Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Ultrason Imaging ; 41(6): 353-367, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31615352

RESUMEN

Breast cancer has become the biggest threat to female health. Ultrasonic diagnosis of breast cancer based on artificial intelligence is basically a classification of benign and malignant tumors, which does not meet clinical demand. Besides, the current target detection method performs poorly in detecting small lesions, while it is clinically required to detect nodules below 2 mm. The objective of this study is to (a) propose a diagnostic method based on Breast Imaging Reporting and Data System (BI-RADS) and (b) increase its detectability of small lesions. We modified the framework of Faster R-CNN (Faster Region-based Convolutional Neural Network) by introducing multi-scale feature extraction and multi-resolution candidate bound extraction into the network. Then, it was trained using 852 images of BI-RADS C2, 739 images of C3, and 1662 images of malignancy (BI-RADS 4a/4b/4c/5/6). We compared our model with unmodified Faster R-CNN and YOLO v3 (You Only Look Once v3). The mean average precision (mAP) is significantly increased to 0.913, while its average detection speed is slightly declined to 4.11 FPS (frames per second). Meanwhile, its detectivity of small lesions is effectively improved. Moreover, we also tentatively applied our model on video sequences and got satisfactory results. We modified Faster R-CNN and trained it partly based on BI-RADS. Its detectability of lesions, as well as small nodules, was significantly improved. In view of wide coverage of dataset and satisfactory test results, our method can basically meet clinical needs.


Asunto(s)
Mama/diagnóstico por imagen , Redes Neurales de la Computación , Ultrasonografía Mamaria/métodos , Neoplasias de la Mama/diagnóstico por imagen , Conjuntos de Datos como Asunto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador
2.
Ultrason Imaging ; 40(2): 97-112, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29182056

RESUMEN

Mammography is the gold standard screening technique in breast cancer, but it has some limitations for women with dense breasts. In such cases, sonography is usually recommended as an additional imaging technique. A traditional sonogram produces a two-dimensional (2D) visualization of the breast and is highly operator dependent. Automated breast ultrasound (ABUS) has also been proposed to produce a full 3D scan of the breast automatically with reduced operator dependency, facilitating double reading and comparison with past exams. When using ABUS, lesion segmentation and tracking changes over time are challenging tasks, as the three-dimensional (3D) nature of the images makes the analysis difficult and tedious for radiologists. The goal of this work is to develop a semi-automatic framework for breast lesion segmentation in ABUS volumes which is based on the Watershed algorithm. The effect of different de-noising methods on segmentation is studied showing a significant impact ([Formula: see text]) on the performance using a dataset of 28 temporal pairs resulting in a total of 56 ABUS volumes. The volumetric analysis is also used to evaluate the performance of the developed framework. A mean Dice Similarity Coefficient of [Formula: see text] with a mean False Positive ratio [Formula: see text] has been obtained. The Pearson correlation coefficient between the segmented volumes and the corresponding ground truth volumes is [Formula: see text] ([Formula: see text]). Similar analysis, performed on 28 temporal (prior and current) pairs, resulted in a good correlation coefficient [Formula: see text] ([Formula: see text]) for prior and [Formula: see text] ([Formula: see text]) for current cases. The developed framework showed prospects to help radiologists to perform an assessment of ABUS lesion volumes, as well as to quantify volumetric changes during lesions diagnosis and follow-up.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Ultrasonografía Mamaria/métodos , Mama/diagnóstico por imagen , Neoplasias de la Mama , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Persona de Mediana Edad , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda