Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 505
Filtrar
1.
Cell ; 174(2): 271-284.e14, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29887373

RESUMEN

The small intestinal tuft cell-ILC2 circuit mediates epithelial responses to intestinal helminths and protists by tuft cell chemosensory-like sensing and IL-25-mediated activation of lamina propria ILC2s. Small intestine ILC2s constitutively express the IL-25 receptor, which is negatively regulated by A20 (Tnfaip3). A20 deficiency in ILC2s spontaneously triggers the circuit and, unexpectedly, promotes adaptive small-intestinal lengthening and remodeling. Circuit activation occurs upon weaning and is enabled by dietary polysaccharides that render mice permissive for Tritrichomonas colonization, resulting in luminal accumulation of acetate and succinate, metabolites of the protist hydrogenosome. Tuft cells express GPR91, the succinate receptor, and dietary succinate, but not acetate, activates ILC2s via a tuft-, TRPM5-, and IL-25-dependent pathway. Also induced by parasitic helminths, circuit activation and small intestinal remodeling impairs infestation by new helminths, consistent with the phenomenon of concomitant immunity. We describe a metabolic sensing circuit that may have evolved to facilitate mutualistic responses to luminal pathosymbionts.


Asunto(s)
Intestino Delgado/fisiología , Tritrichomonas/metabolismo , Acetatos/metabolismo , Animales , Fibras de la Dieta/metabolismo , Metabolismo Energético , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/parasitología , Interleucinas/genética , Interleucinas/metabolismo , Mucosa Intestinal/citología , Intestino Delgado/microbiología , Intestino Delgado/parasitología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microbiota , Plásmidos/genética , Plásmidos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Interleucina/metabolismo , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Ácido Succínico/metabolismo , Canales Catiónicos TRPM/metabolismo , Tritrichomonas/crecimiento & desarrollo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo
2.
J Mol Cell Cardiol ; 195: 24-35, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39002608

RESUMEN

Pulmonary hypertension (PH) is characterized by excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), in which inflammatory signaling caused by activation of the NF-κB pathway plays an important role. A20 is an important negative regulator of the NF-κB pathway, and zinc promotes the expression of A20 and exerts a protective effect against various diseases (e.g. COVID19) by inhibiting the inflammatory signaling. The role of A20 and intracellular zinc signaling in PH has been explored, but the extracellular zinc signaling is not well understood, and whether zinc has protective effects on PH is still elusive. Using inductively coupled plasma mass spectrometry (ICP-MS), we studied the alteration of trace elements during the progression of monocrotaline (MCT)-induced PH and found that serum zinc concentration was decreased with the onset of PH accompanied by abnormalities of other three elements, including copper, chromium, and magnesium. Zinc chloride injection with the dosage of 5 mg/kg intraperitoneally partially corrected this abnormality and inhibited the progression of PH. Zinc supplementation induced the expression of A20 in lung tissue and reduce the inflammatory responses. In vitro, zinc supplementation time-dependently upregulated the expression of A20 in PASMCs, therefore correcting the excessive proliferation and migration of cells caused by hypoxia. Using genetically encoded-FRET based zinc probe, we found that these effects of zinc ions are not achieved by entering cells, but most likely by activating cell surface zinc receptor (ZnR/GPR39). These results provide the first evidence of the effectiveness of zinc supplementation in the treatment of PH.

3.
J Clin Immunol ; 44(3): 76, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38451381

RESUMEN

A20, encoded by TNFAIP3, is a critical negative regulator of immune activation. A20 is a ubiquitin editing enzyme with multiple domains, each of which mediates or stabilizes a key ubiquitin modification. A20 targets diverse proteins that are involved in pleiotropic immunologic pathways. The complexity of A20-mediated immunomodulation is illustrated by the varied effects of A20 deletion in different cell types and disease models. Clinically, the importance of A20 is highlighted by its extensive associations with human disease. A20 germline variants are associated with a wide range of inflammatory diseases, while somatic mutations promote development of B cell lymphomas. More recently, the discovery of A20 haploinsufficiency (HA20) has provided real world evidence for the role of A20 in immune cell function. Originally described as an autosomal dominant form of Behcet's disease, HA20 is now considered a complex inborn error of immunity with a broad spectrum of immunologic and clinical phenotypes.


Asunto(s)
Síndrome de Behçet , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa , Humanos , Mutación de Línea Germinal , Haploinsuficiencia , Inmunomodulación , Ubiquitinas , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/química , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo
4.
EMBO Rep ; 23(12): e55233, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36194667

RESUMEN

The anti-inflammatory protein A20 serves as a critical brake on NF-κB signaling and NF-κB-dependent inflammation. In humans, polymorphisms in or near the TNFAIP3/A20 gene have been associated with several inflammatory disorders, including rheumatoid arthritis (RA), and experimental studies in mice have demonstrated that myeloid-specific A20 deficiency causes the development of a severe polyarthritis resembling human RA. Myeloid A20 deficiency also promotes osteoclastogenesis in mice, suggesting a role for A20 in the regulation of osteoclast differentiation and bone formation. We show here that osteoclast-specific A20 knockout mice develop severe osteoporosis, but not inflammatory arthritis. In vitro, osteoclast precursor cells from A20 deficient mice are hyper-responsive to RANKL-induced osteoclastogenesis. Mechanistically, we show that A20 is recruited to the RANK receptor complex within minutes of ligand binding, where it restrains NF-κB activation independently of its deubiquitinating activity but through its zinc finger (ZnF) 4 and 7 ubiquitin-binding functions. Together, these data demonstrate that A20 acts as a regulator of RANK-induced NF-κB signaling to control osteoclast differentiation, assuring proper bone development and turnover.


Asunto(s)
FN-kappa B , Humanos , Animales , Ratones
5.
Fish Shellfish Immunol ; 152: 109781, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39029718

RESUMEN

IkappaB kinase beta (IKKß) is a key member of IκB kinases and functions importantly in interferon (IFN) signaling. Phosphorylation and ubiquitination are involved in the activation of IKKß. A20 is a de-ubiquitin enzyme and functions as a suppressor in inflammation signaling, which has been reported to be phosphorylated and activated by IKKß. However, the role and relationship of IKKß and A20 in teleost remains unclear. In this study, IKKß (bcIKKß) and A20 (bcA20) of black carp (Mylopharyngodon piceus) have been cloned and characterized. Overexpressed bcIKKß in EPC cells showed strong anti-viral ability by activating both NF-κB and IFN signaling. EPC cells stable expressing bcIKKß presented improved anti-viral activity as well. The interaction between bcA20 and bcIKKß was identified, and overexpression of bcA20 was able to suppress bcIKKß-mediated activation of NF-κB and IFN signaling. Meanwhile, knock-down of A20 increased host the antiviral ability of host cells. Importantly, it has been identified that bcA20 was able to remove K27-linked ubiquitination and decrease the phosphorylation of bcIKKß. Thus, our data conclude that bcA20 suppresses the anti-viral activity of bcIKKß and removes its K27-linked ubiquitination, which presents a new mechanism of IKKß regulation.

6.
Hepatol Res ; 54(6): 606-611, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38126665

RESUMEN

AIM: A20 haploinsufficiency (HA20) is a recently described autoinflammatory disease that manifests symptoms similar to those of Behçet's disease. However, little is known about the involvement of the liver in HA20. Here, we report a case of HA20 complicated by autoimmune hepatitis (AIH). CASE PRESENTATION: A 33-year-old woman was previously diagnosed with HA20 and chronic thyroiditis, and was treated with prednisolone (PSL; 7.5 mg/day) and levothyroxine sodium hydrate (125 µg/day). She experienced general malaise and jaundice, and biochemical evaluation revealed elevated liver function with an aspartate aminotransferase level of 817 U/L, an alanine aminotransferase level of 833 U/L, and a total bilirubin of 8.3 mg/dL. Pathological evaluation of the liver biopsy revealed interface hepatitis and the patient was diagnosed with acute exacerbation of AIH. Upon increasing the PSL dose to 60 mg/day, the liver enzyme levels rapidly decreased. During tapering of PSL, azathioprine 50 mg/day was added, and there was no relapse of AIH with combination therapy of PSL 7 mg/day and azathioprine 50 mg/day. CONCLUSION: This is the first report of biopsy-proven AIH in an Asian patient with HA20. This case has significant implications for the pathogenesis and treatment of AIH in patients with HA20.

7.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38928333

RESUMEN

A20, the central inhibitor of NFκB, has multiple anti-inflammatory properties, making it an interesting target in kidney autoimmune disease and transplant biology. It has been shown to be able to inhibit inflammatory functions in macrophages, dendritic cells, T cells, and B cells in various ways, leading to less tissue damage and better graft outcomes. In this review, we will discuss the current literature regarding A20 in kidney transplantation and autoimmunity. Future investigations on animal models and in existing immunosuppressive therapies are needed to establish A20 as a therapeutic target in kidney transplantation and autoimmunity. Cell-based therapies, modified viruses or RNA-based therapies could provide a way for A20 to be utilized as a promising mediator of inflammation and tissue damage.


Asunto(s)
Autoinmunidad , Trasplante de Riñón , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa , Humanos , Animales , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/terapia , Rechazo de Injerto/inmunología , Rechazo de Injerto/prevención & control
8.
J Biol Chem ; 298(3): 101667, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35120925

RESUMEN

In marine environments, organisms are confronted with numerous microbial challenges, although the differential regulation of xenophagy in response to different pathogenic bacterial species remains relatively unknown. Here, we addressed this issue using Apostichopus japonicus as a model. We identified 39 conserved autophagy-related genes by genome-wide screening, which provided a molecular basis for autophagy regulation in sea cucumbers. Furthermore, xenophagy of two Gram-negative bacteria, Vibrio splendidus and Escherichia coli, but not a Gram-positive bacteria, Micrococcus luteus, was observed in different autophagy assays. Surprisingly, a significantly higher autophagy capacity was found in the E. coli-challenged group than in the V. splendidus-challenged group. To confirm these findings, two different lipopolysaccharides, LPSV. splendidus and LPSE. coli, were isolated; we found that these LPS species differentially activated coelomocyte xenophagy. To explore the molecular mechanism mediating differential levels of xenophagy, we used an siRNA knockdown assay and confirmed that LPSV. splendidus-mediated xenophagy was dependent on an AjTLR3-mediated pathway, whereas LPSE. coli-mediated xenophagy was dependent on AjToll. Moreover, the activation of different AjTLRs resulted in AjTRAF6 ubiquitination and subsequent activation of K63-linked ubiquitination of AjBeclin1. Inversely, the LPSV. splendidus-induced AjTLR3 pathway simultaneously activated the expression of AjA20, which reduced the extent of K63-linked ubiquitination of AjBeclin1 and impaired the induction of autophagy; however, this finding was no t evident with LPSE. coli. Our present results provide the first evidence showing that xenophagy could be differentially induced by different bacterial species to yield differential autophagy levels in echinoderms.


Asunto(s)
Beclina-1 , Equinodermos , Factor 6 Asociado a Receptor de TNF , Receptores Toll-Like , Vibrio , Animales , Beclina-1/genética , Beclina-1/metabolismo , Equinodermos/metabolismo , Equinodermos/microbiología , Escherichia coli/genética , Escherichia coli/metabolismo , Lipopolisacáridos/farmacología , Macroautofagia , Transducción de Señal , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptores Toll-Like/metabolismo , Vibrio/metabolismo
9.
Biochem Biophys Res Commun ; 664: 86-93, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37141641

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a malignant digestive system tumor with a poor late-stage prognosis. This study aimed to identify new methods for the early detection of PDAC. The nanoprobe A20FMDV2-Gd-5-FAM was developed using A20FMDV2 (N1AVPNLRGDLQVLAQKVART20-NH2, A20FMDV2) as the ligand and characterized using dynamic light scattering, transmission electron microscopy, Fourier transform infrared analysis, and UV absorption spectroscopy. The binding of pancreatic cancer cells AsPC-1, MIA PaCa-2, and normal human pancreatic H6C7 cells (HPDE6-C7) to the probe was verified using laser confocal microscopy, and the biocompatibility of the probe was evaluated in vivo. In vivo magnetic resonance and fluorescence imaging were also performed on nude mice with subcutaneous pancreatic tumor xenografts to verify the bimodal imaging performance of the probe. The probe exhibited good stability and biocompatibility and an enhanced relaxation rate (25.46 ± 1.32 mM-1 s-1) than Gd-DTPA. Confocal laser scanning microscopy results revealed that the A20FMDV2-Gd-5-FAM probe could be successfully ingested and internalized, and infrared analysis results demonstrated that the probe was linked successfully. Finally, magnetic resonance T1WI imaging and intravital fluorescence imaging demonstrated the specific signal enhancement of the probe at the tumor site. In conclusion, the bimodal molecular probe A20FMDV2-Gd-5-FAM showed a stable magnetic resonance and fluorescence bimodal imaging performance and is a promising new approach for diagnosing early-stage cancers with a high integrin αvß6 expression.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ratones , Animales , Humanos , Medios de Contraste , Colorantes Fluorescentes , Ligandos , Ratones Desnudos , Línea Celular Tumoral , Péptidos/química , Neoplasias Pancreáticas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Neoplasias Pancreáticas
10.
Respir Res ; 24(1): 50, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788604

RESUMEN

BACKGROUND: Intrauterine growth restriction (IUGR) is strongly correlated with an increased risk of asthma later in life. Farm dust protects mice from developing house dust mite-induced asthma, and loss of ubiquitin modifying enzyme A20 in lung epithelium would abolish this protective effect. However, the mechanisms of A20 in the development of asthma following IUGR remains unknown. METHODS: An IUGR rat model induced by maternal nutrient restriction was used for investigating the role of A20 in the response characteristics of IUGR rats to ovalbumin (OVA) challenge. The ubiquitination of proteins and N6-methyladenosine (m6A) modifications were used to further assess the potential mechanism of A20. RESULTS: IUGR can reduce the expression of A20 protein in lung tissue of newborn rats and continue until 10 weeks after birth. OVA challenging can increase the expression of A20 protein in lung tissue of IUGR rats, but its level was still significantly lower than the control OVA group. The differentially ubiquitinated proteins in lung tissues were also observed in IUGR and normal newborn rats. Furthermore, this ubiquitination phenomenon continued from the newborn to adulthood. In the detected RNA methylations, m6A abundance of the motif GGACA was the highest. The higher abundances of m6A modification of A20 mRNA from IUGR were negatively correlated with the trend of A20 protein levels. CONCLUSION: These findings indicate A20 as a key regulator during the development of asthma following IUGR, providing further insight into the prevention of asthma induced by environmental factors.


Asunto(s)
Asma , Retardo del Crecimiento Fetal , Animales , Femenino , Ratas , Asma/inducido químicamente , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/metabolismo , Pulmón/metabolismo , Ovalbúmina , Ubiquitina
11.
Arch Biochem Biophys ; 735: 109502, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36603698

RESUMEN

Necroptosis has been demonstrated to contribute to brain injury in ischemic stroke, whereas A20 can exert anti-necroptosis effect via deubiquitinating receptor-interacting protein kinase (RIPK3) at k63 and it can be cleaved by MALT1. This study aims to explore whether MALT1 is upregulated in the brain during ischemic stroke and promotes brain cell necroptosis through enhancing the degradation of A20. Ischemic stroke model was established in Sprague Dawley rats by occlusion of the middle cerebral artery (MCA) for 2 h, followed by 24 h reperfusion, which showed brain injury (increase in neurological deficit score and infarct volume) concomitant with an upregulation of MALT1, a decrease in A20 level, and increases in necroptosis-associated protein levels [RIPK3, mixed lineage kinase domain-like protein (MLKL) and p-MLKL] and k63-ubiquitination of RIPK3 in brain tissues. Administration of MALT1 inhibitor (Ml-2) at 8 or 15 mg/kg (i.p.) at 1 h after ischemia significantly improved neurological function and reduced infarct volume together with a downregulation of MALT1, an increase in A20 level and decreases in necroptosis-associated protein levels and k63-ubiquitination of RIPK3. Similarly, knockdown of MALT1 could also reduce oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury in the cultured HT22 cells coincident with an increase in A20 level and decreases in necroptosis-associated protein levels and k63-ubiquitination of RIPK3. Based on these observations, we conclude that MALT1 promotes necroptosis in stroke rat brain via enhancing the degradation of A20, which leads to a decrease in the capability of A20 to deubiquitinate RIPK3 at k63 and a subsequent compromise in counteraction against the brain cell necroptosis.


Asunto(s)
Lesiones Encefálicas , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Ratas , Encéfalo/metabolismo , Lesiones Encefálicas/metabolismo , Infarto/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Ratas Sprague-Dawley , Accidente Cerebrovascular/metabolismo , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo
12.
Exp Eye Res ; 228: 109392, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36717050

RESUMEN

A20, also called TNFAIP3, is a crucial regulator of inflammation in various diseases but has not evidenced its function in the cornea. We aimed to evaluate the existence and the functions of A20 in human corneal epithelial (HCE-T) cells. After being treated with lipopolysaccharide (LPS) in different concentrations or at separate times, cells were collected to analyze A20 expressions. We then constructed the A20 knockdown system by siRNA and the A20 overexpressing system by lentivirus transduction. Systems were further exposed to medium with or without LPS for indicated times. Next, we evaluated the production of inflammatory cytokines (IL-6 and IL-8) by qRT-PCR and ELISA. Also, the translocation of P65 and the phosphorylation of P65, P38 and JNK were observed in two systems. In addition, we used the nuclear factor kappa-B (NF-κB) antagonist TPCA-1 for the pretreatment in cells and then detected the A20 expressions. We found a low basal expression of A20 in HCE-T cells, and the expressions could be dose-dependently induced by LPS, peaking at 4 h in protein level after stimulation. Both the A20 knockdown and A20 overexpressing systems were confirmed to be effective. After the LPS treatment, productions of IL-6 and IL-8 were enhanced in the A20 knockdown system and reduced in the A20 overexpressing system. A20 reduced the translocation of P65 into the nucleus and the phosphorylation of P65, P38 and JNK. Furthermore, TPCA-1 pretreatment reduced the expression of A20 in cells. We concluded that A20 is a potent regulator for corneal epithelium's reaction to inflammation, and it thus is expected to be a potential therapy target for ocular surface diseases.


Asunto(s)
Interleucina-6 , Lipopolisacáridos , Humanos , Células Epiteliales/metabolismo , Inflamación/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo
13.
FASEB J ; 36(10): e22527, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36036542

RESUMEN

Canonical transient receptor potential-6 (TRPC6) has been reported to be involved in cell damage after ischemia/reperfusion (I/R) injury in target organs. While the effect and of TRPC6 on pyroptosis in renal I/R injury remain unclear. In our study, we first established the renal I/R mouse model and oxygen-glucose deprivation and re-oxygenation (OGD/R) cell model, and investigated the impacts of TRPC6 on the pyroptosis-related proteins using CCK-8, western blot, ELISA, and immunofluorescence probes. Besides, we also explored the mechanism of TRPC6 in pyroptosis of renal tubular epithelial cells through A20 knockdown or overexpression and zinc chloride (ZnCl2 ) or a zinc ion chelator (TPEN) treatment. Our results indicated that I/R injury could cause downregulation of TRPC6 both in vivo and in vitro. In the I/R injury murine model, TRPC6 inhibition exacerbated tissue damage and upregulated NLRP3, ASC, caspase-1, IL-18, and IL-1ß, which could be alleviated by the administration of ZnCl2 . In the OGD/R cell model, inhibitor of TRPC6 (SAR7334) reduced zinc ion influx, aggravated cell death and upregulated pyroptosis-related protein. The pyroptosis phenotype also could be alleviated by ZnCl2 and intensified by TPEN. Overexpression of A20 reduced the expression of pyroptosis-related protein, increased cell viability in the sh-TRPC6 and TPEN-treated OGD/R cell models, while A20 deficiency impaired the protective effect of zinc ion. Therefore, our results indicate that TRPC6 could promote zinc ion influx in renal tubular epithelial cells, thereby upregulating intracellular A20, inhibiting the activation of inflammasome NLRP3, and ultimately attenuating renal I/R injury.


Asunto(s)
Piroptosis , Daño por Reperfusión , Animales , Células Epiteliales , Inflamasomas , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR , Canal Catiónico TRPC6 , Zinc
14.
Exp Cell Res ; 418(1): 113264, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35714941

RESUMEN

A20 is involved in inflammation and bone metabolism in periodontitis. Regulation of macrophage polarization may be an effective target for periodontitis treatment, and A20 has a regulatory role in macrophage polarization. This study aimed to explore the effects of A20 on macrophage polarization in periodontitis and the underlying mechanism. Adeno-associated virus (AAV) targeting A20 was exploited to achieve A20 knockdown or overexpression in periodontal tissues of mice with experimental periodontitis. The (AAV-A20-RNAi) +P group showed increased alveolar bone resorption when compared with PBS + P and CON305 + P groups. However, the degree of bone destruction was reduced in the (AAV-A20) +P group relative to PBS + P and CON299 + P groups. A20 knockdown resulted in enhanced inducible nitric oxide synthase (iNOS) expression and decreased CD206 expression in mice periodontal tissues. In addition, higher levels of M1 macrophage polarization markers (iNOS, CD86, TNF-α) and lower CD206 expression were found in THP-1 cells treated with lipopolysaccharide (LPS) from Porphyromonas gingivalis (P. gingivalis) (Pg. LPS) and interferon-γ (IFN-γ) when A20 was silenced. A20 overexpression showed opposite effects on macrophage polarization in vivo and in vitro. Knockdown of A20 was correlated with upregulation of the NLRP3 inflammasome pathway in mice periodontal tissues or THP-1 cells. On the contrary, A20 overexpression inhibited the NLRP3 inflammasome pathway. MCC950 suppressed M1 macrophage polarization aggravated through A20 knockdown in Pg. LPS and IFN-γ stimulated cells. Our data suggested that A20 inhibits periodontal bone resorption and NLRP3-mediated M1 macrophage polarization; A20 is expected to be a novel target for the treatment of periodontitis.


Asunto(s)
Pérdida de Hueso Alveolar , Periodontitis , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Pérdida de Hueso Alveolar/prevención & control , Animales , Inflamasomas/metabolismo , Interferón gamma/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Periodontitis/metabolismo
15.
Immunopharmacol Immunotoxicol ; 45(5): 539-548, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36891829

RESUMEN

The A20 protein is considered to have a potent anti-inflammatory effect, but its mechanism of action in the regulation of ferroptosis and inflammation after stroke is still unknown. In this study, the A20-knockdown BV2 cell line (sh-A20 BV2) was constructed at first, and the oxygen-glucose deprivation/re-oxygenation (OGD/R) cell model was constructed. Both the BV2 and sh-A20 BV2 cells were treated with the ferroptosis inducer erastin for 48 h, the ferroptosis-related indicators were detected by western blot. The mechanism of ferroptosis was explored by western blot and immunofluorescence. Under OGD/R pressure, the oxidative stress level of sh-A20 BV2 cells was inhibited, but the secretion of the inflammatory factors TNF-α, IL-1ß, and IL-6 was significantly upregulated. And sh-A20 BV2 cells had higher expression levels of GPX4 and NLRP3 proteins under OGD/R induction. Western blot further confirmed that sh-A20 BV2 cells inhibited OGD/R-induced ferroptosis. Under the effect of erastin of the ferroptosis inducer (0-1000 nM), sh-A20 BV2 cells had higher cell viability than wild-type BV2 cells and significantly inhibited the accumulation of ROS and the level of oxidative stress damage. It was confirmed that A20 could promote the activation of the IκBα/NFκB/iNOS pathway. It was confirmed by an iNOS inhibitor that iNOS inhibition could reverse the resistance effect of BV2 cells to OGD/R-induced ferroptosis after A20 knockdown. In conclusion, this study demonstrated that inhibition of A20 mediates a stronger inflammatory response while enhancing microglial resistance by knocking down A20 in BV2 cells.


Asunto(s)
Ferroptosis , Accidente Cerebrovascular , Humanos , Microglía/metabolismo , FN-kappa B/metabolismo , Línea Celular
16.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37569318

RESUMEN

The overactivity of keratinocyte cytoplasmic signaling contributes to several cutaneous inflammatory and immune pathologies. An important emerging complement to proteins responsible for this overactivity is signal repression brought about by several proteins and protein complexes with the native role of limiting inflammation. The signaling repression by these proteins distinguishes them from transmembrane receptors, kinases, and inflammasomes, which drive inflammation. For these proteins, defects or deficiencies, whether naturally arising or in experimentally engineered skin inflammation models, have clearly linked them to maintaining keratinocytes in a non-activated state or returning cells to a post-inflamed state after a signaling event. Thus, together, these proteins help to resolve acute inflammatory responses or limit the development of chronic cutaneous inflammatory disease. We present here an integrated set of demonstrated or potentially inflammation-repressive proteins or protein complexes (linear ubiquitin chain assembly complex [LUBAC], cylindromatosis lysine 63 deubiquitinase [CYLD], tumor necrosis factor alpha-induced protein 3-interacting protein 1 [TNIP1], A20, and OTULIN) for a comprehensive view of cytoplasmic signaling highlighting protein players repressing inflammation as the needed counterpoints to signal activators and amplifiers. Ebb and flow of players on both sides of this inflammation equation would be of physiological advantage to allow acute response to damage or pathogens and yet guard against chronic inflammatory disease. Further investigation of the players responsible for repressing cytoplasmic signaling would be foundational to developing new chemical-entity pharmacologics to stabilize or enhance their function when clinical intervention is needed to restore balance.


Asunto(s)
Dermatitis , Queratinocitos , Humanos , Queratinocitos/metabolismo , Transducción de Señal/fisiología , Piel/metabolismo , Citoplasma/metabolismo , Dermatitis/metabolismo , Inflamación/metabolismo , FN-kappa B/metabolismo
17.
Int J Mol Sci ; 24(16)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37629049

RESUMEN

Macrophages play a crucial role in the development and control of inflammation. Understanding the mechanisms balancing macrophage inflammatory activity is important to develop new strategies for treating inflammation-related diseases. TNF-α-induced protein 3 (TNFAIP3, A20) is a negative regulator of intracellular inflammatory cascades; its deficiency induces hyper-inflammatory reactions. Whether A20 overexpression can dampen macrophage inflammatory response remains unclear. Here, we generated human-induced pluripotent stem cells with tetracycline-inducible A20 expression and differentiated them into macrophages (A20-iMacs). A20-iMacs displayed morphology, phenotype, and phagocytic activity typical of macrophages, and they displayed upregulated A20 expression in response to doxycycline. A20 overexpression dampened the A20-iMac response to TNF-α, as shown by a decreased expression of IL1B and IL6 mRNA. A dynamic analysis of A20 expression following the generation of A20-iMacs and control iMacs showed that the expression declined in iMacs and that iMacs expressed a lower molecular weight form of the A20 protein (~70 kDa) compared with less differentiated cells (~90 kDa). A low-level expression of A20 and the predominance of a low-molecular-weight A20 form were also characteristic of monocyte-derived macrophages. The study for the first time developed a model for generating macrophages with an inducible expression of a target gene and identified the peculiarities of A20 expression in macrophages that likely underlie macrophage preparedness for inflammatory reactivity. It also suggested the possibility of mitigating inflammatory macrophage responses via A20 overexpression.


Asunto(s)
Células Madre Pluripotentes Inducidas , Factor de Necrosis Tumoral alfa , Humanos , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética , Macrófagos , Inflamación
18.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835358

RESUMEN

The Carnitine-Acylcarnitine Carrier is a member of the mitochondrial Solute Carrier Family 25 (SLC25), known as SLC25A20, involved in the electroneutral exchange of acylcarnitine and carnitine across the inner mitochondrial membrane. It acts as a master regulator of fatty acids ß-oxidation and is known to be involved in neonatal pathologies and cancer. The transport mechanism, also known as "alternating access", involves a conformational transition in which the binding site is accessible from one side of the membrane or the other. In this study, through a combination of state-of-the-art modelling techniques, molecular dynamics, and molecular docking, the structural dynamics of SLC25A20 and the early substrates recognition step have been analyzed. The results obtained demonstrated a significant asymmetry in the conformational changes leading to the transition from the c- to the m-state, confirming previous observations on other homologous transporters. Moreover, analysis of the MD simulations' trajectories of the apo-protein in the two conformational states allowed for a better understanding of the role of SLC25A20 Asp231His and Ala281Val pathogenic mutations, which are at the basis of Carnitine-Acylcarnitine Translocase Deficiency. Finally, molecular docking coupled to molecular dynamics simulations lend support to the multi-step substrates recognition and translocation mechanism already hypothesized for the ADP/ATP carrier.


Asunto(s)
Carnitina Aciltransferasas , Proteínas de Transporte de Membrana , Proteínas de Transporte de Membrana Mitocondrial , Humanos , Recién Nacido , Carnitina Aciltransferasas/química , Carnitina Aciltransferasas/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Simulación del Acoplamiento Molecular , Simulación por Computador
19.
Medicina (Kaunas) ; 59(10)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37893484

RESUMEN

Background and Objectives: Psoriasis is an immune-mediated chronic inflammatory skin disorder and commonly associated with highly noticeable erythematous, thickened and scaly plaques. Deubiquitinase genes, such as tumor necrosis factor-alpha protein 3 (TNFAIP3, A20), the cylindromatosis (CYLD) and Cezanne, function as negative regulators of inflammatory response through the Janus kinase/signal transducers and activators of transcription (JAK-STAT) pathways. In this study, polymorphisms and expressions of A20, CYLD and Cezanne genes as well as immunophenotype in psoriatic patients were determined. Materials and Methods: In total, 82 patients with psoriasis and 147 healthy individuals with well-characterized clinical profiles were enrolled. Gene polymorphisms were determined by direct DNA sequencing, gene expression profile by quantitative real time-polymerase chain reaction (PCR), immunophenotype by flow cytometry, and the secretion of cytokines and cancer antigen (CA) 125 by enzyme-linked Immunosorbent assay (ELISA). Results: The inactivation of A20, CYLD and Cezanne and increased levels of TNF-α, IFN-γ and CA 125 was observed in psoriatic patients. Importantly, patients with low A20 expression had significant elevations of triglyceride and total cholesterol concentrations and higher numbers of CD13+CD117- and CD19+CD23+ (activated B) cells than those with high A20 expression. Genetic analysis indicated that all rs4495487 SNPs in the JAK2 gene, rs200878487 SNPs in the A20 gene and four SNPs (c.1584-375, c.1584-374, rs1230581026 and p.W433R) in the Cezanne gene were associated with significant risks, while the rs10974947 variant in the JAK2 gene was at reduced risk of psoriasis. Moreover, in the Cezanne gene, p.W433R was predicted to be probably damaging by the Polyphen-2 prediction tool and an AA/CC haplotype was associated with a high risk of psoriasis. In addition, patients with higher CA 125 levels than the clinical cutoff 35 U/mL showed increased levels of IFN-γ than those with normal CA 125 levels. Conclusions: A20 expression was associated with lipid metabolism and the recruitment of CD13+ CD117- and activated B cells into circulation in psoriatic patients. Besides this, the deleterious effect of the p.W433R variant in the Cezanne gene may contribute to the risk of psoriasis.


Asunto(s)
Psoriasis , Transducción de Señal , Humanos , Citocinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Psoriasis/genética , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Enzima Desubiquitinante CYLD/metabolismo
20.
J Biol Chem ; 297(1): 100811, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34023381

RESUMEN

A20 is a potent anti-inflammatory protein that mediates both inflammation and ubiquitination in mammals, but the related mechanisms are not clear. In this study, we performed mass spectrometry (MS) screening, gene ontology (GO) analysis, and coimmunoprecipitation (co-IP) in a lipopolysaccharide (LPS)-induced inflammatory cell model to identify novel A20-interacting proteins. We confirmed that the E3 ubiquitin ligase Nrdp1, also known as ring finger protein 41 (RNF41), interacted with A20 in LPS-stimulated cells. Further co-IP analysis demonstrated that when A20 was knocked out, degradation-inducing K48-linked ubiquitination of inflammatory effector MyD88 was decreased, but protein interaction-mediating K63-linked ubiquitination of another inflammatory effector TBK1 was increased. Moreover, western blot experiments showed that A20 inhibition induced an increase in levels of MyD88 and phosphorylation of downstream effector proteins as well as of TBK1 and a downstream effector, while Nrdp1 inhibition induced an increase in MyD88 but a decrease in TBK1 levels. When A20 and Nrdp1 were coinhibited, no further change in MyD88 was observed, but TBK1 levels were significantly decreased compared with those upon A20 inhibition alone. Gain- and loss-of-function analyses revealed that the ZnF4 domain of A20 is required for Nrdp1 polyubiquitination. Upon LPS stimulation, the inhibition of Nrdp1 alone increased the secretion of IL-6 and TNF-α but decreased IFN-ß secretion, as observed in other studies, suggesting that Nrdp1 preferentially promotes the production of IFN-ß. Taken together, these results demonstrated that A20/Nrdp1 interaction is important for A20 anti-inflammation, thus revealing a novel mechanism for the anti-inflammatory effects of A20.


Asunto(s)
Inflamación/metabolismo , Lisina/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Poliubiquitina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Animales , Activación Enzimática , Inflamación/patología , Interferones/metabolismo , Macrófagos/metabolismo , Ratones , Modelos Biológicos , Unión Proteica , Dominios Proteicos , Proteolisis , Células RAW 264.7 , Transducción de Señal , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda