Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 722
Filtrar
Más filtros

Publication year range
1.
Cell ; 176(3): 564-580.e19, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30580964

RESUMEN

There are still gaps in our understanding of the complex processes by which p53 suppresses tumorigenesis. Here we describe a novel role for p53 in suppressing the mevalonate pathway, which is responsible for biosynthesis of cholesterol and nonsterol isoprenoids. p53 blocks activation of SREBP-2, the master transcriptional regulator of this pathway, by transcriptionally inducing the ABCA1 cholesterol transporter gene. A mouse model of liver cancer reveals that downregulation of mevalonate pathway gene expression by p53 occurs in premalignant hepatocytes, when p53 is needed to actively suppress tumorigenesis. Furthermore, pharmacological or RNAi inhibition of the mevalonate pathway restricts the development of murine hepatocellular carcinomas driven by p53 loss. Like p53 loss, ablation of ABCA1 promotes murine liver tumorigenesis and is associated with increased SREBP-2 maturation. Our findings demonstrate that repression of the mevalonate pathway is a crucial component of p53-mediated liver tumor suppression and outline the mechanism by which this occurs.


Asunto(s)
Ácido Mevalónico/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Transportador 1 de Casete de Unión a ATP/metabolismo , Animales , Línea Celular , Colesterol/metabolismo , Femenino , Genes Supresores de Tumor , Células HCT116 , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias/genética , Regiones Promotoras Genéticas , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Terpenos/metabolismo
2.
Cell ; 169(7): 1228-1239.e10, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28602350

RESUMEN

ABCA1, an ATP-binding cassette (ABC) subfamily A exporter, mediates the cellular efflux of phospholipids and cholesterol to the extracellular acceptor apolipoprotein A-I (apoA-I) for generation of nascent high-density lipoprotein (HDL). Mutations of human ABCA1 are associated with Tangier disease and familial HDL deficiency. Here, we report the cryo-EM structure of human ABCA1 with nominal resolutions of 4.1 Å for the overall structure and 3.9 Å for the massive extracellular domain. The nucleotide-binding domains (NBDs) display a nucleotide-free state, while the two transmembrane domains (TMDs) contact each other through a narrow interface in the intracellular leaflet of the membrane. In addition to TMDs and NBDs, two extracellular domains of ABCA1 enclose an elongated hydrophobic tunnel. Structural mapping of dozens of disease-related mutations allows potential interpretation of their diverse pathogenic mechanisms. Structural-based analysis suggests a plausible "lateral access" mechanism for ABCA1-mediated lipid export that may be distinct from the conventional alternating-access paradigm.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/química , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Secuencia de Aminoácidos , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Dominios Proteicos , Alineación de Secuencia
3.
J Biol Chem ; 300(5): 107224, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537695

RESUMEN

Impaired cholesterol efflux and/or uptake can influence arterial lipid accumulation leading to atherosclerosis. Here, we report that tripartite motif-containing protein 13 (TRIM13), a RING-type E3 ubiquitin ligase, plays a role in arterial lipid accumulation leading to atherosclerosis. Using molecular approaches and KO mouse model, we found that TRIM13 expression was induced both in the aorta and peritoneal macrophages (pMφ) of ApoE-/- mice in response to Western diet (WD) in vivo. Furthermore, proatherogenic cytokine interleukin-1ß also induced TRIM13 expression both in pMφ and vascular smooth muscle cells. Furthermore, we found that TRIM13 via ubiquitination and degradation of liver X receptor (LXR)α/ß downregulates the expression of their target genes ABCA1/G1 and thereby inhibits cholesterol efflux. In addition, TRIM13 by ubiquitinating and degrading suppressor of cytokine signaling 1/3 (SOCS1/3) mediates signal transducer and activator of transcription 1 (STAT1) activation, CD36 expression, and foam cell formation. In line with these observations, genetic deletion of TRIM13 by rescuing cholesterol efflux and inhibiting foam cell formation protects against diet-induced atherosclerosis. We also found that while TRIM13 and CD36 levels were increased, LXRα/ß, ABCA1/G1, and SOCS3 levels were decreased both in Mφ and smooth muscle cells of stenotic human coronary arteries as compared to nonstenotic arteries. More intriguingly, the expression levels of TRIM13 and its downstream signaling molecules were correlated with the severity of stenotic lesions. Together, these observations reveal for the first time that TRIM13 plays a crucial role in diet-induced atherosclerosis, and that it could be a potential drug target against this vascular lesion.


Asunto(s)
Aterosclerosis , Colesterol , Células Espumosas , Lipoproteínas LDL , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Animales , Humanos , Masculino , Ratones , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Colesterol/metabolismo , Dieta Occidental/efectos adversos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Espumosas/metabolismo , Células Espumosas/patología , Lipoproteínas LDL/metabolismo , Receptores X del Hígado/metabolismo , Receptores X del Hígado/genética , Ratones Noqueados para ApoE , Células RAW 264.7 , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
4.
Circulation ; 149(10): 774-787, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38018436

RESUMEN

BACKGROUND: Cholesterol efflux capacity (CEC) predicts cardiovascular disease independently of high-density lipoprotein (HDL) cholesterol levels. Isolated small HDL particles are potent promoters of macrophage CEC by the ABCA1 (ATP-binding cassette transporter A1) pathway, but the underlying mechanisms are unclear. METHODS: We used model system studies of reconstituted HDL and plasma from control and lecithin-cholesterol acyltransferase (LCAT)-deficient subjects to investigate the relationships among the sizes of HDL particles, the structure of APOA1 (apolipoprotein A1) in the different particles, and the CECs of plasma and isolated HDLs. RESULTS: We quantified macrophage and ABCA1 CEC of 4 distinct sizes of reconstituted HDL. CEC increased as particle size decreased. Tandem mass spectrometric analysis of chemically cross-linked peptides and molecular dynamics simulations of APOA1, the major protein of HDL, indicated that the mobility of C-terminus of that protein was markedly higher and flipped off the surface in the smallest particles. To explore the physiological relevance of the model system studies, we isolated HDL from LCAT-deficient subjects, whose small HDLs (like reconstituted HDLs) are discoidal and composed of APOA1, cholesterol, and phospholipid. Despite their very low plasma levels of HDL particles, these subjects had normal CEC. In both the LCAT-deficient subjects and control subjects, the CEC of isolated extra-small HDL (a mixture of extra-small and small HDL by calibrated ion mobility analysis) was 3- to 5-fold greater than that of the larger sizes of isolated HDL. Incubating LCAT-deficient plasma and control plasma with human LCAT converted extra-small and small HDL particles into larger particles, and it markedly inhibited CEC. CONCLUSIONS: We present a mechanism for the enhanced CEC of small HDLs. In smaller particles, the C-termini of the 2 antiparallel molecules of APOA1 are "flipped" off the lipid surface of HDL. This extended conformation allows them to engage with ABCA1. In contrast, the C-termini of larger HDLs are unable to interact productively with ABCA1 because they form a helical bundle that strongly adheres to the lipid on the particle. Enhanced CEC, as seen with the smaller particles, predicts decreased cardiovascular disease risk. Thus, extra-small and small HDLs may be key mediators and indicators of the cardioprotective effects of HDL.


Asunto(s)
Apolipoproteína A-I , Enfermedades Cardiovasculares , Humanos , Apolipoproteína A-I/metabolismo , Enfermedades Cardiovasculares/metabolismo , Lipoproteínas HDL/metabolismo , Colesterol , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Macrófagos/metabolismo , HDL-Colesterol
5.
Annu Rev Physiol ; 83: 153-181, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33141631

RESUMEN

Cholesterol homeostasis and trafficking are critical to the maintenance of the asymmetric plasma membrane of eukaryotic cells. Disruption or dysfunction of cholesterol trafficking leads to numerous human diseases. ATP-binding cassette (ABC) transporters play several critical roles in this process, and mutations in these sterol transporters lead to disorders such as Tangier disease and sitosterolemia. Biochemical and structural information on ABC sterol transporters is beginning to emerge, with published structures of ABCA1 and ABCG5/G8; these two proteins function in the reverse cholesterol transport pathway and mediate the efflux of cholesterol and xenosterols to high-density lipoprotein and bile salt micelles, respectively. Although both of these transporters belong to the ABC family and mediate the efflux of a sterol substrate, they have many distinct differences. Here, we summarize the current understanding of sterol transport driven by ABC transporters, with an emphasis on these two extensively characterized transporters.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Transporte Biológico/fisiología , Esteroles/metabolismo , Animales , Colesterol/metabolismo , Humanos
6.
J Lipid Res ; 65(1): 100486, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38104944

RESUMEN

Cholesterol is an essential structural component of all membranes of mammalian cells where it plays a fundamental role not only in cellular architecture, but also, for example, in signaling pathway transduction, endocytosis process, receptor functioning and recycling, or cytoskeleton remodeling. Consequently, intracellular cholesterol concentrations are tightly regulated by complex processes, including cholesterol synthesis, uptake from circulating lipoproteins, lipid transfer to these lipoproteins, esterification, and metabolization into oxysterols that are intermediates for bile acids. Oxysterols have been considered for long time as sterol waste products, but a large body of evidence has clearly demonstrated that they play key roles in central nervous system functioning, immune cell response, cell death, or migration and are involved in age-related diseases, cancers, autoimmunity, or neurological disorders. Among all the existing oxysterols, this review summarizes basic as well as recent knowledge on 25-hydroxycholesterol which is mainly produced during inflammatory or infectious situations and that in turn contributes to immune response, central nervous system disorders, atherosclerosis, macular degeneration, or cancer development. Effects of its metabolite 7α,25-dihydroxycholesterol are also presented and discussed.


Asunto(s)
Hidroxicolesteroles , Oxiesteroles , Animales , Hidroxicolesteroles/metabolismo , Colesterol/metabolismo , Transporte Biológico , Lipoproteínas/metabolismo , Mamíferos/metabolismo
7.
Am J Physiol Renal Physiol ; 326(2): F265-F277, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38153852

RESUMEN

Dyslipidemia, with changes in plasma membrane (PM) composition, is associated with hypertension, while rising PM cholesterol induces Na+ channel activity. We hypothesize that ablation of renal tubular ABCA1, a cholesterol efflux protein, leads to cholesterol- and Na+-dependent changes in blood pressure (BP). Transgenic mice (TgPAX8rtTA;tetO-Cre/+) expressing a doxycycline (dox)-inducible CRE recombinase were bred with mice expressing floxed ABCA1 to generate renal tubules deficient in ABCA1 (ABCA1FF). Tail-cuff systolic BP (SBP) was measured in mice on specific diets. Immunoblotting was performed on whole and PM protein lysates of kidney from mice completing experimental diets. Cortical PM of ABCA1FF showed reduced ABCA1 (60 ± 28%; n = 10, P < 0.05) compared with wild-type littermates (WT; n = 9). Tail-cuff SBP of ABCA1FF (n = 11) was not only greater post dox, but also during cholesterol or high Na+ feeding (P < 0.05) compared with WT mice (n = 15). A Na+-deficient diet abolished the difference, while 6 wk of cholesterol diet raised SBP in ABCA1FF compared with mice before cholesterol feeding (P < 0.05). No difference in α-ENaC protein abundance was noted in kidney lysate; however, γ-ENaC increased in ABCA1FF mice versus WT mice. In kidney membranes, NKCC2 abundance was greater in ABCA1FF versus WT mice. Cortical lysates of ABCA1FF mouse kidneys expressed less renin and angiotensin I receptor than WT mouse kidneys. Furosemide injection induced a greater diuretic effect in ABCA1FF (n = 7; 45.2 ± 8.7 µL/g body wt) versus WT (n = 7; 33.1 ± 6.9 µL/g body wt; P < 0.05) but amiloride did not. Tubular ABCA1 deficiency induces cholesterol-dependent rise in SBP and modest Na+ sensitivity of SBP, which we speculate is partly related to Na+ transporters and channels.NEW & NOTEWORTHY Cholesterol has been linked to greater Na+ channel activity in kidney cells, which may predispose to systemic hypertension. We showed that when ABCA1, a protein that removes cholesterol from tissues, is ablated from mouse kidneys, systemic blood pressure is greater than normal mice. Dietary cholesterol further increases blood pressure in transgenic mice, whereas low dietary salt intake reduced blood pressure to that of normal mice. Thus, we speculate that diseases and pharmaceuticals that reduce renal ABCA1 expression, like diabetes and calcineurin inhibitors, respectively, contribute to the prominence of hypertension in their clinical presentation.


Asunto(s)
Hipertensión , Sodio , Animales , Masculino , Ratones , Presión Sanguínea , Colesterol/farmacología , Canales Epiteliales de Sodio/metabolismo , Ratones Noqueados , Ratones Transgénicos , Sodio/metabolismo
8.
Ann Hum Genet ; 88(4): 279-286, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38192238

RESUMEN

INTRODUCTION: Metabolic syndrome (MetS) is a metabolic disorder encompassing risk factors for cardiovascular disease and type 2 diabetes (T2D). In Mexico, the MetS is a national health problem in adults and children. Environmental and genetic factors condition the MetS. However, studies to elucidate the contribution of genetic factors to MetS in Mexico are scarce. A recent study showed that variant rs9282541 (A-allele) in ATP-binding cassette transporter A1 (ABCA1) was associated with T2D in the Maya population in addition to low levels of high-density lipoprotein cholesterol (HDL-C). Thus, this study aimed to determine whether the genetic variant of ABCA1 A-allele (rs9282541, NM_005502.4:c.688C > T, NP_005493.2:p.Arg230Cys) is associated with MetS and its components in Mexican Maya children. METHODS: The study was conducted in 508 children aged 9-13 from the Yucatán Peninsula. MetS was identified according to the de Ferranti criteria. Genotyping was performed using TaqMan assay by real-time PCR. Evaluation of genetic ancestry group was included. RESULTS: The frequency of MetS and overweight-obesity was 45.9% and 41.6%, respectively. The genetic variant rs9282541 was associated with low HDL-C and high glucose concentrations. Remarkably, for the first time, this study showed the association of ABCA1 rs9282541 with MetS in Maya children with an OR of 3.076 (95% CI = 1.16-8.13 p = 0.023). Finally, this study reveals a high prevalence of MetS and suggests that variant rs9282541 of the ABCA1 gene plays an important role in the developing risk of MetS in Maya children.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Predisposición Genética a la Enfermedad , Síndrome Metabólico , Polimorfismo de Nucleótido Simple , Humanos , Transportador 1 de Casete de Unión a ATP/genética , Síndrome Metabólico/genética , Niño , Masculino , Femenino , México , Adolescente , Alelos , Genotipo , HDL-Colesterol/sangre , Factores de Riesgo
9.
Clin Immunol ; 267: 110351, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39216780

RESUMEN

Atherosclerosis is a cardiovascular disease caused by cholesterol-laden arterial plaques. This study evaluated the correlation between interleukin-6 (IL-6), its receptors (IL6R/CD126), and glycoprotein 130 (gp130) alongside atherosclerosis biomarkers in a cohort of 142 subjects, equally divided between lean and obese individuals. Subsequent analyses used THP-1-derived macrophages to assess the biochemical impact of inhibiting IL-6 receptors. IL-6 secretion increased with atherosclerosis in obese subjects, while IL6R/CD126 and gp130 on monocytes decreased. Pharmacological gp130 inhibition altered lipid metabolism, increasing LDLR gene expression and cholesterol synthesis via SREBF2 and mevalonate kinase, along with HMG-CoA reductase at protein levels. gp130-deficient cells produced more cholesterol and had lower ABCA1 levels, suggesting hindered cholesterol efflux. Filipin III staining confirmed cholesterol retention in gp130-inhibited cells. Ex-vivo investigation on lean PBMCs further defined the impact of gp130 inhibition on the reduction of cholesterol efflux. Our results indicates gp130 is crucial for macrophage reverse cholesterol transport and may be a target for atherosclerosis treatments.


Asunto(s)
Aterosclerosis , Colesterol , Receptor gp130 de Citocinas , Macrófagos , Receptores de Interleucina-6 , Humanos , Aterosclerosis/metabolismo , Transporte Biológico , Colesterol/metabolismo , Receptor gp130 de Citocinas/metabolismo , Interleucina-6/metabolismo , Metabolismo de los Lípidos , Macrófagos/metabolismo , Obesidad/metabolismo , Receptores de Interleucina-6/metabolismo , Receptores de LDL/metabolismo , Transducción de Señal , Células THP-1
10.
J Transl Med ; 22(1): 659, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010173

RESUMEN

BACKGROUND: Spinal cord injury (SCI) is characterized by extensive demyelination and inflammatory responses. Facilitating the clearance of lipid droplets (LDs) within microglia contributes to creating a microenvironment that favors neural recovery and provides essential materials for subsequent remyelination. Therefore, investigating MicroRNAs (miRNAs) that regulate lipid homeostasis after SCI and elucidating their potential mechanisms in promoting LDs clearance in microglia have become focal points of SCI research. METHODS: We established a subacute C5 hemicontusion SCI model in mice and performed transcriptomic sequencing on the injury epicenter to identify differentially expressed genes and associated pathways. Confocal imaging was employed to observe LDs accumulation. Multi-omics analyses were conducted to identify differentially expressed mRNA and miRNA post-SCI. Pathway enrichment analysis and protein-protein interaction network construction were performed using bioinformatics methods, revealing miR-223-Abca1 as a crucial miRNA-mRNA pair in lipid metabolism regulation. BV2 microglia cell lines overexpressing miR-223 were engineered, and immunofluorescence staining, western blot, and other techniques were employed to assess LDs accumulation, relevant targets, and inflammatory factor expression, confirming its role in regulating lipid homeostasis in microglia. RESULTS: Histopathological results of our hemicontusion SCI model confirmed LDs aggregation at the injury epicenter, predominantly within microglia. Our transcriptomic analysis during the subacute phase of SCI in mice implicated ATP-binding cassette transporter A1 (Abca1) as a pivotal gene in lipid homeostasis, cholesterol efflux and microglial activation. Integrative mRNA-miRNA multi-omics analysis highlighted the crucial role of miR-223 in the neuroinflammation process following SCI, potentially through the regulation of lipid metabolism via Abca1. In vitro experiments using BV2 cells overexpressing miR-223 demonstrated that elevated levels of miR-223 enhance ABCA1 expression in myelin debris and LPS-induced BV2 cells. This promotes myelin debris degradation and LDs clearance, and induces a shift toward an anti-inflammatory M2 phenotype. CONCLUSIONS: In summary, our study unveils the critical regulatory role of miR-223 in lipid homeostasis following SCI. The mechanism by which this occurs involves the upregulation of ABCA1 expression, which facilitates LDs clearance and myelin debris degradation, consequently alleviating the lipid burden, and inhibiting inflammatory polarization of microglia. These findings suggest that strategies to enhance miR-223 expression and target ABCA1, thereby augmenting LDs clearance, may emerge as appealing new clinical targets for SCI treatment.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Gotas Lipídicas , Ratones Endogámicos C57BL , MicroARNs , Microglía , Traumatismos de la Médula Espinal , Regulación hacia Arriba , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , MicroARNs/metabolismo , MicroARNs/genética , Microglía/metabolismo , Microglía/patología , Animales , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Gotas Lipídicas/metabolismo , Ratones , Línea Celular , Masculino , Metabolismo de los Lípidos/genética
11.
FASEB J ; 37(8): e23048, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37389895

RESUMEN

Vascular smooth muscle cells (VSMCs) are considered to be a crucial source of foam cells in atherosclerosis due to their low expression level of cholesterol exporter ATP-binding cassette transporter A1 (ABCA1) intrinsically. While the definite regulatory mechanisms are complicated and have not yet been fully elucidated, we previously reported that Dickkopf-1 (DKK1) mediates endothelial cell (EC) dysfunction, thereby aggravating atherosclerosis. However, the role of smooth muscle cell (SMC) DKK1 in atherosclerosis and foam cell formation remains unknown. In this study, we established SMC-specific DKK1-knockout (DKK1SMKO ) mice by crossbreeding DKK1flox/flox mice with TAGLN-Cre mice. Then, DKK1SMKO mice were crossed with APOE-/- mice to generate DKK1SMKO /APOE-/- mice, which exhibited milder atherosclerotic burden and fewer SMC foam cells. In vitro loss- and gain-of-function studies of DKK1 in primary human aortic smooth muscle cells (HASMCs) have proven that DKK1 prevented oxidized lipid-induced ABCA1 upregulation and cholesterol efflux and promoted SMC foam cell formation. Mechanistically, RNA-sequencing (RNA-seq) analysis of HASMCs as well as chromatin immunoprecipitation (ChIP) experiments showed that DKK1 mediates the binding of transcription factor CCAAT/enhancer-binding protein delta (C/EBPδ) to the promoter of cytochrome P450 epoxygenase 4A11 (CYP4A11) to regulate its expression. In addition, CYP4A11 as well as its metabolite 20-HETE-promoted activation of transcription factor sterol regulatory element-binding protein 2 (SREBP2) mediated the DKK1 regulation of ABCA1 in SMC. Furthermore, HET0016, the antagonist of CYP4A11, has also shown an alleviating effect on atherosclerosis. In conclusion, our results demonstrate that DKK1 promotes SMC foam cell formation during atherosclerosis via a reduction in CYP4A11-20-HETE/SREBP2-mediated ABCA1 expression.


Asunto(s)
Aterosclerosis , Células Espumosas , Humanos , Animales , Ratones , Músculo Liso Vascular , Sistema Enzimático del Citocromo P-450 , Factores de Transcripción , Aterosclerosis/genética , Apolipoproteínas E/genética , Citocromo P-450 CYP4A , Transportador 1 de Casete de Unión a ATP/genética
12.
Brain Behav Immun ; 119: 431-453, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38636566

RESUMEN

Spinal cord injury (SCI) triggers a complex cascade of events, including myelin loss, neuronal damage, neuroinflammation, and the accumulation of damaged cells and debris at the injury site. Infiltrating bone marrow derived macrophages (BMDMϕ) migrate to the epicenter of the SCI lesion, where they engulf cell debris including abundant myelin debris to become pro-inflammatory foamy macrophages (foamy Mϕ), participate neuroinflammation, and facilitate the progression of SCI. This study aimed to elucidate the cellular and molecular mechanisms underlying the functional changes in foamy Mϕ and their potential implications for SCI. Contusion at T10 level of the spinal cord was induced using a New York University (NYU) impactor (5 g rod from a height of 6.25 mm) in male mice. ABCA1, an ATP-binding cassette transporter expressed by Mϕ, plays a crucial role in lipid efflux from foamy cells. We observed that foamy Mϕ lacking ABCA1 exhibited increased lipid accumulation and a higher presence of lipid-accumulated foamy Mϕ as well as elevated pro-inflammatory response in vitro and in injured spinal cord. We also found that both genetic and pharmacological enhancement of ABCA1 expression accelerated lipid efflux from foamy Mϕ, reduced lipid accumulation and inhibited the pro-inflammatory response of foamy Mϕ, and accelerated clearance of cell debris and necrotic cells, which resulted in functional recovery. Our study highlights the importance of understanding the pathologic role of foamy Mϕ in SCI progression and the potential of ABCA1 as a therapeutic target for modulating the inflammatory response, promoting lipid metabolism, and facilitating functional recovery in SCI.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Macrófagos , Traumatismos de la Médula Espinal , Animales , Transportador 1 de Casete de Unión a ATP/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Ratones , Masculino , Macrófagos/metabolismo , Células Espumosas/metabolismo , Ratones Endogámicos C57BL , Médula Espinal/metabolismo , Ratones Noqueados , Modelos Animales de Enfermedad
13.
Exp Lung Res ; 50(1): 53-64, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38509754

RESUMEN

OBJECTIVE: The aim of this study is to assess the impact of Liver X receptors (LXRs) on airway inflammation, airway remodeling, and lipid deposition induced by cigarette smoke and lipopolysaccharide (LPS) exposure in the lung. METHODS: Wild mice and LXR-deficient mice were exposed to cigarette smoke and LPS to induce airway inflammation and remodeling. In addition, some wild mice received intraperitoneal treatment with the LXR agonist GW3965 before exposure to cigarette smoke and LPS. Lung tissue and bronchoalveolar lavage fluid were collected to evaluate airway inflammation, airway remodeling and lipid deposition. RESULTS: Exposure to cigarette smoke and LPS resulted in airway inflammation, emphysema and lipid accumulation in wild mice. These mice also exhibited downregulated LXRα and ABCA1 in the lung. Treatment with GW3965 mitigated inflammation, remodeling and lipid deposition, while the deletion of LXRs exacerbated these effects. Furthermore, GW3965 treatment following exposure to cigarette smoke and LPS increased LXRα and ABCA1 expression and attenuated MyD88 expression in wild mice. CONCLUSION: LXRs demonstrate the potential to mitigate cigarette smoke and LPS- induced airway inflammation, emphysema and lipid disposition in mice.


Asunto(s)
Benzoatos , Bencilaminas , Fumar Cigarrillos , Enfisema , Enfisema Pulmonar , Animales , Ratones , Remodelación de las Vías Aéreas (Respiratorias) , Líquido del Lavado Bronquioalveolar , Fumar Cigarrillos/efectos adversos , Enfisema/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Receptores X del Hígado/metabolismo , Pulmón/metabolismo , Ratones Endogámicos C57BL
14.
Mol Biol Rep ; 51(1): 657, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740636

RESUMEN

BACKGROUND: Mycobacterium tuberculosis (MTB) is the causative organism of tuberculosis. Cholesterol is a crucial carbon source required for the survival of MTB in host cells. Transcription factor NR1H3 along with its important target genes ABCA1 and ApoE play important role in removal of extra cholesterol from cells. Changes in the gene expression of NR1H3, ABCA1 and ApoE can affect cholesterol homeostasis and thus the survival of MTB in host cells.Therefore, the present study was designed to analyze the mRNA expression of NR1H3, ABCA1 and ApoE in pulmonary TB (PTB) patients from the population of Punjab, India. METHODS AND RESULTS: In this study, mRNA expression of the transcription factor NR1H3 and its target genes ABCA1 and ApoE was analyzed in 89 subjects, including 41 PTB patients and 48 healthy controls (HCs) by real-time quantitative PCR. It was found that the mRNA expression of both NR1H3 and ABCA1 genes was significantly lower in TB patients than in HCs (p < 0.001). Even after sex-wise stratification of the subjects, mRNA expression of NR1H3 and ABCA1 was found to be down-regulated in both male and female TB patients. No significant difference was observed in expression of ApoE (p = 0.98). CONCLUSIONS: The present study found that the mRNA expression of NR1H3 and ABCA1 is down-regulated in TB patients from Punjab state of India.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Receptores X del Hígado , ARN Mensajero , Tuberculosis Pulmonar , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Estudios de Casos y Controles , India , Mycobacterium tuberculosis/genética , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tuberculosis Pulmonar/genética , Tuberculosis Pulmonar/metabolismo , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo
15.
Lipids Health Dis ; 23(1): 275, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210350

RESUMEN

Despite recent findings indicating a paradoxical association between high-density lipoprotein cholesterol (HDL-C) levels and cardiovascular disease (CVD) mortality, the impact of HDL-C on subsequent outcomes after ischemic stroke remains unclear. The study aims to investigate the relationships between HDL-C levels and post-stroke functional outcomes while examining the potential modifying influence of HDL-C-related single nucleotide polymorphisms identified through genome-wide association studies. This cohort study included 1,310 patients diagnosed with acute ischemic stroke (AIS), all of whom had their admission serum lipid profile and genotyping information. Participants were categorized into four groups based on gender and HDL-C level. Prognostic outcomes were assessed using a modified Rankin Scale (mRS) at 1, 3, and 12 months post-admission. Multivariate logistic regression and restricted cubic spline regression analysis were used to assess the associations between HDL-C levels and outcomes. The mean age of patients was 61.17 ± 12.08 years, and 69.31% were men. After adjusting confounders, patients with the highest HDL-C level group had a significantly higher risk of poor functional outcomes at 1, 3, and 12 months following stroke compared to the reference group. Restricted cubic splines depicted a nonlinear association between HDL-C levels and poor prognosis in both men and women. The ABCA1 gene rs2575876 AA genotype combined with abnormal HDL-C levels exhibited a significantly heightened risk of post-stroke adverse outcomes at 1 and 3 months compared to patients with normal HDL-C levels and GG + GA genotype. These findings suggest that the combined effects of ABCA1 genetic variants with either low or high HDL-C levels could further heighten this risk.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , HDL-Colesterol , Accidente Cerebrovascular Isquémico , Polimorfismo de Nucleótido Simple , Humanos , Masculino , Femenino , Persona de Mediana Edad , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/sangre , Anciano , HDL-Colesterol/sangre , Transportador 1 de Casete de Unión a ATP/genética , Taiwán , Pronóstico , Lipoproteínas HDL/sangre , Lipoproteínas HDL/genética , Factores de Riesgo , Genotipo
16.
Biopharm Drug Dispos ; 45(2): 93-106, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38488691

RESUMEN

Alzheimer's disease is a complex multifactorial neurodegenerative disorder wherein age is a major risk factor. The appropriateness of the Hartley guinea pig (GP), which displays high sequence homologies of its amyloid-ß (Aß40 and Aß42) peptides, Mdr1 and APP (amyloid precursor protein) and similarity in lipid handling to humans, was appraised among 9-40 weeks old guinea pigs. Protein expression levels of P-gp (Abcb1) and Cyp46a1 (24(S)-hydroxylase) for Aß40, and Aß42 efflux and cholesterol metabolism, respectively, were decreased with age, whereas those for Lrp1 (low-density lipoprotein receptor related protein 1), Rage (receptor for advanced glycation endproducts) for Aß efflux and influx, respectively, and Abca1 (the ATP binding cassette subfamily A member 1) for cholesterol efflux, were unchanged among the ages examined. There was a strong, negative correlation of the brain Aß peptide concentrations and Abca1 protein expression levels with free cholesterol. The correlation of Aß peptide concentrations with Cyp46a1 was, however, not significant, and concentrations of the 24(S)-hydroxycholesterol metabolite revealed a decreasing trend from 20 weeks old toward 40 weeks old guinea pigs. The composite data suggest a role for free cholesterol on brain Aß accumulation. The decreases in P-gp and Lrp1 protein levels should further exacerbate the accumulation of Aß peptides in guinea pig brain.


Asunto(s)
Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide , Cobayas , Humanos , Animales , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Colesterol 24-Hidroxilasa/metabolismo , Encéfalo/metabolismo , Envejecimiento , Colesterol/metabolismo
17.
Alzheimers Dement ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39345217

RESUMEN

INTRODUCTION: Rare variants in ABCA1 increase the risk of developing Alzheimer's disease (AD). ABCA1 facilitates the lipidation of apolipoprotein E (apoE). This study investigated whether microRNA-33 (miR-33)-mediated regulation of this ABCA1-APOE pathway affects phenotypes of an amyloid mouse model. METHODS: We generated mir-33+/+;APP/PS1 and mir-33-/-;APP/PS1 mice to determine changes in amyloid pathology using biochemical and histological analyses. We used RNA sequencing and mass spectrometry to identify the transcriptomic and proteomic changes between our genotypes. We also performed mechanistic experiments by determining the role of miR-33 in microglial migration and amyloid beta (Aß) phagocytosis. RESULTS: Mir-33 deletion increases ABCA1 levels and reduces Aß accumulation and glial activation. Multi-omics studies suggested miR-33 regulates the activation and migration of microglia. We confirm that the inhibition of miR-33 significantly increases microglial migration and Aß phagocytosis. DISCUSSION: These results suggest that miR-33 might be a potential drug target by modulating ABCA1 level, apoE lipidation, Aß level, and microglial function. HIGHLIGHTS: Loss of microRNA-33 (miR-33) increased ABCA1 protein levels and the lipidation of apolipoprotein E. Loss of miR-33 reduced amyloid beta (Aß) levels, plaque deposition, and gliosis. mRNAs and proteins dysregulated by miR-33 loss relate to microglia and Alzheimer's disease. Inhibition of miR-33 increased microglial migration and Aß phagocytosis in vitro.

18.
Int J Mol Sci ; 25(16)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39201292

RESUMEN

MicroRNAs (miRs) are small non-coding RNAs that regulate gene expression post-transcriptionally and are crucial in lipid metabolism. ATP-binding cassette transporter A1 (ABCA1) is essential for cholesterol efflux from cells to high-density lipoprotein (HDL). Dysregulation of miRs targeting ABCA1 can affect cholesterol homeostasis and contribute to coronary artery disease (CAD). This study aimed to investigate the expression of miRs targeting ABCA1 in human monocytes, their role in cholesterol efflux, and their relationship with CAD. We included 50 control and 50 CAD patients. RT-qPCR examined the expression of miR-33a-5p, miR-26a-5p, and miR-144-3p in monocytes. Logistic regression analysis explored the association between these miRs and CAD. HDL's cholesterol acceptance was analyzed using the J774A.1 cell line. Results showed that miR-26a-5p (p = 0.027) and ABCA1 (p = 0.003) expression levels were higher in CAD patients, while miR-33a-5p (p < 0.001) levels were lower. Downregulation of miR-33a-5p and upregulation of ABCA1 were linked to a lower CAD risk. Atorvastatin upregulated ABCA1 mRNA, and metformin downregulated miR-26a-5p in CAD patients. Decreased cholesterol efflux correlated with higher CAD risk and inversely with miRs in controls. Reduced miR-33a-5p expression and increased ABCA1 expression are associated with decreased CAD risk. miR deregulation in monocytes may influence atherosclerotic plaque formation by regulating cholesterol efflux. Atorvastatin and metformin could offer protective effects by modulating miR-33a-5p, miR-26a-5p, and ABCA1, suggesting potential therapeutic strategies for CAD prognosis and treatment.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Enfermedad de la Arteria Coronaria , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/sangre , Masculino , Femenino , Persona de Mediana Edad , Leucocitos Mononucleares/metabolismo , Regulación de la Expresión Génica , Anciano , Línea Celular , Colesterol/metabolismo , Colesterol/sangre , Monocitos/metabolismo
19.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39062791

RESUMEN

Obesity is frequently accompanied by non-alcoholic fatty liver disease (NAFLD). These two diseases are associated with altered lipid metabolism, in which reverse cholesterol transport (LXRα/ABCA1/ABCG1) and leptin response (leptin receptor (Ob-Rb)/Sam68) are involved. The two pathways were evaluated in peripheral blood mononuclear cells (PBMCs) from 86 patients with morbid obesity (MO) before and six months after Roux-en-Y gastric bypass (RYGB) and 38 non-obese subjects. In the LXRα pathway, LXRα, ABCA1, and ABCG1 mRNA expressions were decreased in MO compared to non-obese subjects (p < 0.001, respectively). Ob-Rb was decreased (p < 0.001), whereas Sam68 was increased (p < 0.001) in MO. RYGB did not change mRNA gene expressions. In the MO group, the LXRα pathway (LXRα/ABCA1/ABCG1) negatively correlated with obesity-related variables (weight, body mass index, and hip), inflammation (C-reactive protein), and liver function (alanine-aminotransferase, alkaline phosphatase, and fatty liver index), and positively with serum albumin. In the Ob-R pathway, Ob-Rb and Sam68 negatively correlated with alanine-aminotransferase and positively with albumin. The alteration of LXRα and Ob-R pathways may play an important role in NAFLD development in MO. It is possible that MO patients may require more than 6 months following RYBGB to normalize gene expression related to reverse cholesterol transport or leptin responsiveness.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Colesterol , Leucocitos Mononucleares , Receptores X del Hígado , Hígado , Obesidad Mórbida , Receptores de Leptina , Humanos , Obesidad Mórbida/metabolismo , Obesidad Mórbida/cirugía , Obesidad Mórbida/genética , Masculino , Leucocitos Mononucleares/metabolismo , Femenino , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Adulto , Colesterol/metabolismo , Receptores X del Hígado/metabolismo , Receptores X del Hígado/genética , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Persona de Mediana Edad , Hígado/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Transducción de Señal , Transporte Biológico , Regulación de la Expresión Génica , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética
20.
J Lipid Res ; 64(6): 100385, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37169287

RESUMEN

This review considers the hypothesis that a small portion of plasma membrane cholesterol regulates reverse cholesterol transport in coordination with overall cellular homeostasis. It appears that almost all of the plasma membrane cholesterol is held in stoichiometric complexes with bilayer phospholipids. The minor fraction of cholesterol that exceeds the complexation capacity of the phospholipids is called active cholesterol. It has an elevated chemical activity and circulates among the organelles. It also moves down its chemical activity gradient to plasma HDL, facilitated by the activity of ABCA1, ABCG1, and SR-BI. ABCA1 initiates this process by perturbing the organization of the plasma membrane bilayer, thereby priming its phospholipids for translocation to apoA-I to form nascent HDL. The active excess sterol and that activated by ABCA1 itself follow the phospholipids to the nascent HDL. ABCG1 similarly rearranges the bilayer and sends additional active cholesterol to nascent HDL, while SR-BI simply facilitates the equilibration of the active sterol between plasma membranes and plasma proteins. Active cholesterol also flows downhill to cytoplasmic membranes where it serves both as a feedback signal to homeostatic ER proteins and as the substrate for the synthesis of mitochondrial 27-hydroxycholesterol (27HC). 27HC binds the LXR and promotes the expression of the aforementioned transport proteins. 27HC-LXR also activates ABCA1 by competitively displacing its inhibitor, unliganded LXR. § Considerable indirect evidence suggests that active cholesterol serves as both a substrate and a feedback signal for reverse cholesterol transport. Direct tests of this novel hypothesis are proposed.


Asunto(s)
Colesterol , Lipoproteínas de Alta Densidad Pre-beta , Colesterol/metabolismo , Transporte Biológico , Esteroles , Fosfolípidos , Transportador 1 de Casete de Unión a ATP/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda