Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int J Cancer ; 153(10): 1842-1853, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37539710

RESUMEN

Molecular markers can serve as diagnostic tools to support pathological analysis in thyroid neoplasms. However, because the same markers can be observed in some benign thyroid lesions, additional approaches are necessary to differentiate thyroid tumor subtypes, prevent overtreatment and tailor specific clinical management. This applies particularly to the recently described variant of thyroid cancer referred to as noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP). This variant has an estimated prevalence of 4.4% to 9.1% of all papillary thyroid carcinomas worldwide. We studied 60 thyroid lesions: 20 classical papillary thyroid carcinoma (CPTC), 20 follicular variant of PTC (FVPTC) and 20 NIFTP. We examined morphological and molecular features to identify parameters that can differentiate NIFTP from the other PTC subtypes. When blindly investigating the nuclear architecture of thyroid neoplasms, we observed that NIFTP has significantly longer telomeres than CPTC and FVPTC. Super-resolved 3D-structured illumination microscopy demonstrated that NIFTP is heterogeneous and that its nuclei contain more densely packed DNA and smaller interchromatin spaces than CPTC and FVPTC, a pattern that resembles normal thyroid tissue. These data are consistent with the observed indolent biological behavior and favorable prognosis associated with NIFTP, which lacks BRAFV600E mutations. Of note, next-generation thyroid oncopanel sequencing was unable to distinguish the thyroid cancer histotypes in our study cohort. In summary, our data suggest that 3D nuclear architecture can be a powerful analytical tool to diagnose and guide clinical management of NIFTP.


Asunto(s)
Adenocarcinoma Folicular , Neoplasias de la Tiroides , Humanos , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/patología , Pronóstico
2.
Cell Commun Signal ; 21(1): 112, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37189133

RESUMEN

BACKGROUND: Extracellular vesicles (EVs) from Gram-positive bacteria have gained considerable importance as a novel transport system of virulence factors in host-pathogen interactions. Bacillus cereus is a Gram-positive human pathogen, causing gastrointestinal toxemia as well as local and systemic infections. The pathogenicity of enteropathogenic B. cereus has been linked to a collection of virulence factors and exotoxins. Nevertheless, the exact mechanism of virulence factor secretion and delivery to target cells is poorly understood. RESULTS: Here, we investigate the production and characterization of enterotoxin-associated EVs from the enteropathogenic B. cereus strain NVH0075-95 by using a proteomics approach and studied their interaction with human host cells in vitro. For the first time, comprehensive analyses of B. cereus EV proteins revealed virulence-associated factors, such as sphingomyelinase, phospholipase C, and the three-component enterotoxin Nhe. The detection of Nhe subunits was confirmed by immunoblotting, showing that the low abundant subunit NheC was exclusively detected in EVs as compared to vesicle-free supernatant. Cholesterol-dependent fusion and predominantly dynamin-mediated endocytosis of B. cereus EVs with the plasma membrane of intestinal epithelial Caco2 cells represent entry routes for delivery of Nhe components to host cells, which was assessed by confocal microscopy and finally led to delayed cytotoxicity. Furthermore, we could show that B. cereus EVs elicit an inflammatory response in human monocytes and contribute to erythrocyte lysis via a cooperative interaction of enterotoxin Nhe and sphingomyelinase. CONCLUSION: Our results provide insights into the interaction of EVs from B. cereus with human host cells and add a new layer of complexity to our understanding of multicomponent enterotoxin assembly, offering new opportunities to decipher molecular processes involved in disease development. Video Abstract.


Asunto(s)
Bacillus cereus , Enterotoxinas , Humanos , Enterotoxinas/análisis , Enterotoxinas/metabolismo , Bacillus cereus/metabolismo , Células CACO-2 , Esfingomielina Fosfodiesterasa/metabolismo , Factores de Virulencia/metabolismo , Proteínas Bacterianas/metabolismo
3.
Med Mol Morphol ; 54(2): 166-172, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33501611

RESUMEN

To obtain quantitative volumetric data for the Golgi apparatus after ionizing radiation (IR) using super-resolution three-dimensional structured illumination (3D-SIM) microscopy. Normal human retinal pigment epithelial (RPE) cells were irradiated with X-rays (10 Gy), followed by immunofluorescence staining of the Golgi marker RCAS1. 3D-SIM imaging was performed using DeltaVision OMX version 4 and SoftWoRx 6.1. Polygon rendering and spot signal identification were performed using Imaris 8.1.2. Differences between groups were assessed by Welch's t test. RCAS1 signals in untreated cells were located adjacent to nuclei and showed a reticular morphology. Upon IR, the area of RCAS1 signals expanded while retaining the reticular morphology. Polygon rendering imaging revealed that the volume of RCAS1 at 48 h post-IR was greater than that for unirradiated cells (93.7 ± 19.0 µm3 vs. 33.0 ± 4.2 µm3, respectively; P < 0.001): a 2.8-fold increase. Spot signal imaging showed that the number of RCAS1 spot signals post-IR was greater than that for unirradiated cells [3.4 ± 0.8 (× 103) versus 1.3 ± 0.2 (× 103), respectively; P < 0.001]: a 2.7-fold increase. This is the first study to report quantitative volumetric data of the Golgi apparatus in response to IR using super-resolution 3D-SIM microscopy.


Asunto(s)
Células Epiteliales/ultraestructura , Aparato de Golgi/ultraestructura , Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos , Rayos X , Técnicas de Cultivo de Célula , Células Epiteliales/efectos de la radiación , Humanos , Retina
4.
Nano Lett ; 19(7): 4427-4434, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31199151

RESUMEN

Quantification of mechanical forces is a major challenge across biomedical sciences. Yet such measurements are essential to understanding the role of biomechanics in cell regulation and function. Traction force microscopy remains the most broadly applied force probing technology but typically restricts itself to single-plane two-dimensional quantifications with limited spatiotemporal resolution. Here, we introduce an enhanced force measurement technique combining 3D super-resolution fluorescence structural illumination microscopy and traction force microscopy (3D-SIM-TFM) offering increased spatiotemporal resolution, opening-up unprecedented insights into physiological three-dimensional force production in living cells.


Asunto(s)
Simulación por Computador , Microscopía de Fuerza Atómica , Tracción
5.
Biochem Biophys Res Commun ; 511(1): 192-198, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30777327

RESUMEN

Vpx, a virion-associated protein of Human Immunodeficiency Virus 2 (HIV-2) and Simian Immunodeficiency Virus (SIV) counteracts host restriction factor SAMDH1 for efficient viral DNA synthesis in the cytoplasm and mediates subsequent nuclear translocation of the viral genome. Vpx was found to be indispensable in the viral infection of terminally differentiated target cells and macaques infected with virions carrying truncated Vpx showed delayed pathogenesis, suggesting multiple roles of Vpx at different steps in the virus life cycle. The current study demonstrates a novel function of SIVsmPBj1.9 Vpx on the integrity of the nuclear envelope in HeLa cells. Results from the Super-Resolution Structured Illumination Microscopy (SR-SIM) analysis showed that Vpx puncta alter HeLa cell nuclear envelope assembly. Furthermore, three-dimensional (3D) SIM analysis of such regions suggests that Vpx is primed in a specific way to disrupt the nuclear envelope integrity. The nuclear incursion of cytoplasmic proteins through Vpx mediated ruptured nuclear envelope regions suggest that these events might play a critical role in the nuclear entry of otherwise cytoplasmically sequestered molecules and theirby may be assisting Vpx functions including the transport of viral genome into the nucleus, which is critical for the establishment of virus infection and pathogenesis.


Asunto(s)
Membrana Nuclear/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/metabolismo , Virus de la Inmunodeficiencia de los Simios/fisiología , Proteínas Reguladoras y Accesorias Virales/metabolismo , Animales , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Membrana Nuclear/metabolismo , Membrana Nuclear/patología , Síndrome de Inmunodeficiencia Adquirida del Simio/patología
6.
Methods ; 115: 17-27, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27826080

RESUMEN

In the presented work we aimed at improving confocal imaging to obtain highest possible resolution in thick biological samples, such as the mouse oocyte. We therefore developed an image processing workflow that allows improving the lateral and axial resolution of a standard confocal microscope. Our workflow comprises refractive index matching, the optimization of microscope hardware parameters and image restoration by deconvolution. We compare two different deconvolution algorithms, evaluate the necessity of denoising and establish the optimal image restoration procedure. We validate our workflow by imaging sub resolution fluorescent beads and measuring the maximum lateral and axial resolution of the confocal system. Subsequently, we apply the parameters to the imaging and data restoration of fluorescently labelled meiotic spindles of mouse oocytes. We measure a resolution increase of approximately 2-fold in the lateral and 3-fold in the axial direction throughout a depth of 60µm. This demonstrates that with our optimized workflow we reach a resolution that is comparable to 3D-SIM-imaging, but with better depth penetration for confocal images of beads and the biological sample.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Oocitos/ultraestructura , Huso Acromático/ultraestructura , Algoritmos , Animales , Femenino , Colorantes Fluorescentes/química , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Meiosis , Ratones , Microscopía Confocal/instrumentación , Microscopía Fluorescente/instrumentación , Microesferas , Cultivo Primario de Células , Flujo de Trabajo
7.
Int J Mol Sci ; 19(11)2018 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-30424546

RESUMEN

The intercellular transport of auxin is driven by PIN-formed (PIN) auxin efflux carriers. PINs are localized at the plasma membrane (PM) and on constitutively recycling endomembrane vesicles. Therefore, PINs can mediate auxin transport either by direct translocation across the PM or by pumping auxin into secretory vesicles (SVs), leading to its secretory release upon fusion with the PM. Which of these two mechanisms dominates is a matter of debate. Here, we addressed the issue with a mathematical modeling approach. We demonstrate that the efficiency of secretory transport depends on SV size, half-life of PINs on the PM, pH, exocytosis frequency and PIN density. 3D structured illumination microscopy (SIM) was used to determine PIN density on the PM. Combining this data with published values of the other parameters, we show that the transport activity of PINs in SVs would have to be at least 1000× greater than on the PM in order to produce a comparable macroscopic auxin transport. If both transport mechanisms operated simultaneously and PINs were equally active on SVs and PM, the contribution of secretion to the total auxin flux would be negligible. In conclusion, while secretory vesicle-mediated transport of auxin is an intriguing and theoretically possible model, it is unlikely to be a major mechanism of auxin transport in planta.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Vesículas Secretoras/metabolismo , Transporte Biológico , Permeabilidad de la Membrana Celular , Endocitosis , Proteínas Fluorescentes Verdes/metabolismo
8.
Int J Cancer ; 140(2): 400-410, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27711972

RESUMEN

The consistent appearance of specific chromosomal translocations in multiple myeloma has suggested that the positioning of chromosomes in the interphase nucleus might play a role in the occurrence of particular chromosomal rearrangements associated with malignant transformation. Using fluorescence in situ hybridization, we have determined the positions of selected chromosome pairs (18 and 19, 9 and 22, 4 and 14, 14 and 16, 11 and 14) in interphase nuclei of myeloma cells compared to normal lymphocytes of treatment-naïve patients. All chromosome pairs were arranged in a nonrandom pattern. Chromosomes commonly involved in myeloma-associated translocations (4 and 14, 14 and 16, 11 and 14) were found in close spatial proximity, and this is correlated with the occurrence of overlapping chromosome territories. The spatial distribution of chromosomes may increase the possibility of chromosomal translocations in multiple myeloma.


Asunto(s)
Cromosomas/genética , Linfocitos/patología , Gammopatía Monoclonal de Relevancia Indeterminada/genética , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Paraproteinemias/genética , Anciano , Núcleo Celular/genética , Humanos , Hibridación Fluorescente in Situ/métodos , Persona de Mediana Edad , Gammopatía Monoclonal de Relevancia Indeterminada/patología , Paraproteinemias/patología , Proyectos Piloto , Translocación Genética/genética
9.
Am J Bot ; 104(5): 719-732, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28526726

RESUMEN

PREMISE OF THE STUDY: Aquaporin membrane water channels have been previously identified in the phloem of angiosperms, but currently their cellular characterization is lacking, especially in tree species. Pinpointing the cellular location will help generate new hypotheses of how membrane water exchange facilitates sugar transport in plants. METHODS: We studied histological sections of balsam poplar (Populus balsamifera L.) in leaf, petiole, and stem organs. Immuno-labeling techniques were used to characterize the distribution of PIP1 and PIP2 subfamilies of aquaporins along the phloem pathway. Confocal and super resolution microscopy (3D-SIM) was used to identify the localization of aquaporins at the cellular level. KEY RESULTS: Sieve tubes of the leaf lamina, petiole, and stem were labeled with antibodies directed at PIP1s and PIP2s. While PIP2s were mostly observed in the plasma membrane, PIP1s showed both an internal membrane and plasma membrane labeling pattern. CONCLUSIONS: The specificity and consistency of PIP2 labeling in sieve element plasma membranes points to high water exchange rates between sieve tubes and adjacent cells. The PIP1s may relocate between internal membranes and the plasma membrane to facilitate dynamic changes in membrane permeability of sieve elements in response to changing internal or environmental conditions. Aquaporin-mediated changes in membrane permeability of sieve tubes would also allow for some control of radial exchange of water between xylem and phloem.


Asunto(s)
Acuaporinas/fisiología , Floema/fisiología , Proteínas de Plantas/fisiología , Populus/fisiología , Hojas de la Planta/fisiología
10.
Platelets ; 28(4): 400-408, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27753523

RESUMEN

Platelets are small, anucleate cell fragments that are central to hemostasis, thrombosis, and inflammation. They are derived from megakaryocytes from which they inherit their organelles. As platelets can synthesize proteins and contain many of the enzymes of the secretory pathway, one might expect all mature human platelets to contain a stacked Golgi apparatus, the central organelle of the secretory pathway. By thin section electron microscopy, stacked membranes resembling the stacked Golgi compartment in megakaryocytes and other nucleated cells can be detected in both proplatelets and platelets. However, the incidence of such structures is low and whether each and every platelet contains such a structure remains an open question. By single-label, immunofluorescence staining, Golgi glycosyltransferases are found within each platelet and map to scattered structures. Whether these structures are positive for marker proteins from multiple Golgi subcompartments remains unknown. Here, we have applied state-of-the-art techniques to probe the organization state of the Golgi apparatus in resting human platelets. By the whole cell volume technique of serial-block-face scanning electron microscopy (SBF-SEM), we failed to observe stacked, Golgi-like structures in any of the 65 platelets scored. When antibodies directed against Golgi proteins were tested against HeLa cells, labeling was restricted to an elongated juxtanuclear ribbon characteristic of a stacked Golgi apparatus. By multi-label immunofluorescence microscopy, we found that each and every resting human platelet was positive for cis, trans, and trans Golgi network (TGN) proteins. However, in each case, the proteins were found in small puncta scattered about the platelet. At the resolution of deconvolved, widefield fluorescence microscopy, these proteins had limited tendency to map adjacent to one another. When the results of 3D structured illumination microscopy (3D SIM), a super resolution technique, were scored quantitatively, the Golgi marker proteins failed to map together indicating at the protein level considerable degeneration of the platelet Golgi apparatus relative to the layered stack as seen in the megakaryocyte. In conclusion, we suggest that these results have important implications for organelle structure/function relationships in the mature platelet and the extent to which Golgi apparatus organization is maintained in platelets. Our results suggest that Golgi proteins in circulating platelets are present within a series of scattered, separated structures. As separate elements, selective sets of Golgi enzymes or sugar nucleotides could be secreted during platelet activation. The establishment of the functional importance, if any, of these scattered structures in sequential protein modification in circulating platelets will require further research.


Asunto(s)
Plaquetas/metabolismo , Aparato de Golgi/metabolismo , Microscopía Electrónica/métodos , Microscopía Fluorescente/métodos , Técnicas de Cultivo de Célula , Células HeLa , Humanos , Orgánulos
11.
Methods Mol Biol ; 2772: 39-48, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38411805

RESUMEN

The plant endoplasmic reticulum (ER) forms several specialized structures. These include the sieve element reticulum (SER) and the desmotubule formed as the ER passes through plasmodesmata. Imaging both of these structures has been inhibited by the resolution limits of light microscopy and their relatively inaccessible locations, combined with the fragile nature of the ER. Here we describe methods to view desmotubules in live cells under 3D-structured illumination microscopy (3D-SIM) and methods to fix and prepare phloem tissue for both 3D-SIM and transmission electron microscopy (TEM), which preserve the fragile structure and allow the detailed imaging of the SER.


Asunto(s)
Retículo Endoplásmico , Floema , Microscopía Electrónica de Transmisión , Plasmodesmos
12.
Biology (Basel) ; 12(3)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36979066

RESUMEN

The genomes of metazoans are organized at multiple spatial scales, ranging from the double helix of DNA to whole chromosomes. The intermediate genomic scale of kilobases to megabases, which corresponds to the 50-300 nm spatial scale, is particularly interesting, as the 3D arrangement of chromatin is implicated in multiple regulatory mechanisms. In this context, polycomb group (PcG) proteins stand as major epigenetic modulators of chromatin function, acting prevalently as repressors of gene transcription by combining chemical modifications of target histones with physical crosslinking of distal genomic regions and phase separation. The recent development of super-resolution microscopy (SRM) has strongly contributed to improving our comprehension of several aspects of nano-/mesoscale (10-200 nm) chromatin domains. Here, we review the current state-of-the-art SRM applied to PcG proteins, showing that the application of SRM to PcG activity and organization is still quite limited and mainly focused on the 3D assembly of PcG-controlled genomic loci. In this context, SRM approaches have mostly been applied to multilabel fluorescence in situ hybridization (FISH). However, SRM data have complemented the maps obtained from chromosome capture experiments and have opened a new window to observe how 3D chromatin topology is modulated by PcGs.

13.
Bio Protoc ; 12(6): e4360, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35434191

RESUMEN

The centrosome is the main microtubule-organizing center of animal cells, and is composed of two barrel-shaped microtubule-based centrioles embedded in protein dense pericentriolar material. Compositional and architectural re-organization of the centrosome drives its duplication, and enables its microtubule-organizing activity and capability to form the primary cilium, which extends from the mature (mother) centriole, as the cell exits the cell cycle. Centrosomes and primary cilia are essential to human health, signified by the causal role of centrosome- and cilia-aberrations in numerous congenic disorders, as well as in the etiology and progression of cancer. The list of disease-associated centrosomal proteins and their proximitomes is steadily expanding, emphasizing the need for high resolution mapping of such proteins to specific substructures of the organelle. Here, we provide a detailed 3D-structured illumination microscopy (3D-SIM) protocol for comparative localization analysis of fluorescently labeled proteins at the centrosome in fixed human cell lines, at approximately 120 nm lateral and 300 nm axial resolution. The procedure was optimized to work with primary antibodies previously known to depend on more disruptive fixation reagents, yet largely preserves centriole and centrosome architecture, as shown by transposing acquired images of landmark proteins on previously published transmission electron microscopy (TEM) images of centrosomes. Even more advantageously, it is compatible with fluorescent protein tags. Finally, we introduce an internal reference to ensure correct 3D channel alignment. This protocol hence enables flexible, swift, and information-rich localization and interdependence analyses of centrosomal proteins, as well as their disorder-associated mutations.

14.
Methods Mol Biol ; 2457: 143-148, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35349137

RESUMEN

Plasmodesmata (PD) have a diameter of around 30-50 nm which is well below the 200 nm limit of optical resolution, making analysis by light microscopy difficult and resolving internal structures of the PD such as the desmotubule impossible. Modern super-resolution methods such as 3D structured illumination microscopy (3D-SIM) can increase the lateral and axial resolution and work well on fixed, sectioned material. However, imaging in live plant cells requires careful optimization. Here we present a method to image PD using 3D-SIM in live BY2 cells.


Asunto(s)
Iluminación , Plasmodesmos , Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos , Células Vegetales
15.
Plants (Basel) ; 11(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36079661

RESUMEN

Understanding meiotic crossover (CO) variation in crops like bread wheat (Triticum aestivum L.) is necessary as COs are essential to create new, original and powerful combinations of genes for traits of agronomical interest. We cytogenetically characterized a set of wheat aneuploid lines missing part or all of chromosome 3B to identify the most influential regions for chiasma formation located on this chromosome. We showed that deletion of the short arm did not change the total number of chiasmata genome-wide, whereas this latter was reduced by ~35% while deleting the long arm. Contrary to what was hypothesized in a previous study, deletion of the long arm does not disturb the initiation of the synaptonemal complex (SC) in early meiotic stages. However, progression of the SC is abnormal, and we never observed its completion when the long arm is deleted. By studying six different deletion lines (missing different parts of the long arm), we revealed that at least two genes located in both the proximal (C-3BL2-0.22) and distal (3BL7-0.63-1.00) deletion bins are involved in the control of chiasmata, each deletion reducing the number of chiasmata by ~15%. We combined sequence analyses of deletion bins with RNA-Seq data derived from meiotic tissues and identified a set of genes for which at least the homoeologous copy on chromosome 3B is expressed and which are involved in DNA processing. Among these genes, eight (CAP-E1/E2, DUO1, MLH1, MPK4, MUS81, RTEL1, SYN4, ZIP4) are known to be involved in the recombination pathway.

16.
Front Synaptic Neurosci ; 14: 852227, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463850

RESUMEN

The nanoscale architecture of synapses has been investigated using multiple super-resolution methods, revealing a common modular structure for scaffolds, neurotransmitter receptors, and presynaptic proteins. This fundamental organization of proteins into subsynaptic domains (SSDs) is thought to be important for synaptic function and plasticity and common to many types of synapses. Using 3D super-resolution Structured Illumination Microscopy (3D-SIM), we recently showed that GABAergic inhibitory synapses exhibit this nanoscale organizational principle and are composed of SSDs of GABA A receptors (GABA A Rs), the inhibitory scaffold gephyrin, and the presynaptic active zone protein, RIM. Here, we have investigated the use of 3D-SIM and dSTORM to analyze the nanoscale architecture of the inhibitory synaptic adhesion molecule, neuroligin-2 (NL2). NL2 is a crucial mediator of inhibitory synapse formation and organization, associating with both GABA A Rs and gephyrin. However, the nanoscale sub-synaptic distribution NL2 remains unknown. We found that 3D-SIM and dSTORM provide complementary information regarding the distribution of NL2 at the inhibitory synapse, with NL2 forming nanoscale structures that have many similarities to gephyrin nanoscale architecture.

17.
Methods Mol Biol ; 2502: 373-393, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35412251

RESUMEN

C. elegans is a well-characterized and relatively simple model organism, making it attractive for studying nuclear pore complex proteins in cell and developmental biology. C. elegans is transparent and highly amendable to genetic manipulation. Therefore, it is possible to generate fluorescently tagged proteins and combine this with various light microscopy techniques to study protein behavior in space and time. Here, we provide protocols to prepare both fixed and live C. elegans for confocal and light sheet microscopy. This enables the analysis of nuclear pore complex proteins from embryonic stages to the aging adult.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteínas de Complejo Poro Nuclear , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Microscopía Fluorescente/métodos , Proteínas de Complejo Poro Nuclear/metabolismo
18.
Methods Mol Biol ; 2522: 419-434, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36125768

RESUMEN

The labeling and specific detection of nascent DNA by the incorporation of thymidine analogs provide crucial information about DNA replication dynamics without requiring the intracellular expression of fluorescent proteins. After cell fixation and permeabilization, specific detection of thymidine analogs by antibodies can be performed using super-resolution imaging techniques. Here we describe a protocol to label nascent DNA using 5'-bromo-2'-deoxyuridine (BrdU) in Haloferax volcanii cells and generate super-resolved images of neo-synthesized DNA foci either by 3D Structured illumination microscopy (3D-SIM) or Stochastic Optical Reconstruction Microscopy (STORM).


Asunto(s)
Haloferax volcanii , Microscopía , Bromodesoxiuridina , ADN , Microscopía/métodos , Timidina
19.
ACS Biomater Sci Eng ; 6(7): 3925-3932, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-33463326

RESUMEN

Obtaining a comprehensive understanding of the bactericidal mechanisms of natural nanotextured surfaces is crucial for the development of fabricated nanotextured surfaces with efficient bactericidal activity. However, the scale, nature, and speed of bacteria-nanotextured surface interactions make the characterization of the interaction a challenging task. There are currently several different opinions regarding the possible mechanisms by which bacterial membrane damage occurs upon interacting with nanotextured surfaces. Advanced imaging methods could clarify this by enabling visualization of the interaction. Charged particle microscopes can achieve the required nanoscale resolution but are limited to dry samples. In contrast, light-based methods enable the characterization of living (hydrated) samples but are limited by the resolution achievable. Here we utilized both helium ion microscopy (HIM) and 3D structured illumination microscopy (3D-SIM) techniques to understand the interaction of Gram-negative bacterial membranes with nanopillars such as those found on dragonfly wings. Helium ion microscopy enables cutting and imaging at nanoscale resolution, while 3D-SIM is a super-resolution optical microscopy technique that allows visualization of live, unfixed bacteria at ∼100 nm resolution. Upon bacteria-nanopillar interaction, the energy stored due to the bending of natural nanopillars was estimated and compared with fabricated vertically aligned carbon nanotubes. With the same deflection, shorter dragonfly wing nanopillars store slightly higher energy compared to carbon nanotubes. This indicates that fabricated surfaces may achieve similar bactericidal efficiency as dragonfly wings. This study reports in situ characterization of bacteria-nanopillar interactions in real-time close to its natural state. These microscopic approaches will help further understanding of bacterial membrane interactions with nanotextured surfaces and the bactericidal mechanisms of nanotopographies so that more efficient bactericidal nanotextured surfaces can be designed and fabricated, and their bacteria-nanotopography interactions can be assessed in situ.


Asunto(s)
Nanotubos de Carbono , Odonata , Animales , Bacterias , Escherichia coli , Helio , Iluminación , Microscopía
20.
Methods Mol Biol ; 1930: 41-50, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30610597

RESUMEN

Visualization of signal transduction events in T-cells has always been a challenge due to their miniscule size. Recent advancement in super-resolution microscopy techniques presents many new opportunities to navigate the spatial and temporal signaling cross-talks in motile T-cells. Here, we provide technical details, optimal conditions, and critical practical considerations that need to be taken into account during cell handling, sample preparation, and image acquisition of motile T-cells for performing three-dimensional structured illumination microscopy (3D-SIM).


Asunto(s)
Movimiento Celular , Rastreo Celular/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Iluminación/métodos , Microscopía Fluorescente/métodos , Linfocitos T/fisiología , Células Cultivadas , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Transducción de Señal , Linfocitos T/citología , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda