Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(16): e2210418120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37040401

RESUMEN

The hypoxia-inducible factor 1-α (HIF-1α) enables cells to adapt and respond to hypoxia (Hx), and the activity of this transcription factor is regulated by several oncogenic signals and cellular stressors. While the pathways controlling normoxic degradation of HIF-1α are well understood, the mechanisms supporting the sustained stabilization and activity of HIF-1α under Hx are less clear. We report that ABL kinase activity protects HIF-1α from proteasomal degradation during Hx. Using a fluorescence-activated cell sorting (FACS)-based CRISPR/Cas9 screen, we identified HIF-1α as a substrate of the cleavage and polyadenylation specificity factor-1 (CPSF1), an E3-ligase which targets HIF-1α for degradation in the presence of an ABL kinase inhibitor in Hx. We show that ABL kinases phosphorylate and interact with CUL4A, a cullin ring ligase adaptor, and compete with CPSF1 for CUL4A binding, leading to increased HIF-1α protein levels. Further, we identified the MYC proto-oncogene protein as a second CPSF1 substrate and show that active ABL kinase protects MYC from CPSF1-mediated degradation. These studies uncover a role for CPSF1 in cancer pathobiology as an E3-ligase antagonizing the expression of the oncogenic transcription factors, HIF-1α and MYC.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción , Humanos , Proteínas Cullin/metabolismo , Hipoxia , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Genes abl , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(52): 33486-33495, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318173

RESUMEN

Brain metastases are the most common intracranial tumors in adults and are associated with increased patient morbidity and mortality. Limited therapeutic options are currently available for the treatment of brain metastasis. Here, we report on the discovery of an actionable signaling pathway utilized by metastatic tumor cells whereby the transcriptional regulator Heat Shock Factor 1 (HSF1) drives a transcriptional program, divergent from its canonical role as the master regulator of the heat shock response, leading to enhanced expression of a subset of E2F transcription factor family gene targets. We find that HSF1 is required for survival and outgrowth by metastatic lung cancer cells in the brain parenchyma. Further, we identify the ABL2 tyrosine kinase as an upstream regulator of HSF1 protein expression and show that the Src-homology 3 (SH3) domain of ABL2 directly interacts with HSF1 protein at a noncanonical, proline-independent SH3 interaction motif. Pharmacologic inhibition of the ABL2 kinase using small molecule allosteric inhibitors, but not ATP-competitive inhibitors, disrupts this interaction. Importantly, knockdown as well as pharmacologic inhibition of ABL2 using allosteric inhibitors impairs expression of HSF1 protein and HSF1-E2F transcriptional gene targets. Collectively, these findings reveal a targetable ABL2-HSF1-E2F signaling pathway required for survival by brain-metastatic tumor cells.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Neoplasias Encefálicas/secundario , Factores de Transcripción del Choque Térmico/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas Tirosina Quinasas/metabolismo , Transcripción Genética , Regulación Alostérica , Animales , Línea Celular Tumoral , Supervivencia Celular , Factores de Transcripción E2F/metabolismo , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Ratones Desnudos , Regulación hacia Arriba/genética
3.
Proc Natl Acad Sci U S A ; 116(5): 1603-1612, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30655340

RESUMEN

Current therapeutic interventions for the treatment of respiratory infections are hampered by the evolution of multidrug resistance in pathogens as well as the lack of effective cellular targets. Despite the identification of multiple region-specific lung progenitor cells, the identity of molecules that might be therapeutically targeted in response to infections to promote activation of progenitor cell types remains elusive. Here, we report that loss of Abl1 specifically in SCGB1A1-expressing cells leads to a significant increase in the proliferation and differentiation of bronchiolar epithelial cells, resulting in dramatic expansion of an SCGB1A1+ airway cell population that coexpresses SPC, a marker for type II alveolar cells that promotes alveolar regeneration following bacterial pneumonia. Furthermore, treatment with an Abl-specific allosteric inhibitor enhanced regeneration of the alveolar epithelium and promoted accelerated recovery of mice following pneumonia. These data reveal a potential actionable target that may be exploited for efficient recovery after pathogen-induced infections.


Asunto(s)
Pulmón/metabolismo , Pulmón/fisiopatología , Neumonía Bacteriana/metabolismo , Proteínas Proto-Oncogénicas c-abl/metabolismo , Regeneración/fisiología , Células Madre/metabolismo , Uteroglobina/metabolismo , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/fisiología , Animales , Bronquiolos/metabolismo , Bronquiolos/fisiopatología , Diferenciación Celular/fisiología , Línea Celular , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neumonía Bacteriana/fisiopatología , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/fisiopatología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/fisiopatología , Células Madre/fisiología
4.
Cell Commun Signal ; 19(1): 59, 2021 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-34022881

RESUMEN

The ABL kinases, ABL1 and ABL2, promote tumor progression and metastasis in various solid tumors. Recent reports have shown that ABL kinases have increased expression and/or activity in solid tumors and that ABL inactivation impairs metastasis. The therapeutic effects of ABL inactivation are due in part to ABL-dependent regulation of diverse cellular processes related to the epithelial to mesenchymal transition and subsequent steps in the metastatic cascade. ABL kinases target multiple signaling pathways required for promoting one or more steps in the metastatic cascade. These findings highlight the potential utility of specific ABL kinase inhibitors as a novel treatment paradigm for patients with advanced metastatic disease. Video abstract.


Asunto(s)
Transición Epitelial-Mesenquimal , Proteínas Proto-Oncogénicas c-abl/metabolismo , Citoesqueleto/metabolismo , Progresión de la Enfermedad , Humanos , Terapia Molecular Dirigida , Metástasis de la Neoplasia , Proteínas Proto-Oncogénicas c-abl/química
5.
Parasitol Res ; 118(3): 881-890, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30729300

RESUMEN

Schistosomiasis caused by different species of schistosome parasites is one of the most debilitating helminthic diseases of humans worldwide. For decades, chemotherapy is the main method of controlling schistosomiasis. However, the fear of drug resistance has motivated the search for alternatives. It has been demonstrated that the ABL kinase inhibitor imatinib affected the development and survival of Schistosoma mansoni in vitro; however, there is still lack of information on whether imatinib also affects other schistosome species such as Schistosoma japonicum. In the present study, the anti-schistosomal potency of imatinib on adult S. japonicum was investigated in vitro, and the results showed that imatinib had a significant impact on various physiological processes of S. japonicum adult worms. Besides its negative effects on worm motility, pairing stability, and gonad development, imatinib caused pathological changes in the gastrodermis as well as the death of the parasite. Our findings suggest that imatinib is an intriguing candidate for further development as an option to fight S. japonicum.


Asunto(s)
Mesilato de Imatinib/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Schistosoma japonicum/efectos de los fármacos , Esquistosomiasis Japónica/tratamiento farmacológico , Esquistosomicidas/uso terapéutico , Secuencia de Aminoácidos , Animales , Resistencia a Medicamentos/genética , Femenino , Gastrópodos/parasitología , Humanos , Masculino , Ratones , Pruebas de Sensibilidad Parasitaria , Schistosoma mansoni/efectos de los fármacos , Esquistosomiasis Japónica/parasitología , Alineación de Secuencia
6.
Eur J Med Chem ; 238: 114425, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35561654

RESUMEN

Bcr-Abl is a key driver in the pathophysiology of CML. Broadening the chemical diversity of Bcr-Abl kinase inhibitors to overcome drug resistance is a current medical demand for CML treatment. As a continuation to our research, a series of compounds with heteroaromatics-trizole scaffold as hinge binding moiety (HBM) were developed as Bcr-Abl inhibitors based on in silico modeling analysis. Biological results indicated that these compounds exhibited a significantly enhanced inhibition against Bcr-AblWT and Bcr-AblT315I in kinases assays, along with improved anti-proliferative activities in leukemia cell assays, compared with previous disclosed compounds. In particular, compounds 9f, 28c, 31, and 44c displayed comparable even better potency with that of Imatinib in enzymatic assay and cell assays including K562 cells and adriamycin-resistant K562/A cells. Moreover, compounds 9f, 28c, and 44c exhibited potent inhibition activities against K562R cells bearing T315I mutant with IC50 of 13.35 µM, 40.14 µM, and 1.91 µM, respectively, outperforming that of Imatinib. Meanwhile, the inhibition of Bcr-Abl activity in Ba/F3 cells demonstrated that these compounds exerted effects mainly by acting on Bcr-Abl. Additionally, compounds 9f, 28c, and 44c effectively induced apoptosis, arrest the cell cycle at S or G2/M phase, and inhibited phosphorylation of Bcr-Abl and STAT5 in a dose-dependent manner. Docking studies indicated that trizole indeed retained the hydrophobic interaction of aromatic heterocycles with hinge region, and ADME prediction suggested that tested compounds had a favorable safety profile. Therefore, aromatic heterocycles incorporated with trizole could serve as a promising HBM for Bcr-Abl inhibitors with proline as fexibile linker, and compounds 9f, 28c, especially 44c could be served as a starting point for further optimization.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Apoptosis , Proliferación Celular , Resistencia a Antineoplásicos , Proteínas de Fusión bcr-abl , Humanos , Mesilato de Imatinib/farmacología , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/química
7.
Cell Rep ; 37(4): 109880, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34706244

RESUMEN

Targeting mitochondrial metabolism has emerged as a treatment option for cancer patients. The ABL tyrosine kinases promote metastasis, and enhanced ABL signaling is associated with a poor prognosis in lung adenocarcinoma patients. Here we show that ABL kinase allosteric inhibitors impair mitochondrial integrity and decrease oxidative phosphorylation. To identify metabolic vulnerabilities that enhance this phenotype, we utilized a CRISPR/Cas9 loss-of-function screen and identified HMG-CoA reductase, the rate-limiting enzyme of the mevalonate pathway and target of statin therapies, as a top-scoring sensitizer to ABL inhibition. Combination treatment with ABL allosteric inhibitors and statins decreases metastatic lung cancer cell survival in vitro in a synergistic manner. Notably, combination therapy in mouse models of lung cancer brain metastasis and therapy resistance impairs metastatic colonization with a concomitant increase in animal survival. Thus, metabolic combination therapy might be effective to decrease metastatic outgrowth, leading to increased survival for lung cancer patients with advanced disease.


Asunto(s)
Apoptosis/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas Oncogénicas v-abl/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/genética , Animales , Apoptosis/genética , Línea Celular Tumoral , Sinergismo Farmacológico , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , Proteínas Oncogénicas v-abl/genética , Proteínas Oncogénicas v-abl/metabolismo , Transducción de Señal/genética , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Oncotarget ; 10(20): 1874-1886, 2019 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-30956771

RESUMEN

Lung cancer is the leading cause of cancer mortality in the United States, with an overall five-year survival rate of ~16%. Non-small cell lung cancer (NSCLC) accounts for ~80% of all lung cancer cases, and the majority (40%) of these are adenocarcinomas. Loss of function point mutations in TP53 (46%) and activating mutations in KRAS (33%) are the most common mutations in human lung adenocarcinomas. Because neither of these genetic alterations are clinically actionable, chemotherapy remains the mainstay of treatment in patients with oncogenic KRAS driver mutations. However, chemoresistance to genotoxic agents such as docetaxel remains a major clinical challenge facing lung cancer patients. Here we show that ABL kinase allosteric inhibitors can be effectively used for the treatment of KrasG12D/+; p53-/- lung adenocarcinomas in an autochthonous mouse model. Unexpectedly, we found that treatment of tumor-bearing mice with an ABL allosteric inhibitor promoted differentiation of lung adenocarcinomas from poorly differentiated tumors expressing basal cell markers to tumors expressing terminal differentiation markers in vivo, which rendered lung adenocarcinomas susceptible to chemotherapy. These findings uncover a novel therapeutic approach for the treatment of lung adenocarcinomas with poor response to chemotherapy.

9.
Oncotarget ; 9(31): 22158-22183, 2018 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-29774130

RESUMEN

Metastatic dissemination of cancer cells from the primary tumor and their spread to distant sites in the body is the leading cause of mortality in breast cancer patients. While researchers have identified treatments that shrink or slow metastatic tumors, no treatment that permanently eradicates metastasis exists at present. Here, we show that the ABL kinase inhibitors imatinib, nilotinib, and GNF-5 impede invadopodium precursor formation and cortactin-phosphorylation dependent invadopodium maturation, leading to decreased actin polymerization in invadopodia, reduced extracellular matrix degradation, and impaired matrix proteolysis-dependent invasion. Using a mouse xenograft model we demonstrate that, while primary tumor size is not affected by ABL kinase inhibitors, the in vivo matrix metalloproteinase (MMP) activity, tumor cell invasion, and consequent spontaneous metastasis to lungs are significantly impaired in inhibitor-treated mice. Further proteogenomic analysis of breast cancer patient databases revealed co-expression of the Abl-related gene (Arg) and cortactin across all hormone- and human epidermal growth factor receptor 2 (HER2)-receptor status tumors, which correlates synergistically with distant metastasis and poor patient prognosis. Our findings establish a prognostic value for Arg and cortactin as predictors of metastatic dissemination and suggest that therapeutic inhibition of ABL kinases may be used for blocking breast cancer metastasis.

10.
Anticancer Agents Med Chem ; 16(8): 992-1002, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26902603

RESUMEN

In recent years, several small molecules approved by FDA for clinical studies are promising anti-cancer agent. Among the kinases, Abelson Leukaemia (Abl), sarcoma (Src), epidermal growth factor receptor (EGFR) and vascular endotelhial growth factor receptor (VEGFR) are considered as primary molecular targets for selective inhibition and the best successful targeted therapy of tyrosine kinase inhibitors (TKIs) has been achieved in the treatment of Bcr (break point cluster)-Abl leukemia. The majority of type 1 kinase inhibitors target the active conformation of ATP binding site. In consequence of intensive studies on kinases, type 2, type 3 (allosteric) and type 4 (covalent) inhibitors have been discovered beyond the type 1 inhibitors. Although the selectivity is a major problem for type 1 inhibitors, these new type of inhibitors are promising for finding new selective compounds, which may provide other therapeutic options for cancer therapy. They may also be a solution to overcome drug resistance that remains unresolved yet. Threedimensional structural determination provides the development of specific and highly binding properties of compounds. Studying the prediction of a binding mode of inhibitors, homology model developments from kinase- ligand co-crystal structures and isosteric replacements have been used to improve binding properties of inhibitors. In this review, critical results related to the design strategies of kinase specifically targeted to Src and Bcr-Abl kinases and therapeutic potential of novel inhibitors will be evaluated. The readers will be endowed with the functional role of Src and Bcr-Abl kinases that lead inhibitor design, the structural analysis of binding modes of kinase inhibitors, the current progress in terms of therapeutic interventions and the mission of leading groups in the field.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda