Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Ginseng Res ; 46(4): 536-542, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35818428

RESUMEN

Background: In aged skin, reactive oxygen species (ROS) induces degradation of the extracellular matrix (ECM), leading to visible aging signs. Collagens in the ECM are cleaved by matrix metalloproteinases (MMPs). Syringaresinol (SYR), isolated from Panax ginseng berry, has various physiological activities, including anti-inflammatory action. However, the anti-aging effects of SYR via antioxidant and autophagy regulation have not been elucidated. Methods: The preventive effect of SYR on skin aging was investigated in human HaCaT keratinocytes in the presence of H2O2, and the keratinocyte cells were treated with SYR (0-200 µg/mL). mRNA and protein levels of MMP-2 and -9 were determined by real-time PCR and Western blotting, respectively. Radical scavenging activity was researched by 2,2 diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. LC3B level was assessed by Western blotting and confocal microscopy. Results: SYR significantly reduced gene expression and protein levels of MMP-9 and -2 in both H2O2-treated and untreated HaCaT cells. SYR did not show cytotoxicity to HaCaT cells. SYR exhibited DPPH and ABTS radical scavenging activities with an EC50 value of 10.77 and 10.35 µg/mL, respectively. SYR elevated total levels of endogenous and exogenous LC3B in H2O2-stimulated HaCaT cells. 3-Methyladenine (3-MA), an autophagy inhibitor, counteracted the inhibitory effect of SYR on MMP-2 expression. Conclusion: SYR showed antioxidant activity and up-regulated autophagy activity in H2O2-stimulated HaCaT cells, lowering the expression of MMP-2 and MMP-9 associated with skin aging. Our results suggest that SYR has potential value as a cosmetic additive for prevention of skin aging.

2.
Acta Pharm Sin B ; 12(5): 2374-2390, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35646533

RESUMEN

Pathological cardiac hypertrophy serves as a significant foundation for cardiac dysfunction and heart failure. Recently, growing evidence has revealed that microRNAs (miRNAs) play multiple roles in biological processes and participate in cardiovascular diseases. In the present research, we investigate the impact of miRNA-34c-5p on cardiac hypertrophy and the mechanism involved. The expression of miR-34c-5p was proved to be elevated in heart tissues from isoprenaline (ISO)-infused mice. ISO also promoted miR-34c-5p level in primary cultures of neonatal rat cardiomyocytes (NRCMs). Transfection with miR-34c-5p mimic enhanced cell surface area and expression levels of foetal-type genes atrial natriuretic factor (Anf) and ß-myosin heavy chain (ß-Mhc) in NRCMs. In contrast, treatment with miR-34c-5p inhibitor attenuated ISO-induced hypertrophic responses. Enforced expression of miR-34c-5p by tail intravenous injection of its agomir led to cardiac dysfunction and hypertrophy in mice, whereas inhibiting miR-34c-5p by specific antagomir could protect the animals against ISO-triggered hypertrophic abnormalities. Mechanistically, miR-34c-5p suppressed autophagic flux in cardiomyocytes, which contributed to the development of hypertrophy. Furthermore, the autophagy-related gene 4B (ATG4B) was identified as a direct target of miR-34c-5p, and miR-34c-5p was certified to interact with 3' untranslated region of Atg4b mRNA by dual-luciferase reporter assay. miR-34c-5p reduced the expression of ATG4B, thereby resulting in decreased autophagy activity and induction of hypertrophy. Inhibition of miR-34c-5p abolished the detrimental effects of ISO by restoring ATG4B and increasing autophagy. In conclusion, our findings illuminate that miR-34c-5p participates in ISO-induced cardiac hypertrophy, at least partly through suppressing ATG4B and autophagy. It suggests that regulation of miR-34c-5p may offer a new way for handling hypertrophy-related cardiac dysfunction.

3.
Acta Pharm Sin B ; 11(10): 3015-3034, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34729301

RESUMEN

Parkinson's disease (PD), known as one of the most universal neurodegenerative diseases, is a serious threat to the health of the elderly. The current treatment has been demonstrated to relieve symptoms, and the discovery of new small-molecule compounds has been regarded as a promising strategy. Of note, the homeostasis of the autolysosome pathway (ALP) is closely associated with PD, and impaired autophagy may cause the death of neurons and thereby accelerating the progress of PD. Thus, pharmacological targeting autophagy with small-molecule compounds has been drawn a rising attention so far. In this review, we focus on summarizing several autophagy-associated targets, such as AMPK, mTORC1, ULK1, IMPase, LRRK2, beclin-1, TFEB, GCase, ERRα, C-Abelson, and as well as their relevant small-molecule compounds in PD models, which will shed light on a clue on exploiting more potential targeted small-molecule drugs tracking PD treatment in the near future.

4.
Acta Pharm Sin B ; 10(1): 42-60, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31993306

RESUMEN

The hepatic endoplasmic reticulum (ER)-anchored cytochromes P450 (P450s) are mixed-function oxidases engaged in the biotransformation of physiologically relevant endobiotics as well as of myriad xenobiotics of therapeutic and environmental relevance. P450 ER-content and hence function is regulated by their coordinated hemoprotein syntheses and proteolytic turnover. Such P450 proteolytic turnover occurs through a process known as ER-associated degradation (ERAD) that involves ubiquitin-dependent proteasomal degradation (UPD) and/or autophagic-lysosomal degradation (ALD). Herein, on the basis of available literature reports and our own recent findings of in vitro as well as in vivo experimental studies, we discuss the therapeutic and pathophysiological implications of altered P450 ERAD and its plausible clinical relevance. We specifically (i) describe the P450 ERAD-machinery and how it may be repurposed for the generation of antigenic P450 peptides involved in P450 autoantibody pathogenesis in drug-induced acute hypersensitivity reactions and liver injury, or viral hepatitis; (ii) discuss the relevance of accelerated or disrupted P450-ERAD to the pharmacological and/or toxicological effects of clinically relevant P450 drug substrates; and (iii) detail the pathophysiological consequences of disrupted P450 ERAD, contributing to non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) under certain synergistic cellular conditions.

5.
J Adv Res ; 20: 9-21, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31193017

RESUMEN

The efficacy of gemcitabine therapy is often insufficient for the treatment of pancreatic cancer. The current study demonstrated that LW6, a chemical inhibitor of hypoxia-inducible factor 1α, is a promising drug for enhancing the chemosensitivity to gemcitabine. LW6 monotherapy and the combination therapy of LW6 plus gemcitabine significantly inhibited cell proliferation and enhanced cell death in pancreatic cancer cells. This combination therapy also significantly reduced the tumor weight in a syngeneic orthotopic pancreatic carcinoma model without causing toxic side effects. In addition, this study provides insight into the mechanism of how LW6 interferes with the pathophysiology of pancreatic cancer. The results revealed that LW6 inhibited autophagic flux, which is defined by the accumulation of microtubule-associated protein 1 light chain 3 (LC3) and p62/SQSTM1. Moreover, these results were verified by the analysis of a tandem RFP-GFP-tagged LC3 protein. Thence, for the first time, these data demonstrate that LW6 enhances the anti-tumor effects of gemcitabine and inhibits autophagic flux. This suggests that the combination therapy of LW6 plus gemcitabine may be a novel therapeutic strategy for pancreatic cancer patients.

6.
Acta Pharm Sin B ; 9(1): 144-156, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30766786

RESUMEN

Natural product evodiamine and its derivatives represent a promising class of multi-target antitumor agents. However, the clinical development of these compounds has been hampered by a poor understanding of their antitumor mechanisms. To tackle this obstacle, herein, novel fluorescent probes were designed to elucidate the antitumor mode of action of 10-hydroxyevodiamine. This compound was proven to be distributed in the mitochondria and lysosomes and to act by autophagy and apoptosis mechanisms.

7.
Acta Pharm Sin B ; 9(5): 1021-1034, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31649851

RESUMEN

Polo-like kinase (PLK1) has been identified as a potential target for cancer treatment. Although a number of small molecules have been investigated as PLK1 inhibitors, many of which showed limited selectivity. PLK1 harbors a regulatory domain, the Polo box domain (PBD), which has a key regulatory function for kinase activity and substrate recognition. We report on 3-bromomethyl-benzofuran-2-carboxylic acid ethyl ester (designated: MCC1019) as selective PLK1 inhibitor targeting PLK1 PBD. Cytotoxicity and fluorescence polarization-based screening were applied to a library of 1162 drug-like compounds to identify potential inhibitors of PLK1 PBD. The activity of compound MC1019 against the PLK1 PBD was confirmed using fluorescence polarization and microscale thermophoresis. This compound exerted specificity towards PLK1 over PLK2 and PLK3. MCC1019 showed cytotoxic activity in a panel of different cancer cell lines. Mechanistic investigations in A549 lung adenocarcinoma cells revealed that MCC1019 induced cell growth inhibition through inactivation of AKT signaling pathway, it also induced prolonged mitotic arrest-a phenomenon known as mitotic catastrophe, which is followed by immediate cell death via apoptosis and necroptosis. MCC1019 significantly inhibited tumor growth in vivo in a murine lung cancer model without affecting body weight or vital organ size, and reduced the growth of metastatic lesions in the lung. We propose MCC1019 as promising anti-cancer drug candidate.

8.
Acta Pharmaceutica Sinica B ; (6): 2374-2390, 2022.
Artículo en Inglés | WPRIM | ID: wpr-929392

RESUMEN

Pathological cardiac hypertrophy serves as a significant foundation for cardiac dysfunction and heart failure. Recently, growing evidence has revealed that microRNAs (miRNAs) play multiple roles in biological processes and participate in cardiovascular diseases. In the present research, we investigate the impact of miRNA-34c-5p on cardiac hypertrophy and the mechanism involved. The expression of miR-34c-5p was proved to be elevated in heart tissues from isoprenaline (ISO)-infused mice. ISO also promoted miR-34c-5p level in primary cultures of neonatal rat cardiomyocytes (NRCMs). Transfection with miR-34c-5p mimic enhanced cell surface area and expression levels of foetal-type genes atrial natriuretic factor (Anf) and β-myosin heavy chain (β-Mhc) in NRCMs. In contrast, treatment with miR-34c-5p inhibitor attenuated ISO-induced hypertrophic responses. Enforced expression of miR-34c-5p by tail intravenous injection of its agomir led to cardiac dysfunction and hypertrophy in mice, whereas inhibiting miR-34c-5p by specific antagomir could protect the animals against ISO-triggered hypertrophic abnormalities. Mechanistically, miR-34c-5p suppressed autophagic flux in cardiomyocytes, which contributed to the development of hypertrophy. Furthermore, the autophagy-related gene 4B (ATG4B) was identified as a direct target of miR-34c-5p, and miR-34c-5p was certified to interact with 3' untranslated region of Atg4b mRNA by dual-luciferase reporter assay. miR-34c-5p reduced the expression of ATG4B, thereby resulting in decreased autophagy activity and induction of hypertrophy. Inhibition of miR-34c-5p abolished the detrimental effects of ISO by restoring ATG4B and increasing autophagy. In conclusion, our findings illuminate that miR-34c-5p participates in ISO-induced cardiac hypertrophy, at least partly through suppressing ATG4B and autophagy. It suggests that regulation of miR-34c-5p may offer a new way for handling hypertrophy-related cardiac dysfunction.

9.
Acta Pharmaceutica Sinica B ; (6): 3015-3034, 2021.
Artículo en Inglés | WPRIM | ID: wpr-922781

RESUMEN

Parkinson's disease (PD), known as one of the most universal neurodegenerative diseases, is a serious threat to the health of the elderly. The current treatment has been demonstrated to relieve symptoms, and the discovery of new small-molecule compounds has been regarded as a promising strategy. Of note, the homeostasis of the autolysosome pathway (ALP) is closely associated with PD, and impaired autophagy may cause the death of neurons and thereby accelerating the progress of PD. Thus, pharmacological targeting autophagy with small-molecule compounds has been drawn a rising attention so far. In this review, we focus on summarizing several autophagy-associated targets, such as AMPK, mTORC1, ULK1, IMPase, LRRK2, beclin-1, TFEB, GCase, ERR

10.
J Bone Oncol ; 5(2): 67-73, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27335774

RESUMEN

Osteosarcoma (OS) responds poorly to radiotherapy, but the mechanism is unclear. We found OS tumor tissues expressed high level of protein HIF-1α, a common biological marker indicative of hypoxia. It is known that hypoxic cells are generally radioresistant because of reduced production of irradiation-induced DNA-damaging reactive oxygen species (ROS) in the anaerobic condition. Here we report another mechanism how hypoxia induces radioresistance. In MG-63 human osteosarcoma cells, hypoxic pretreatment increased the cellular survival in irradiation. These hypoxia-exposed cells displayed compartmental recruitment of GFP-tagged LC3 and expression of protein LC3-II, and restored the radiosensitivity upon autophagy inhibition. The following immunohistochemistry of OS tumor tissue sections revealed upregulated LC3 expression in a correlation with HIF-1α protein level, implying the possibly causative link between hypoxia and autophagy. Further studies in MG-63 cells demonstrated hypoxic pretreatment reduced cellular and mitochondrial ROS production during irradiation, while inhibition of autophagy re-elicited them. Taken together, our study suggests hypoxia can confer cells resistance to irradiation through activated autophagy to accelerate the clearance of cellular ROS products. This might exist in human osteosarcoma as an additional mechanism for radioresistance.

11.
Acta Pharmaceutica Sinica B ; (6): 42-60, 2020.
Artículo en Inglés | WPRIM | ID: wpr-781551

RESUMEN

The hepatic endoplasmic reticulum (ER)-anchored cytochromes P450 (P450s) are mixed-function oxidases engaged in the biotransformation of physiologically relevant endobiotics as well as of myriad xenobiotics of therapeutic and environmental relevance. P450 ER-content and hence function is regulated by their coordinated hemoprotein syntheses and proteolytic turnover. Such P450 proteolytic turnover occurs through a process known as ER-associated degradation (ERAD) that involves ubiquitin-dependent proteasomal degradation (UPD) and/or autophagic-lysosomal degradation (ALD). Herein, on the basis of available literature reports and our own recent findings of as well as experimental studies, we discuss the therapeutic and pathophysiological implications of altered P450 ERAD and its plausible clinical relevance. We specifically (i) describe the P450 ERAD-machinery and how it may be repurposed for the generation of antigenic P450 peptides involved in P450 autoantibody pathogenesis in drug-induced acute hypersensitivity reactions and liver injury, or viral hepatitis; (ii) discuss the relevance of accelerated or disrupted P450-ERAD to the pharmacological and/or toxicological effects of clinically relevant P450 drug substrates; and (iii) detail the pathophysiological consequences of disrupted P450 ERAD, contributing to non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) under certain synergistic cellular conditions.

12.
Cancer Biol Ther ; 16(3): 466-76, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25778879

RESUMEN

Glucocorticoid (GC) resistance remains a major obstacle to successful treatment of lymphoid malignancies. Till now, the precise mechanism of GC resistance remains unclear. In the present study, dexamethasone (Dex) inhibited cell proliferation, arrested cell cycle in G0/G1-phase, and induced apoptosis in Dex-sensitive acute lymphoblastic leukemia cells. However, Dex failed to cause cell death in Dex-resistant lymphoid malignant cells. Intriguingly, we found that autophagy was induced by Dex in resistant cells, as indicated by autophagosomes formation, LC3-I to LC3-II conversion, p62 degradation, and formation of acidic autophagic vacuoles. Moreover, the results showed that Dex reduced the activity of mTOR pathway, as determined by decreased phosphorylation levels of mTOR, Akt, P70S6K and 4E-BP1 in resistant cells. Inhibition of autophagy by either chloroquine (CQ) or 3-methyladenine (3-MA) overcame Dex-resistance in lymphoid malignant cells by increasing apoptotic cell death in vitro. Consistently, inhibition of autophagy by stably knockdown of Beclin1 sensitized Dex-resistant lymphoid malignant cells to induction of apoptosis in vivo. Thus, inhibition of autophagy has the potential to improve lymphoid malignancy treatment by overcoming GC resistance.


Asunto(s)
Autofagia/efectos de los fármacos , Dexametasona/administración & dosificación , Glucocorticoides/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Autofagia/genética , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/genética
13.
Autophagy ; 11(6): 906-17, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25950899

RESUMEN

Antigen-presenting cells survey their environment and present captured antigens bound to major histocompatibility complex (MHC) molecules. Formation of MHC-antigen complexes occurs in specialized compartments where multiple protein trafficking routes, still incompletely understood, converge. Autophagy is a route that enables the presentation of cytosolic antigen by MHC class II molecules. Some reports also implicate autophagy in the presentation of extracellular, endocytosed antigen by MHC class I molecules, a pathway termed "cross-presentation." The role of autophagy in cross-presentation is controversial. This may be due to studies using different types of antigen presenting cells for which the use of autophagy is not well defined. Here we report that active use of autophagy is evident only in DC subtypes specialized in cross-presentation. However, the contribution of autophagy to cross-presentation varied depending on the form of antigen: it was negligible in the case of cell-associated antigen or antigen delivered via receptor-mediated endocytosis, but more prominent when the antigen was a soluble protein. These findings highlight the differential use of autophagy and its machinery by primary cells equipped with specific immune function, and prompt careful reassessment of the participation of this endocytic pathway in antigen cross-presentation.


Asunto(s)
Presentación de Antígeno/inmunología , Autofagia/inmunología , Reactividad Cruzada/inmunología , Células Dendríticas/metabolismo , Animales , Células Dendríticas/inmunología , Endocitosis/inmunología , Endocitosis/fisiología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Ratones
14.
Autophagy ; 11(3): 560-72, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25714620

RESUMEN

The lack of a rapid and quantitative autophagy assay has substantially hindered the development and implementation of autophagy-targeting therapies for a variety of human diseases. To address this critical issue, we developed a novel autophagy assay using the newly developed Cyto-ID fluorescence dye. We first verified that the Cyto-ID dye specifically labels autophagic compartments with minimal staining of lysosomes and endosomes. We then developed a new Cyto-ID fluorescence spectrophotometric assay that makes it possible to estimate autophagy flux based on measurements of the Cyto-ID-stained autophagic compartments. By comparing to traditional autophagy approaches, we found that this assay yielded a more sensitive, yet less variable, quantification of the stained autophagic compartments and the estimate of autophagy flux. Furthermore, we tested the potential application of this autophagy assay in high throughput research by integrating it into an RNA interference (RNAi) screen and a small molecule screen. The RNAi screen revealed WNK2 and MAP3K6 as autophagy-modulating genes, both of which inhibited the MTOR pathway. Similarly, the small molecule screen identified sanguinarine and actinomycin D as potent autophagy inducers in leukemic cells. Moreover, we successfully detected autophagy responses to kinase inhibitors and chloroquine in normal or leukemic mice using this assay. Collectively, this new Cyto-ID fluorescence spectrophotometric assay provides a rapid, reliable quantification of autophagic compartments and estimation of autophagy flux with potential applications in developing autophagy-related therapies and as a test to monitor autophagy responses in patients being treated with autophagy-modulating drugs.


Asunto(s)
Autofagia , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos , Animales , Supervivencia Celular , Cloroquina/química , Dactinomicina/química , Endosomas/química , Regulación Leucémica de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Mesilato de Imatinib/química , Células K562 , Leucemia/metabolismo , Lisosomas/química , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Microscopía Fluorescente , Trasplante de Neoplasias , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN
15.
Autophagy ; 11(2): 332-43, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25831013

RESUMEN

In cultured cells, not many mitochondria are degraded by mitophagy induced by physiological cellular stress. We observed mitophagy in HeLa cells using a method that relies on the pH-sensitive fluorescent protein Keima. With this approach, we found that mitophagy was barely induced by carbonyl cyanide m-chlorophenyl hydrazone treatment, which is widely used as an inducer of PARK2/Parkin-related mitophagy, whereas a small but modest amount of mitochondria were degraded by mitophagy under conditions of starvation or hypoxia. Mitophagy induced by starvation or hypoxia was marginally suppressed by knockdown of ATG7 and ATG12, or MAP1LC3B, which are essential for conventional macroautophagy. In addition, mitophagy was efficiently induced in Atg5 knockout mouse embryonic fibroblasts. However, knockdown of RAB9A and RAB9B, which are essential for alternative autophagy, but not conventional macroautophagy, severely suppressed mitophagy. Finally, we found that the MAPKs MAPK1/ERK2 and MAPK14/p38 were required for mitophagy. Based on these findings, we conclude that mitophagy in mammalian cells predominantly occurs through an alternative autophagy pathway, requiring the MAPK1 and MAPK14 signaling pathways.


Asunto(s)
Autofagia/fisiología , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Mitofagia/fisiología , Transducción de Señal/fisiología , Animales , Autofagia/efectos de los fármacos , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Células HeLa , Humanos , Lisosomas/metabolismo , Ratones , Mitocondrias/metabolismo , Mitofagia/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
16.
Autophagy ; 11(7): 1037-51, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26120888

RESUMEN

Cadmium is one of the most toxic metal compounds found in the environment. It is well established that Cd induces hepatotoxicity in humans and multiple animal models. Melatonin, a major secretory product of the pineal gland, has been reported to protect against Cd-induced hepatotoxicity. However, the mechanism behind this protection remains to be elucidated. We exposed HepG2 cells to different concentrations of cadmium chloride (2.5, 5, and 10 µM) for 12 h. We found that Cd induced mitochondrial-derived superoxide anion-dependent autophagic cell death. Specifically, Cd decreased SIRT3 protein expression and activity and promoted the acetylation of SOD2, superoxide dismutase 2, mitochondrial, thus decreasing its activity, a key enzyme involved in mitochondrial ROS production, although Cd did not disrupt the interaction between SIRT3 and SOD2. These effects were ameliorated by overexpression of SIRT3. However, a catalytic mutant of SIRT3 (SIRT3(H248Y)) lacking deacetylase activity lost the capacity to suppress Cd-induced autophagy. Notably, melatonin treatment enhanced the activity but not the expression of SIRT3, decreased the acetylation of SOD2, inhibited mitochondrial-derived O2(•-) production and suppressed the autophagy induced by 10 µM Cd. Moreover, 3-(1H-1,2,3-triazol-4-yl)pyridine, a confirmed selective SIRT3 inhibitor, blocked the melatonin-mediated suppression of autophagy by inhibiting SIRT3-SOD2 signaling. Importantly, melatonin suppressed Cd-induced autophagic cell death by enhancing SIRT3 activity in vivo. These results suggest that melatonin exerts a hepatoprotective effect on mitochondrial-derived O2(•-)-stimulated autophagic cell death that is dependent on the SIRT3/SOD2 pathway.


Asunto(s)
Autofagia/efectos de los fármacos , Cadmio/toxicidad , Melatonina/farmacología , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 3/metabolismo , Superóxido Dismutasa/metabolismo , Acetilación/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Citoprotección/efectos de los fármacos , Células Hep G2 , Humanos , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Modelos Biológicos , Piridinas/farmacología , Superóxidos/metabolismo
17.
Autophagy ; 11(2): 344-54, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25831014

RESUMEN

Shiga toxins (Stxs) are a family of cytotoxic proteins that lead to the development of bloody diarrhea, hemolytic-uremic syndrome, and central nervous system complications caused by bacteria such as S. dysenteriae, E. coli O157:H7 and E. coli O104:H4. Increasing evidence indicates that macroautophagy (autophagy) is a key factor in the cell death induced by Stxs. However, the associated mechanisms are not yet clear. This study showed that Stx2 induces autophagic cell death in Caco-2 cells, a cultured line model of human enterocytes. Inhibition of autophagy using pharmacological inhibitors, such as 3-methyladenine and bafilomycin A1, or silencing of the autophagy genes ATG12 or BECN1 decreased the Stx2-induced death in Caco-2 cells. Furthermore, there were numerous instances of dilated endoplasmic reticulum (ER) in the Stx2-treated Caco-2 cells, and repression of ER stress due to the depletion of viable candidates of DDIT3 and NUPR1. These processes led to Stx2-induced autophagy and cell death. Finally, the data showed that the pseudokinase TRIB3-mediated DDIT3 expression and AKT1 dephosphorylation upon ER stress were triggered by Stx2. Thus, the data indicate that Stx2 causes autophagic cell death via the ER stress pathway in intestinal epithelial cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Toxinas Shiga/farmacología , Animales , Muerte Celular/efectos de los fármacos , Células Cultivadas , Células Epiteliales/citología , Escherichia coli , Humanos , Ratones Endogámicos C57BL , Factor de Transcripción CHOP
18.
Autophagy ; 11(2): 403-15, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25831015

RESUMEN

ATG4 plays a key role in autophagy induction, but the methods for monitoring ATG4 activity in living cells are limited. Here we designed a novel fluorescent peptide named AU4S for noninvasive detection of ATG4 activity in living cells, which consists of the cell-penetrating peptide (CPP), ATG4-recognized sequence "GTFG," and the fluorophore FITC. Additionally, an ATG4-resistant peptide AG4R was used as a control. CPP can help AU4S or AG4R to penetrate cell membrane efficiently. AU4S but not AG4R can be recognized and cleaved by ATG4, leading to the change of fluorescence intensity. Therefore, the difference between AU4S- and AG4R-measured fluorescence values in the same sample, defined as "F-D value," can reflect ATG4 activity. By detecting the F-D values, we found that ATG4 activity paralleled LC3B-II levels in rapamycin-treated cells, but neither paralleled LC3B-II levels in starved cells nor presented a correlation with LC3B-II accumulation in WBCs from healthy donors or leukemia patients. However, when DTT was added to the system, ATG4 activity not only paralleled LC3B-II levels in starved cells in the presence or absence of autophagy inhibitors, but also presented a positive correlation with LC3B-II accumulation in WBCs from leukemia patients (R(2) = 0.5288). In conclusion, this study provides a convenient, rapid, and quantitative method to monitor ATG4 activity in living cells, which may be beneficial to basic and clinical research on autophagy.


Asunto(s)
Autofagia/fisiología , Membrana Celular/metabolismo , Cisteína Endopeptidasas/metabolismo , Péptidos/metabolismo , Secuencia de Aminoácidos/fisiología , Animales , Proteínas Relacionadas con la Autofagia , Supervivencia Celular , Células Cultivadas , Fluorescencia , Hepatocitos/metabolismo , Humanos , Proteínas de Microfilamentos/metabolismo , Ratas
19.
Autophagy ; 11(4): 607-16, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25906314

RESUMEN

Primary cilium is an organelle that plays significant roles in a number of cellular functions ranging from cell mechanosensation, proliferation, and differentiation to apoptosis. Autophagy is an evolutionarily conserved cellular function in biology and indispensable for cellular homeostasis. Both cilia and autophagy have been linked to different types of genetic and acquired human diseases. Their interaction has been suggested very recently, but the underlying mechanisms are still not fully understood. We examined autophagy in cells with suppressed cilia and measured cilium length in autophagy-activated or -suppressed cells. It was found that autophagy was repressed in cells with short cilia. Further investigation showed that MTOR activation was enhanced in cilia-suppressed cells and the MTOR inhibitor rapamycin could largely reverse autophagy suppression. In human kidney proximal tubular cells (HK2), autophagy induction was associated with cilium elongation. Conversely, autophagy inhibition by 3-methyladenine (3-MA) and chloroquine (CQ) as well as bafilomycin A1 (Baf) led to short cilia. Cilia were also shorter in cultured atg5-knockout (KO) cells and in atg7-KO kidney proximal tubular cells in mice. MG132, an inhibitor of the proteasome, could significantly restore cilium length in atg5-KO cells, being concomitant with the proteasome activity. Together, the results suggest that cilia and autophagy regulate reciprocally through the MTOR signaling pathway and ubiquitin-proteasome system.


Asunto(s)
Autofagia/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Ubiquitina/metabolismo , Animales , Autofagia/genética , Línea Celular , Cilios/genética , Humanos , Ratones Noqueados , Complejo de la Endopetidasa Proteasomal/genética , Transducción de Señal/fisiología
20.
Autophagy ; 11(1): 113-30, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25700737

RESUMEN

P2RX7 is an ATP-gated ion channel, which can also exhibit an open state with a considerably wider permeation. However, the functional significance of the movement of molecules through the large pore (LP) and the intracellular signaling events involved are not known. Here, analyzing the consequences of P2RX7 activation in primary myoblasts and myotubes from the Dmd(mdx) mouse model of Duchenne muscular dystrophy, we found ATP-induced P2RX7-dependent autophagic flux, leading to CASP3-CASP7-independent cell death. P2RX7-evoked autophagy was triggered by LP formation but not Ca(2+) influx or MAPK1-MAPK3 phosphorylation, 2 canonical P2RX7-evoked signals. Phosphoproteomics, protein expression inference and signaling pathway prediction analysis of P2RX7 signaling mediators pointed to HSPA2 and HSP90 proteins. Indeed, specific HSP90 inhibitors prevented LP formation, LC3-II accumulation, and cell death in myoblasts and myotubes but not in macrophages. Pharmacological blockade or genetic ablation of p2rx7 also proved protective against ATP-induced death of muscle cells, as did inhibition of autophagy with 3-MA. The functional significance of the P2RX7 LP is one of the great unknowns of purinergic signaling. Our data demonstrate a novel outcome--autophagy--and show that molecules entering through the LP can be targeted to phagophores. Moreover, we show that in muscles but not in macrophages, autophagy is needed for the formation of this LP. Given that P2RX7-dependent LP and HSP90 are critically interacting in the ATP-evoked autophagic death of dystrophic muscles, treatments targeting this axis could be of therapeutic benefit in this debilitating and incurable form of muscular dystrophy.


Asunto(s)
Autofagia , Proteínas HSP90 de Choque Térmico/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Receptores Purinérgicos P2X7/metabolismo , Adenosina Trifosfato/farmacología , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Canales de Calcio/metabolismo , Activación Enzimática/efectos de los fármacos , Femenino , Proteínas HSP70 de Choque Térmico/metabolismo , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Músculo Esquelético/efectos de los fármacos , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Mioblastos/patología , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda