization. The endoplasmic reticulum (ER) is the major intracellular Ca2+ store and cellular events that induce ER store depletion (e.g., activation of inositol 1,4,5-triphosphate (IP3) receptors) trigger a refilling process known as store-operated calcium entry (SOCE). It requires the intricate interaction between the Ca2+ sensing stromal interaction molecules (STIM) located in the ER membrane and the channel forming Orai proteins in the plasma membrane (PM). The resulting active STIM/Orai complexes form highly selective Ca2+ channels that facilitate a measurable Ca2+ influx into the cytosol followed by successive refilling of the ER by the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA). STIM and Orai have attracted significant therapeutic interest, as enhanced SOCE has been associated with several cancers, and mutations in STIM and Orai have been linked to immunodeficiency, autoimmune, and muscular diseases. 2-Aminoethyl diphenylborinate (2-APB) is a known modulator and depending on its concentration can inhibit or enhance SOCE. We have synthesized several novel derivatives of 2-APB, introducing halogen and other small substituents systematically on each position of one of the phenyl rings. Using a fluorometric imaging plate reader (FLIPR) Tetra-based calcium imaging assay we have studied how these structural changes of 2-APB affect the SOCE modulation activity at different compound concentrations in MDA-MB-231 breast cancer cells. We have discovered 2-APB derivatives that block SOCE at low concentrations, at which 2-APB usually enhances SOCE.


Asunto(s)
Compuestos de Boro/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Proteínas de Neoplasias/genética , Proteína ORAI1/genética , Molécula de Interacción Estromal 1/genética , Moléculas de Interacción Estromal/genética , Animales , Compuestos de Boro/síntesis química , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/genética , Proteínas de Neoplasias/antagonistas & inhibidores , Proteína ORAI1/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Molécula de Interacción Estromal 1/antagonistas & inhibidores , Moléculas de Interacción Estromal/antagonistas & inhibidores
18.
Pflugers Arch ; 471(10): 1273-1289, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31612282

RESUMEN

TRPV3, a member of the thermosensitive Ca2+-permeable TRPV channel subfamily expressed in skin and sensory nerves, is also activated by chemical agonists such as 2-aminoethyl diphenylborinate (2-APB). Repetitive stimuli induce sensitization of TRPV3 activation, characterized by the cumulative increase in current amplitude and linearization of current-voltage relation (I/V curve). Through genomic analysis of various populations, we found non-rare TRPV3 mutation (p.A628T) in East Asian people with an allele frequency of 0.249 while 0.007 in Caucasian. Slope conductance of unitary channel was not different between WT and p.A628T. Whole-cell patch clamp study of wildtype TRPV3 (WT) and p.A628T overexpressed in HEK293T cells showed similar sensitization by the repetitive increase in temperature from 23 to 37 °C, while slightly higher sensitization to 43 °C in p.A628T. In contrast, the repetitive application of 2-APB (10 µM) or carvacrol (100 µM) induced faster sensitization in p.A628T than WT. However, 1 µM farnesyl pyrophosphate, an intrinsic lipid metabolite agonist, induced similar level of slow activations in WT and p.A628T. In Fura-2 microspectrofluorimetry, the 2-APB pulses induced a faster increase of [Ca2+]c in p.A628T than WT. In terms of ionic selectivity of channels, WT and p.A628T showed similar Ca2+ permeability (PCa/PNa) calculated from the reversal potential of I/V curves. Taken together, p.A628T shows faster sensitization to chemical agonists that are reflected as higher [Ca2+]c signaling. Based on the intriguing pharmacological sensitivity, the physiological implications of p.A628T in the East Asian population require further investigation.


Asunto(s)
Mutación Missense , Polimorfismo de Nucleótido Simple , Canales Catiónicos TRPV/genética , Pueblo Asiatico/genética , Compuestos de Boro/farmacología , Señalización del Calcio , Cimenos/farmacología , Células HEK293 , Humanos , Activación del Canal Iónico , Fosfatos de Poliisoprenilo/farmacología , Sesquiterpenos/farmacología , Canales Catiónicos TRPV/agonistas
19.
Pflugers Arch ; 470(10): 1555-1567, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29934936

RESUMEN

Mediated through the combined action of STIM proteins and Orai channels, store-operated Ca2+ entry (SOCE) functions ubiquitously among different cell types. The existence of multiple STIM and Orai genes has made it difficult to assign specific roles of each STIM and Orai homolog in mediating Ca2+ signals. Using CRISPR/Cas9 gene editing tools, we generated cells with both STIM or all three Orai homologs deleted and directly monitored store Ca2+ and Ca2+ signals. We found that unstimulated, SOCE null KO cells still retain 50~70% of ER Ca2+ stores of wildtype (wt) cells. After brief exposure to store-emptying conditions, acute refilling of ER Ca2+ stores was totally blocked in KO cells. However, after 24 h in culture, stores were eventually refilled. Thus, SOCE is critical for immediate refilling of ER Ca2+ but is dispensable for the maintenance of long-term ER Ca2+ homeostasis. Using the Orai null background triple Orai-KO cells, we examined the plasma membrane translocation properties of a series of truncated STIM1 variants. FRET analysis reveals that, even though PM tethering of STIM1 expedites the activation of STIM1 by facilitating its oligomerization, migration, and accumulation in ER-PM junctions, it is not required for the conformational switch, oligomerization, and clustering of STIM1. Even without overt puncta formation at ER-PM junctions, STIM11-491 and STIM11-666 could still rescue SOCE when expressed in STIM KO cells. Thus, ER-PM trapping and clustering of STIM molecules only facilitates the process of SOCE activation, but is not essential for the activation of Orai channels.


Asunto(s)
Señalización del Calcio , Proteína ORAI1/deficiencia , Molécula de Interacción Estromal 1/deficiencia , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Proteína ORAI1/genética , Multimerización de Proteína , Transporte de Proteínas , Molécula de Interacción Estromal 1/genética
20.
Biochem Biophys Res Commun ; 507(1-4): 211-216, 2018 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-30415775

RESUMEN

Ciliary beating frequency (CBF) was investigated in ciliated nasal epithelial cells (cMNECs) isolated from mice using video microscopy equipped with a high-speed camera. In cMNECs, a spontaneous CBF oscillation was observed. The CBF oscillation was abolished by BAPTA-AM but not by Ca2+-free solution. The addition of thapsigargin, which depletes Ca2+ from internal stores, also abolished CBF oscillation. Moreover, the intracellular Ca2+ concentration [Ca2+]i, spontaneously oscillated even with the Ca2+-free solution. Moreover, 2APB (an inhibitor of the IP3 receptor) abolished CBF oscillation in cMNECs. Overall, these findings suggest that the CBF oscillation in cMNECs is triggered by the release of Ca2+ from the IP3-sensitive internal stores. Moreover, IBMX, an inhibitor of phosphodiesterase, did not affect CBF oscillation in cMNECs, although it slightly increased CBF. These results suggest that CBF oscillations were induced by [Ca2+]i oscillation controlled via the release of Ca2+ from IP3-sensitive stores, rather than via cAMP accumulation. CBF oscillation possibly plays a crucial role in maintaining an efficient mucociliary clearance in the nasal epithelia.


Asunto(s)
Calcio/metabolismo , Cilios/metabolismo , Espacio Intracelular/metabolismo , Mucosa Nasal/metabolismo , 1-Metil-3-Isobutilxantina/farmacología , Animales , Compuestos de Boro/farmacología , Cilios/efectos de los fármacos , Ácido Egtácico/análogos & derivados , Ácido Egtácico/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Femenino , Ratones Endogámicos C57BL , Mucosa Nasal/efectos de los fármacos , Tapsigargina/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda