Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Cell ; 185(13): 2279-2291.e17, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35700730

RESUMEN

The isolation of CCoV-HuPn-2018 from a child respiratory swab indicates that more coronaviruses are spilling over to humans than previously appreciated. We determined the structures of the CCoV-HuPn-2018 spike glycoprotein trimer in two distinct conformational states and showed that its domain 0 recognizes sialosides. We identified that the CCoV-HuPn-2018 spike binds canine, feline, and porcine aminopeptidase N (APN) orthologs, which serve as entry receptors, and determined the structure of the receptor-binding B domain in complex with canine APN. The introduction of an oligosaccharide at position N739 of human APN renders cells susceptible to CCoV-HuPn-2018 spike-mediated entry, suggesting that single-nucleotide polymorphisms might account for viral detection in some individuals. Human polyclonal plasma antibodies elicited by HCoV-229E infection and a porcine coronavirus monoclonal antibody inhibit CCoV-HuPn-2018 spike-mediated entry, underscoring the cross-neutralizing activity among ɑ-coronaviruses. These data pave the way for vaccine and therapeutic development targeting this zoonotic pathogen representing the eighth human-infecting coronavirus.


Asunto(s)
Coronavirus Humano 229E , Infecciones por Coronavirus , Coronavirus , Animales , Antígenos CD13/química , Antígenos CD13/metabolismo , Gatos , Línea Celular , Coronavirus/metabolismo , Coronavirus Humano 229E/metabolismo , Perros , Humanos , Receptores Virales/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Porcinos
2.
Cell ; 184(1): 106-119.e14, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33333024

RESUMEN

The Coronaviridae are a family of viruses that cause disease in humans ranging from mild respiratory infection to potentially lethal acute respiratory distress syndrome. Finding host factors common to multiple coronaviruses could facilitate the development of therapies to combat current and future coronavirus pandemics. Here, we conducted genome-wide CRISPR screens in cells infected by SARS-CoV-2 as well as two seasonally circulating common cold coronaviruses, OC43 and 229E. This approach correctly identified the distinct viral entry factors ACE2 (for SARS-CoV-2), aminopeptidase N (for 229E), and glycosaminoglycans (for OC43). Additionally, we identified phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis as critical host pathways supporting infection by all three coronaviruses. By contrast, the lysosomal protein TMEM106B appeared unique to SARS-CoV-2 infection. Pharmacological inhibition of phosphatidylinositol kinases and cholesterol homeostasis reduced replication of all three coronaviruses. These findings offer important insights for the understanding of the coronavirus life cycle and the development of host-directed therapies.


Asunto(s)
COVID-19/genética , Infecciones por Coronavirus/genética , Coronavirus/fisiología , Estudio de Asociación del Genoma Completo , Interacciones Huésped-Patógeno , SARS-CoV-2/fisiología , Células A549 , Animales , Vías Biosintéticas/efectos de los fármacos , COVID-19/virología , Línea Celular , Chlorocebus aethiops , Colesterol/biosíntesis , Colesterol/metabolismo , Análisis por Conglomerados , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Resfriado Común/genética , Resfriado Común/virología , Coronavirus/clasificación , Infecciones por Coronavirus/virología , Técnicas de Inactivación de Genes , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Ratones , Fosfatidilinositoles/biosíntesis , Células Vero , Internalización del Virus/efectos de los fármacos , Replicación Viral
3.
Cell ; 184(1): 120-132.e14, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33382968

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has claimed the lives of over one million people worldwide. The causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a member of the Coronaviridae family of viruses that can cause respiratory infections of varying severity. The cellular host factors and pathways co-opted during SARS-CoV-2 and related coronavirus life cycles remain ill defined. To address this gap, we performed genome-scale CRISPR knockout screens during infection by SARS-CoV-2 and three seasonal coronaviruses (HCoV-OC43, HCoV-NL63, and HCoV-229E). These screens uncovered host factors and pathways with pan-coronavirus and virus-specific functional roles, including major dependency on glycosaminoglycan biosynthesis, sterol regulatory element-binding protein (SREBP) signaling, bone morphogenetic protein (BMP) signaling, and glycosylphosphatidylinositol biosynthesis, as well as a requirement for several poorly characterized proteins. We identified an absolute requirement for the VMP1, TMEM41, and TMEM64 (VTT) domain-containing protein transmembrane protein 41B (TMEM41B) for infection by SARS-CoV-2 and three seasonal coronaviruses. This human coronavirus host factor compendium represents a rich resource to develop new therapeutic strategies for acute COVID-19 and potential future coronavirus pandemics.


Asunto(s)
Infecciones por Coronavirus/genética , Estudio de Asociación del Genoma Completo , SARS-CoV-2/fisiología , Células A549 , Línea Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Coronavirus Humano 229E/fisiología , Infecciones por Coronavirus/virología , Coronavirus Humano NL63/fisiología , Coronavirus Humano OC43/fisiología , Técnicas de Inactivación de Genes , Células HEK293 , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Proteínas de la Membrana/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Mapeo de Interacción de Proteínas
4.
Proc Natl Acad Sci U S A ; 120(4): e2202820120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36652473

RESUMEN

Human coronavirus 229E (HCoV-229E) and NL63 (HCoV-NL63) are endemic causes of upper respiratory infections such as the "common cold" but may occasionally cause severe lower respiratory tract disease in the elderly and immunocompromised patients. There are no approved antiviral drugs or vaccines for these common cold coronaviruses (CCCoV). The recent emergence of COVID-19 and the possible cross-reactive antibody and T cell responses between these CCCoV and SARS-CoV-2 emphasize the need to develop experimental animal models for CCCoV. Mice are an ideal experimental animal model for such studies, but are resistant to HCoV-229E and HCoV-NL63 infections. Here, we generated 229E and NL63 mouse models by exogenous delivery of their receptors, human hAPN and hACE2 using replication-deficient adenoviruses (Ad5-hAPN and Ad5-hACE2), respectively. Ad5-hAPN- and Ad5-hACE2-sensitized IFNAR-/- and STAT1-/- mice developed pneumonia characterized by inflammatory cell infiltration with virus clearance occurring 7 d post infection. Ad5-hAPN- and Ad5-hACE2-sensitized mice generated virus-specific T cells and neutralizing antibodies after 229E or NL63 infection, respectively. Remdesivir and a vaccine candidate targeting spike protein of 229E and NL63 accelerated viral clearance of virus in these mice. 229E- and NL63-infected mice were partially protected from SARS-CoV-2 infection, likely mediated by cross-reactive T cell responses. Ad5-hAPN- and Ad5-hACE2-transduced mice are useful for studying pathogenesis and immune responses induced by HCoV-229E and HCoV-NL63 infections and for validation of broadly protective vaccines, antibodies, and therapeutics against human respiratory coronaviruses including SARS-CoV-2.


Asunto(s)
COVID-19 , Resfriado Común , Coronavirus Humano 229E , Coronavirus Humano NL63 , Humanos , Animales , Ratones , Anciano , SARS-CoV-2 , Protección Cruzada
5.
Antimicrob Agents Chemother ; 68(3): e0121023, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319076

RESUMEN

Libraries composed of licensed drugs represent a vast repertoire of molecules modulating physiological processes in humans, providing unique opportunities for the discovery of host-targeting antivirals. We screened the Repurposing, Focused Rescue, and Accelerated Medchem (ReFRAME) repurposing library with approximately 12,000 molecules for broad-spectrum coronavirus antivirals and discovered 134 compounds inhibiting an alphacoronavirus and mapping to 58 molecular target categories. Dominant targets included the 5-hydroxytryptamine receptor, the dopamine receptor, and cyclin-dependent kinases. Gene knock-out of the drugs' host targets including cathepsin B and L (CTSB/L; VBY-825), the aryl hydrocarbon receptor (AHR; Phortress), the farnesyl-diphosphate farnesyltransferase 1 (FDFT1; P-3622), and the kelch-like ECH-associated protein 1 (KEAP1; Omaveloxolone), significantly modulated HCoV-229E infection, providing evidence that these compounds inhibited the virus through acting on their respective host targets. Counter-screening of all 134 primary compound candidates with SARS-CoV-2 and validation in primary cells identified Phortress, an AHR activating ligand, P-3622-targeting FDFT1, and Omaveloxolone, which activates the NFE2-like bZIP transcription factor 2 (NFE2L2) by liberating it from its endogenous inhibitor KEAP1, as antiviral candidates for both an Alpha- and a Betacoronavirus. This study provides an overview of HCoV-229E repurposing candidates and reveals novel potentially druggable viral host dependency factors hijacked by diverse coronaviruses.


Asunto(s)
Coronavirus Humano 229E , Infecciones por Coronavirus , Tiazoles , Triterpenos , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Reposicionamiento de Medicamentos , Factor 2 Relacionado con NF-E2/metabolismo , Coronavirus Humano 229E/metabolismo , Antivirales/farmacología , Antivirales/uso terapéutico
6.
J Virol ; 97(9): e0055523, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37668370

RESUMEN

In vitro investigations of host-virus interactions are reliant on suitable cell and tissue culture models. Results are only as good as the model they are generated in. However, choosing cell models for in vitro work often depends on availability and previous use alone. Despite the vast increase in coronavirus research over the past few years, scientists are still heavily reliant on: non-human, highly heterogeneous or not fully differentiated, or naturally unsusceptible cells requiring overexpression of receptors and other accessory factors. Complex primary or stem cell models are highly representative of human tissues but are expensive and time-consuming to develop and maintain with limited suitability for high-throughput experiments.Using tissue-specific expression patterns, we identified human kidney cells as an ideal target for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and broader coronavirus infection. We show the use of the well-characterized human kidney cell line Caki-1 for infection with three human coronaviruses (hCoVs): Betacoronaviruses SARS-CoV-2 and Middle Eastern respiratory syndrome coronavirus and Alphacoronavirus hCoV 229E. Caki-1 cells show equal or superior susceptibility to all three coronaviruses when compared to other commonly used cell lines for the cultivation of the respective virus. Antibody staining against SARS-CoV-2 N protein shows comparable replication rates. A panel of 26 custom antibodies shows the location of SARS-CoV-2 proteins during replication using immunocytochemistry. In addition, Caki-1 cells were found to be susceptible to two other human respiratory viruses, influenza A virus and respiratory syncytial virus, making them an ideal model for cross-comparison for a broad range of respiratory viruses. IMPORTANCE Cell lines remain the backbone of virus research, but results are only as good as their originating model. Despite increased research into human coronaviruses following the COVID-19 pandemic, researchers continue to rely on suboptimal cell line models of: non-human origin, incomplete differentiation, or lacking active interferon responses. We identified the human kidney Caki-1 cell line as a potential target for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This cell line could be shown to be infectable with a wide range of coronaviruses including common cold virus hCoV-229E, epidemic virus MERS-CoV, and SARS-CoV-2 as well as other important respiratory viruses influenza A virus and respiratory syncytial virus. We could show the localization of 26 SARS-CoV-2 proteins in Caki-1 cells during natural replication and the cells are competent of forming a cellular immune response. Together, this makes Caki-1 cells a unique tool for cross-virus comparison in one cell line.


Asunto(s)
Línea Celular , Infecciones por Coronaviridae , Coronaviridae , Humanos , Coronaviridae/fisiología , Riñón/citología , Pandemias , Infecciones por Coronaviridae/patología , Infecciones por Coronaviridae/virología
7.
Arch Microbiol ; 206(6): 269, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767708

RESUMEN

Bacteriocins are ribosomally synthesized bacterial peptides endowed with antibacterial, antiprotozoal, anticancer and antiviral activities. In the present study, we evaluated the antiviral activities of two bacteriocins, enterocin DD14 (EntDD14) and lacticaseicin 30, against herpes simplex virus type 1 (HSV-1), human coronavirus 229E (HCoV-229E) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Vero, Huh7 and Vero E6 cells, respectively. In addition, the interactions of these bacteriocins with the envelope glycoprotein D of HSV-1 and the receptor binding domains of HCoV-229E and SARS-CoV-2 have been computationally evaluated using protein-protein docking and molecular dynamics simulations. HSV-1 replication in Vero cells was inhibited by EntDD14 and, to a lesser extent, by lacticaseicin 30 added to cells after virus inoculation. EntDD14 and lacticaseicin 30 had no apparent antiviral activity against HCoV-229E; however, EntDD14 was able to inhibit SARS-CoV-2 in Vero E6 cells. Further studies are needed to elucidate the antiviral mechanism of these bacteriocins.


Asunto(s)
Antivirales , Bacteriocinas , SARS-CoV-2 , Bacteriocinas/farmacología , Chlorocebus aethiops , Animales , Antivirales/farmacología , Células Vero , Humanos , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/fisiología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Hidrocarburos Aromáticos con Puentes
8.
Arch Pharm (Weinheim) ; 357(1): e2300442, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37840345

RESUMEN

The coronavirus disease-19 (COVID-19) pandemic has raised major interest in innovative drug concepts to suppress human coronavirus (HCoV) infections. We previously reported on a class of 1,2,3-triazolo fused betulonic acid derivatives causing strong inhibition of HCoV-229E replication via the viral nsp15 protein, which is proposedly related to compound binding at an intermonomer interface in hexameric nsp15. In the present study, we further explored the structure-activity relationship (SAR), by varying the substituent at the 1,2,3-triazolo ring as well as the triterpenoid skeleton. The 1,2,3-triazolo fused triterpenoids were synthesized by a multicomponent triazolization reaction, which has been developed in-house. Several analogs possessing a betulin, oleanolic acid, or ursolic acid core displayed favorable activity and selectivity (EC50 values for HCoV-229E: 1.6-3.5 µM), but neither of them proved as effective as the lead compound containing betulonic acid. The 18ß-glycyrrhetinic acid-containing analogs had low selectivity. The antiviral findings were rationalized by in silico docking in the available structure of the HCoV-229E nsp15 protein. The new SAR insights will aid the further development of these 1,2,3-triazolo fused triterpenoid compounds as a unique type of coronavirus inhibitors.


Asunto(s)
Coronavirus Humano 229E , Triterpenos , Humanos , Coronavirus Humano 229E/metabolismo , Proteínas Virales , Triterpenos/farmacología , Relación Estructura-Actividad
9.
Biochem Biophys Res Commun ; 657: 16-23, 2023 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-36965419

RESUMEN

PF-07321332 and PF-07304814, inhibitors against SARS-CoV-2 developed by Pfizer, exhibit broad-spectrum inhibitory activity against the main protease (Mpro) from various coronaviruses. Structures of PF-07321332 or PF-07304814 in complex with Mpros of various coronaviruses reveal their inhibitory mechanisms against different Mpros. However, the structural information on the lower pathogenic coronavirus Mpro with PF-07321332 or PF-07304814 is currently scarce, which hinders our comprehensive understanding of the inhibitory mechanisms of these two inhibitors. Meanwhile, given that some immunocompromised individuals are still affected by low pathogenic coronaviruses, we determined the structures of lower pathogenic coronavirus HCoV-229E Mpro with PF-07321332 and PF-07304814, respectively, and analyzed and defined in detail the structural basis for the inhibition of HCoV-229E Mpro by both inhibitors. Further, we compared the crystal structures of multiple coronavirus Mpro complexes with PF-07321332 or PF-07304814 to illustrate the differences in the interaction of Mpros, and found that the inhibition mechanism of lower pathogenic coronavirus Mpro was more similar to that of moderately pathogenic coronaviruses. Our structural studies provide new insights into drug development for low pathogenic coronavirus Mpro, and provide theoretical basis for further optimization of both inhibitors to contain potential future coronaviruses.


Asunto(s)
COVID-19 , Coronavirus Humano 229E , Humanos , Coronavirus Humano 229E/fisiología , SARS-CoV-2/metabolismo , Péptido Hidrolasas/metabolismo
10.
J Virol ; 96(4): e0195521, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34908442

RESUMEN

The receptor binding domain (RBD) of the coronavirus spike protein (S) has been verified to be the main target for potent neutralizing antibodies (nAbs) in most coronaviruses, and the N-terminal domain (NTD) of some betacoronaviruses has also been indicated to induce nAbs. For alphacoronavirus HCoV-229E, its RBD has been shown to have neutralizing epitopes, and these epitopes could change over time. However, whether neutralizing epitopes exist on the NTD and whether these epitopes change like those of the RBD are still unknown. Here, we verified that neutralizing epitopes exist on the NTD of HCoV-229E. Furthermore, we characterized an NTD targeting nAb 5H10, which could neutralize both pseudotyped and authentic HCoV-229E VR740 in vitro. Epitope mapping indicated that 5H10 targeted motif E1 (147-167 aa) and identified F159 as critical for 5H10 binding. More importantly, our results revealed that motif E1 was highly conserved among clinical isolates except for F159. Further data proved that mutations at position 159 gradually appeared over time and could completely abolish the neutralizing ability of 5H10, supporting the notion that position 159 may be under selective pressure during the human epidemic. In addition, we also found that contemporary clinical serum has a stronger binding capacity for the NTD of contemporary strains than historic strains, proving that the epitope on the NTD could change over time. In summary, these findings define a novel neutralizing epitope on the NTD of HCoV-229E S and provide a theoretical basis for the design of vaccines against HCoV-229E or related coronaviruses. IMPORTANCE Characterization of the neutralizing epitope of the spike (S) protein, the major invasion protein of coronaviruses, can help us better understand the evolutionary characteristics of these viruses and promote vaccine development. To date, the neutralizing epitope distribution of alphacoronaviruses is not well known. Here, we identified a neutralizing antibody that targeted the N-terminal domain (NTD) of the alphacoronavirus HCoV-229E S protein. Epitope mapping revealed a novel epitope that was not previously discovered in HCoV-229E. Further studies identified an important residue, F159. Mutations that gradually appeared over time at this site abolished the neutralizing ability of 5H10, indicating that selective pressure occurred at this position in the spread of HCoV-229E. Furthermore, we found that the epitopes within the NTD also changed over time. Taken together, our findings defined a novel neutralizing epitope and highlighted the role of the NTD in the future prevention and control of HCoV-229E or related coronaviruses.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Coronavirus Humano 229E , Infecciones por Coronavirus , Epítopos , Glicoproteína de la Espiga del Coronavirus , Secuencias de Aminoácidos , Animales , Coronavirus Humano 229E/genética , Coronavirus Humano 229E/inmunología , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/inmunología , Epítopos/genética , Epítopos/inmunología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
11.
J Virol ; 96(11): e0036422, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35588276

RESUMEN

Effective broad-spectrum antivirals are critical to prevent and control emerging human coronavirus (hCoV) infections. Despite considerable progress made toward identifying and evaluating several synthetic broad-spectrum antivirals against hCoV infections, a narrow therapeutic window has limited their success. Enhancing the endogenous interferon (IFN) and IFN-stimulated gene (ISG) response is another antiviral strategy that has been known for decades. However, the side effects of pegylated type-I IFNs (IFN-Is) and the proinflammatory response detected after delayed IFN-I therapy have discouraged their clinical use. In contrast to IFN-Is, IFN-λ, a dominant IFN at the epithelial surface, has been shown to be less proinflammatory. Consequently, we evaluated the prophylactic and therapeutic efficacy of IFN-λ in hCoV-infected airway epithelial cells and mice. Human primary airway epithelial cells treated with a single dose of IFN-I (IFN-α) and IFN-λ showed similar ISG expression, whereas cells treated with two doses of IFN-λ expressed elevated levels of ISG compared to that of IFN-α-treated cells. Similarly, mice treated with two doses of IFN-λ were better protected than mice that received a single dose, and a combination of prophylactic and delayed therapeutic regimens completely protected mice from a lethal Middle East respiratory syndrome CoV (MERS-CoV) infection. A two-dose IFN-λ regimen significantly reduced lung viral titers and inflammatory cytokine levels with marked improvement in lung inflammation. Collectively, we identified an effective regimen for IFN-λ use and demonstrated the protective efficacy of IFN-λ in MERS-CoV-infected mice. IMPORTANCE Effective antiviral agents are urgently required to prevent and treat individuals infected with SARS-CoV-2 and other emerging viral infections. The COVID-19 pandemic has catapulted our efforts to identify, develop, and evaluate several antiviral agents. However, a narrow therapeutic window has limited the protective efficacy of several broad-spectrum and CoV-specific antivirals. IFN-λ is an antiviral agent of interest due to its ability to induce a robust endogenous antiviral state and low levels of inflammation. Here, we evaluated the protective efficacy and effective treatment regimen of IFN-λ in mice infected with a lethal dose of MERS-CoV. We show that while prophylactic and early therapeutic IFN-λ administration is protective, delayed treatment is detrimental. Notably, a combination of prophylactic and delayed therapeutic administration of IFN-λ protected mice from severe MERS. Our results highlight the prophylactic and therapeutic use of IFN-λ against lethal hCoV and likely other viral lung infections.


Asunto(s)
Antivirales , Infecciones por Coronavirus , Interferones , Coronavirus del Síndrome Respiratorio de Oriente Medio , Animales , Antivirales/farmacología , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/inmunología , Humanos , Interferones/farmacología , Ratones , Interferón lambda
12.
BMC Microbiol ; 23(1): 274, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773101

RESUMEN

Microbial skin infections, antibiotic resistance, and poor wound healing are major problems, and new treatments are needed. Our study targeted solving this problem with Nigella sativa (NS) oil and photodynamic therapy based on methylene blue (MB-PDT). Antibacterial activity and minimum inhibitory concentration (MIC) were determined via agar well diffusion assay and broth microdilution, respectively. Transmission electron microscopy (TEM) proved deformations in Staphylococcus aureus ATCC 6538. Gas chromatography-mass spectrometry identified useful compounds that were suggested to be responsible for the potency of the oil. NS oil was tested as an antivirus against low pathogenic coronavirus (229E). Therapies examined, MB-PDT, NS, and MB-PDT + NS oil, to accelerate wound healing. The antibacterial efficacy against S. aureus was promising, with a MIC of 12.5% and TEM showing injured cells treated with NS oil. This oil inhibited 229E virus up to 42.85% and 32.14%. All tested therapies were successful in accelerating wound healing. The most successful was combined therapy (MB-PDT + NS oil), with a faster healing time. The combined therapy (MB-PDT + NS oil) reduced bacterial counts, which may be a key factor in accelerating wound healing. Skin wound histology was investigated; blood hematology and biochemical analysis did not change significantly after the safe combination treatment. A combination treatment could facilitate healing in a simple and inexpensive way in the future. Based on the results of the in vitro and in vivo studies, it was determined that NS oil had antibacterial and anti-corona virus activity when used in conjunction with photodynamic treatment based on methylene blue to treat wound infections.


Asunto(s)
Coronavirus , Fotoquimioterapia , Infección de Heridas , Humanos , Staphylococcus aureus , Azul de Metileno/farmacología , Azul de Metileno/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infección de Heridas/tratamiento farmacológico
13.
J Med Virol ; 95(1): e28101, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36031726

RESUMEN

In 2019, an outbreak of pharyngoconjunctival fever (PCF) occurred at a swimming center in Zhejiang Province, China. A total of 97 (13.55%) of the 716 amateur swimmers had illnesses, with 24 patients (24.74%) hospitalized in the pediatric ward. Human adenovirus serotype 7 (HAdV-7) was isolated from one concentrated water from the swimming pool, and 20 of 97 positive cases without liver damage. This outbreak led to a nosocomial outbreak in the pediatric ward, in which 1 nurse had a fever and was confirmed to be adenovirus positive. The hexon, fiber, and penton genes from 20 outbreak cases, 1 water sample, and 1 nurse had 100% homology. Furthermore, 2 cases admitted to the pediatric ward, 2 parents, and 1 doctor were confirmed to be human coronaviruses (HCoV-229E) positive. Finally, all outbreak cases had fully recovered, regardless of a single infection (adenovirus or HCoV-229E) or coinfection of these two viruses simultaneously. Thus, PCF and acute respiratory disease outbreaks in Zhejiang were caused by the completely homologous type 7 adenovirus and HCoV-229E, respectively. The swimming pool water contaminated with HAdV-7 was most likely the source of the PCF outbreak, whereas nosocomial transmission might be the source of HCoV-229E outbreak.


Asunto(s)
Infecciones por Adenovirus Humanos , Adenovirus Humanos , Coronavirus Humano 229E , Infección Hospitalaria , Infecciones del Sistema Respiratorio , Humanos , Niño , Coronavirus Humano 229E/genética , Adenovirus Humanos/genética , Infecciones del Sistema Respiratorio/epidemiología , China/epidemiología , Infecciones por Adenovirus Humanos/epidemiología , Agua , Brotes de Enfermedades , Infección Hospitalaria/epidemiología
14.
Mol Ecol ; 32(14): 3989-4002, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37203872

RESUMEN

Understanding the immunogenetic basis of coronavirus (CoV) susceptibility in major pathogen reservoirs, such as bats, is central to inferring their zoonotic potential. Members of the cryptic Hipposideros bat species complex differ in CoV susceptibility, but the underlying mechanisms remain unclear. The genes of the major histocompatibility complex (MHC) are the best understood genetic basis of pathogen resistance, and differences in MHC diversity are one possible reason for asymmetrical infection patterns among closely related species. Here, we aimed to link asymmetries in observed CoV (CoV-229E, CoV-2B and CoV-2Bbasal) susceptibility to immunogenetic differences amongst four Hipposideros bat species. From the 2072 bats assigned to their respective species using the mtDNA cytochrome b gene, members of the most numerous and ubiquitous species, Hipposideros caffer D, were most infected with CoV-229E and SARS-related CoV-2B. Using a subset of 569 bats, we determined that much of the existent allelic and functional (i.e. supertype) MHC DRB class II diversity originated from common ancestry. One MHC supertype shared amongst all species, ST12, was consistently linked to susceptibility with CoV-229E, which is closely related to the common cold agent HCoV-229E, and infected bats and those carrying ST12 had a lower body condition. The same MHC supertype was connected to resistance to CoV-2B, and bats with ST12 were less likely be co-infected with CoV-229E and CoV-2B. Our work suggests a role of immunogenetics in determining CoV susceptibility in bats. We advocate for the preservation of functional genetic and species diversity in reservoirs as a means of mitigating the risk of disease spillover.


Asunto(s)
Quirópteros , Coronavirus Humano 229E , Infecciones por Coronavirus , Coronavirus , Animales , Quirópteros/genética , Genes MHC Clase II , Filogenia , Coronavirus/genética , Coronavirus Humano 229E/genética , Antígenos de Histocompatibilidad Clase II/genética
15.
Mol Pharm ; 20(4): 2276-2287, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36946991

RESUMEN

To deal with the broad spectrum of coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that threaten human health, it is essential to not only drugs develop that target viral proteins but also consider drugs that target host proteins/cellular processes to protect them from being hijacked for viral infection and replication. To this end, it has been reported that autophagy is deeply involved in coronavirus infection. In this study, we used airway organoids to screen a chemical library of autophagic modulators to identify compounds that could potentially be used to fight against infections by a broad range of coronaviruses. Among the 80 autophagy-related compounds tested, cycloheximide and thapsigargin reduced SARS-CoV-2 infection efficiency in a dose-dependent manner. Cycloheximide treatment reduced the infection efficiency of not only six SARS-CoV-2 variants but also human coronavirus (HCoV)-229E and HCoV-OC43. Cycloheximide treatment also reversed viral infection-induced innate immune responses. However, even low-dose (1 µM) cycloheximide treatment altered the expression profile of ribosomal RNAs; thus, side effects such as inhibition of protein synthesis in host cells must be considered. These results suggest that cycloheximide has broad-spectrum anti-coronavirus activity in vitro and warrants further investigation.


Asunto(s)
COVID-19 , Coronavirus Humano 229E , Humanos , SARS-CoV-2 , Cicloheximida/farmacología , Autofagia
16.
Rev Med Virol ; 32(2): e2282, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34339073

RESUMEN

To date, seven human coronaviruses (HCoVs) have been detected: HCoV-NL63, HCoV-229E, HCoV-HKU1, HCoV-OC43, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and SARS-CoV-2. Four of these viruses, including HCoV-NL63, -229E, -HKU1 and -OC43, usually cause mild-to-moderate respiratory diseases with a seasonal pattern. Since 2000, three new HCoVs have emerged with a significant mortality rate. Although SARS-CoV and MERS-CoV caused an epidemic in some countries, SARS-CoV-2 escalated into a pandemic. All HCoVs can cause severe complications in the elderly and immunocompromised individuals. The bat origin of HCoVs, the presence of intermediate hosts and the nature of their viral replication suggest that other new coronaviruses may emerge in the future. Despite the fact that all HCoVs share similarities in viral replication, they differ in their accessory proteins, incubation period and pathogenicity. This study aims to review these differences between the seven HCoVs.


Asunto(s)
COVID-19 , Coronavirus Humano 229E , Coronavirus Humano NL63 , Coronavirus Humano OC43 , Anciano , Humanos , SARS-CoV-2
17.
Chem Biodivers ; 20(4): e202201045, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36811152

RESUMEN

Cestrum diurnum L. (Solanaceae) is a fragrant ornamental tree cultivated in different parts around the world. In this study, the essential oil (EO) of the aerial parts was extracted by hydrodistillation (HD), steam distillation (SD) and microwave-assisted hydro-distillation (MAHD). GC/MS analysis of the three EOs revealed that phytol represents the major component in SD-EO and MAHD-EO (40.84 and 40.04 %, respectively); while in HD-EO it only represented 15.36 %. The SD-EO showed a strong antiviral activity against HCoV-229E with IC50 of 10.93 µg/mL, whereas, MAHD-EO and HD-EO showed a moderate activity with IC50 values of 119.9 and 148.2 µg/mL, respectively. The molecular docking of EO major components: phytol, octadecyl acetate and tricosane showed a strong binding to coronavirus 3-CL (pro). Moreover, the three EOs (50 µg/mL) decreased the levels of NO, IL-6 and TNF-α and suppressed IL-6 and TNF-α gene expression in LPS-induced inflammation model in RAW264.7 macrophage cell lines.


Asunto(s)
Cestrum , Coronavirus Humano 229E , Aceites Volátiles , Cestrum/química , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Interleucina-6 , Lipopolisacáridos/farmacología , Simulación del Acoplamiento Molecular , Aceites Volátiles/química , Extractos Vegetales/química , Factor de Necrosis Tumoral alfa , Antivirales/química , Antivirales/farmacología
18.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38003714

RESUMEN

Members of the family Coronaviridae cause diseases in mammals, birds, and wildlife (bats), some of which may be transmissible to humans or specific to humans. In the human population, they can cause a wide range of diseases, mainly affecting the respiratory and digestive systems. In the scientific databases, there are huge numbers of research articles about the antiviral, antifungal, antibacterial, antiviral, and anthelmintic activities of medicinal herbs and crops with different ethnobotanical backgrounds. The subject of our research is the antiviral effect of isolated saponins, a purified saponin mixture, and a methanol extract of Astragalus glycyphyllos L. In the studies conducted for the cytotoxic effect of the substances, CC50 (cytotoxic concentration 50) and MTC (maximum tolerable concentration) were determined by the colorimetric method (MTT assay). The virus was cultured in the MDBK cell line. As a result of the experiments carried out on the influence of substances on viral replication (using MTT-based colorimetric assay for detection of human Coronavirus replication inhibition), it was found that the extract and the purified saponin mixture inhibited 100% viral replication. The calculated selective indices are about 13 and 18, respectively. The obtained results make them promising for a preparation with anti-Coronavirus action.


Asunto(s)
Coronavirus , Saponinas , Animales , Humanos , Extractos Vegetales/farmacología , Saponinas/farmacología , Línea Celular , Antivirales/farmacología , Mamíferos
19.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38068938

RESUMEN

The limited availability of antiviral therapy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spurred the search for novel antiviral drugs. Here, we investigated the potential antiviral properties of plants adapted to high-salt environments collected in the north of France. Twenty-five crude methanolic extracts obtained from twenty-two plant species were evaluated for their cytotoxicity and antiviral effectiveness against coronaviruses HCoV-229E and SARS-CoV-2. Then, a bioguided fractionation approach was employed. The most active crude methanolic extracts were partitioned into three different sub-extracts. Notably, the dichloromethane sub-extract of the whole plant Hippophae rhamnoides L. demonstrated the highest antiviral activity against both viruses. Its chemical composition was evaluated by ultra-high performance liquid chromatography (UHPLC) coupled with mass spectrometry (MS) and then it was fractionated by centrifugal partition chromatography (CPC). Six cinnamoyl triterpenoid compounds were isolated from the three most active fractions by preparative high-performance liquid chromatography (HPLC) and identified by high resolution MS (HR-MS) and mono- and bi-dimensional nuclear magnetic resonance (NMR). Specifically, these compounds were identified as 2-O-trans-p-coumaroyl-maslinic acid, 3ß-hydroxy-2α-trans-p-coumaryloxy-urs-12-en-28-oic acid, 3ß-hydroxy-2α-cis-p-coumaryloxy-urs-12-en-28-oic acid, 3-O-trans-caffeoyl oleanolic acid, a mixture of 3-O-trans-caffeoyl oleanolic acid/3-O-cis-caffeoyl oleanolic acid (70/30), and 3-O-trans-p-coumaroyl oleanolic acid. Infection tests demonstrated a dose-dependent inhibition of these triterpenes against HCoV-229E and SARS-CoV-2. Notably, cinnamoyl oleanolic acids displayed activity against both SARS-CoV-2 and HCoV-229E. Our findings suggest that Hippophae rhamnoides could represent a source of potential antiviral agents against coronaviruses.


Asunto(s)
Coronavirus Humano 229E , Hippophae , Ácido Oleanólico , Triterpenos , Triterpenos/química , Hippophae/química , Plantas Tolerantes a la Sal , Mar del Norte , SARS-CoV-2 , Antivirales/farmacología , Antivirales/análisis
20.
Molecules ; 28(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36771170

RESUMEN

A series of novel 1-oxo-2,3,4-trisubstituted tetrahydroisoquinoline (THIQ) derivatives bearing other heterocyclic moieties in their structure were synthesized based on the reaction between homophthalic anhydride and imines. Initial studies were carried out to establish the anti-coronavirus activity of some of the newly obtained THIQ-derivatives against two strains of human coronavirus-229E and OC-43. Their antiviral activity was compared with that of their close analogues, piperidinones and thiomorpholinones, previously synthesized in our group, with aim to expand the range of the tested representative sample and to obtain valuable preliminary information about biological properties of a wider variety of compounds.


Asunto(s)
Coronavirus Humano 229E , Infecciones por Coronavirus , Coronavirus , Tetrahidroisoquinolinas , Humanos , Tetrahidroisoquinolinas/farmacología , Antivirales/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda