Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
J Biol Chem ; 297(5): 101284, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34624313

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the accumulation of protein aggregates in motor neurons. Recent discoveries of genetic mutations in ALS patients promoted research into the complex molecular mechanisms underlying ALS. FUS (fused in sarcoma) is a representative ALS-linked RNA-binding protein (RBP) that specifically recognizes G-quadruplex (G4)-DNA/RNAs. However, the effects of ALS-linked FUS mutations on the G4-RNA-binding activity and the phase behavior have never been investigated. Using the purified full-length FUS, we analyzed the molecular mechanisms of multidomain structures consisting of multiple functional modules that bind to G4. Here we succeeded to observe the liquid-liquid phase separation (LLPS) of FUS condensate formation and subsequent liquid-to-solid transition (LST) leading to the formation of FUS aggregates. This process was markedly promoted through FUS interaction with G4-RNA. To further investigate, we selected a total of eight representative ALS-linked FUS mutants within multidomain structures and purified these proteins. The regulation of G4-RNA-dependent LLPS and LST pathways was lost for all ALS-linked FUS mutants defective in G4-RNA recognition tested, supporting the essential role of G4-RNA in this process. Noteworthy, the P525L mutation that causes juvenile ALS exhibited the largest effect on both G4-RNA binding and FUS aggregation. The findings described herein could provide a clue to the hitherto undefined connection between protein aggregation and dysfunction of RBPs in the complex pathway of ALS pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , G-Cuádruplex , Mutación Missense , Proteína FUS de Unión a ARN , Sustitución de Aminoácidos , Humanos , Proteína FUS de Unión a ARN/química , Proteína FUS de Unión a ARN/genética
2.
Arch Phys Med Rehabil ; 96(3 Suppl): S54-61, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25721548

RESUMEN

OBJECTIVE: To evaluate the impact of a hybrid control on usability of a P300-based brain-computer interface (BCI) system that was designed to control an assistive technology software and was integrated with an electromyographic channel for error correction. DESIGN: Proof-of-principle study with a convenience sample. SETTING: Neurologic rehabilitation hospital. PARTICIPANTS: Participants (N=11) in this pilot study included healthy (n=8) and severely motor impaired (n=3) persons. The 3 people with severe motor disability were identified as potential candidates to benefit from the proposed hybrid BCI system for communication and environmental interaction. INTERVENTIONS: To eventually investigate the improvement in usability, we compared 2 modalities of BCI system control: a P300-based and a hybrid P300 electromyographic-based mode of control. MAIN OUTCOME MEASURES: System usability was evaluated according to the following outcome measures within 3 domains: (1) effectiveness (overall system accuracy and P300-based BCI accuracy); (2) efficiency (throughput time and users' workload); and (3) satisfaction (users' satisfaction). We also considered the information transfer rate and time for selection. RESULTS: Findings obtained in healthy participants were in favor of a higher usability of the hybrid control as compared with the nonhybrid. A similar trend was indicated by the observational results gathered from each of the 3 potential end-users. CONCLUSIONS: The proposed hybrid BCI control modality could provide end-users with severe motor disability with an option to exploit some residual muscular activity, which could not be fully reliable for properly controlling an assistive technology device. The findings reported in this pilot study encourage the implementation of a clinical trial involving a large cohort of end-users.


Asunto(s)
Interfaces Cerebro-Computador , Personas con Discapacidad/rehabilitación , Enfermedades del Sistema Nervioso/rehabilitación , Adulto , Electroencefalografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Satisfacción del Paciente , Proyectos Piloto , Centros de Rehabilitación , Dispositivos de Autoayuda , Interfaz Usuario-Computador
3.
Int Rev Neurobiol ; 176: 171-207, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38802175

RESUMEN

Engineering new solutions for therapeutic benefit in Amyotrophic Lateral Sclerosis (ALS) has proved a difficult task to accomplish. This is largely the reflection of complexities at multiple levels, that require solutions to improve cost-effectiveness and outcomes. The main obstacle related to the condition's clinical heterogeneity, chiefly the broad difference in survival observed among ALS patients, imposes large populations studies and long follow-up to evaluate any efficacy. The emerging solution is composite clinical and biological parameters enabling prognostic stratification into homogeneous phenotypes for more affordable studies. From a therapeutic development perspective, the choice of a medicinal product requires the availability of treatment-specific biomarkers of target engagement to identify off-target effects based on the compound's putative modality of action. More importantly, there are no established biomarkers of treatment response that can complement clinical outcome measures and support futility and end of treatment analyses of efficacy. Ultimately the onus rests on the development of biomarkers encompassing the unmet needs of clinical trial design, from inclusion to efficacy. These readouts of the pathological process may be used in combination with clinical and paraclinical outcome measured, significantly reducing the time and financial burden of clinical studies. Progress towards a biomarker-driven clinical trial design in ALS has been possible thanks to the accurate detection of neurofilaments and of other immunological mediators in biological fluids with the disease progression, a step change enabling the testing of novel therapeutic agents in a new clinical trial setting. However, further progress remains to be made to find treatment specific target engagement biomarkers along with readouts of treatment response that can be reliably applied to all emerging therapies and clinical studies. Here we will cover the basic notions of biomarker development in ALS clinical trials, the most crucial unanswered questions and the unmet needs in the ALS biomarkers space.


Asunto(s)
Esclerosis Amiotrófica Lateral , Biomarcadores , Ensayos Clínicos como Asunto , Humanos , Esclerosis Amiotrófica Lateral/terapia , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Ensayos Clínicos como Asunto/métodos
4.
Neuromolecular Med ; 26(1): 23, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861223

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is a severe neurodegenerative disease affecting motor neurons. Pathological forms of Tar-DNA binding protein-43 (TDP-43), involving its mislocalisation to the cytoplasm and the formation of misfolded inclusions, are present in almost all ALS cases (97%), and ~ 50% cases of the related condition, frontotemporal dementia (FTD), highlighting its importance in neurodegeneration. Previous studies have shown that endoplasmic reticulum protein 57 (ERp57), a member of the protein disulphide isomerase (PDI) family of redox chaperones, is protective against ALS-linked mutant superoxide dismutase (SOD1) in neuronal cells and transgenic SOD1G93A mouse models. However, it remains unclear whether ERp57 is protective against pathological TDP-43 in ALS. Here, we demonstrate that ERp57 is protective against key features of TDP-43 pathology in neuronal cells. ERp57 inhibited the mislocalisation of TDP-43M337V from the nucleus to the cytoplasm. In addition, ERp57 inhibited the number of inclusions formed by ALS-associated variant TDP-43M337V and reduced the size of these inclusions. ERp57 was also protective against ER stress and induction of apoptosis. Furthermore, ERp57 modulated the steady-state expression levels of TDP-43. This study therefore demonstrates a novel mechanism of action of ERp57 in ALS. It also implies that ERp57 may have potential as a novel therapeutic target to prevent the TDP-43 pathology associated with neurodegeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Unión al ADN , Cuerpos de Inclusión , Proteína Disulfuro Isomerasas , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/genética , Animales , Ratones , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Superóxido Dismutasa-1/genética , Mutación
5.
Neurobiol Dis ; 49: 107-17, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22975021

RESUMEN

Skeletal muscle mitochondrial dysfunction is believed to play a role in the progression and severity of amyotrophic lateral sclerosis (ALS). The regulation of transcriptional co-activators involved in mitochondrial biogenesis and function in ALS is not well known. When compared with healthy control subjects, patients with ALS, but not neurogenic disease (ND), had lower levels of skeletal muscle peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA and protein and estrogen-related receptor-α (ERRα) and mitofusin-2 (Mfn2) mRNA. PGC-1ß, nuclear respiratory factor-1 (NRF-1) and Mfn1 mRNA as well as cytochrome C oxidase subunit IV (COXIV) mRNA and protein were lower in patients with ALS and ND. Both patient groups had reductions in citrate synthase and cytochrome c oxidase activity. Similar observations were made in skeletal muscle from transgenic ALS G93A transgenic mice. In vitro, PGC-1α and PGC-1ß regulated Mfn1 and Mfn2 in an ERRα-dependent manner. Compared to healthy controls, miRNA 23a, 29b, 206 and 455 were increased in skeletal muscle of ALS patients. miR-23a repressed PGC-1α translation in a 3' UTR dependent manner. Transgenic mice over expressing miR-23a had a reduction in PGC-1α, cytochome-b and COXIV protein levels. These results show that skeletal muscle mitochondrial dysfunction in ALS patients is associated with a reduction in PGC-1α signalling networks involved in mitochondrial biogenesis and function, as well as increases in several miRNAs potentially implicated in skeletal muscle and neuromuscular junction regeneration. As miR-23a negatively regulates PGC-1α signalling, therapeutic inhibition of miR-23a may be a strategy to rescue PGC-1α activity and ameliorate skeletal muscle mitochondrial function in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , MicroARNs/metabolismo , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Adulto , Anciano , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones Transgénicos , MicroARNs/genética , Persona de Mediana Edad , Mutación , ARN Mensajero/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Adulto Joven
6.
Methods Mol Biol ; 2551: 481-495, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36310221

RESUMEN

This protocol describes a method to purify SOD1 in Saccharomyces cerevisiae to characterize using ICP-MS and AFM, to agitate and fibrillate for aggregation of SOD1. The human SOD1 (hSOD1) is a 32-kDa homodimer, with one copper- and one zinc-binding site per 153-amino acid subunit. Misfolded protein aggregates are often correlated with diseases known as amyloidosis, including ALS, Alzheimer's, Parkinson's, and prion disease (Valentine and Hart, Proc Natl Acad Sci USA 100: 3617-3622, 2003; Tanzi and Bertram, Cell 120: 545-555, 2005; Soto and Pritzkow, Nat Neurosci 21:1332-1340, 2018; Sarafian et al., J Neurosci Res 95:1871-1887, 2017). Proteinaceous aggregates containing hSOD1 have frequently been found in the spinal cords of ALS patients.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Superóxido Dismutasa/metabolismo , Microscopía de Fuerza Atómica , Proteolisis , Agregado de Proteínas , Espectrometría de Masas , Mutación
7.
Front Cell Neurosci ; 17: 1155929, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37138765

RESUMEN

The GGGGCC intronic repeat expansion within C9ORF72 is the most common genetic cause of ALS and FTD. This mutation results in toxic gain of function through accumulation of expanded RNA foci and aggregation of abnormally translated dipeptide repeat proteins, as well as loss of function due to impaired transcription of C9ORF72. A number of in vivo and in vitro models of gain and loss of function effects have suggested that both mechanisms synergize to cause the disease. However, the contribution of the loss of function mechanism remains poorly understood. We have generated C9ORF72 knockdown mice to mimic C9-FTD/ALS patients haploinsufficiency and investigate the role of this loss of function in the pathogenesis. We found that decreasing C9ORF72 leads to anomalies of the autophagy/lysosomal pathway, cytoplasmic accumulation of TDP-43 and decreased synaptic density in the cortex. Knockdown mice also developed FTD-like behavioral deficits and mild motor phenotypes at a later stage. These findings show that C9ORF72 partial loss of function contributes to the damaging events leading to C9-FTD/ALS.

8.
Front Mol Neurosci ; 16: 1027898, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37671010

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is characterised by a loss of motor neurons in the brain and spinal cord that is preceded by early-stage changes in synapses that may be associated with TAR-DNA-Binding Protein 43 (TDP-43) pathology. Cellular inclusions of hyperphosphorylated TDP-43 (pTDP-43) are a key hallmark of neurodegenerative diseases such ALS. However, there has been little characterisation of the synaptic expression of TDP-43 inside subpopulations of spinal cord synapses. This study utilises a range of high-resolution and super-resolution microscopy techniques with immunolabelling, as well as an aptamer-based TDP-43 labelling strategy visualised with single-molecule localisation microscopy, to characterise and quantify the presence of pTDP-43 in populations of excitatory synapses near where motor neurons reside in the lateral ventral horn of the mouse lumbar spinal cord. We observe that TDP-43 is expressed in approximately half of spinal cord synapses as nanoscale clusters. Synaptic TDP-43 clusters are found most abundantly at synapses associated with VGLUT1-positive presynaptic terminals, compared to VGLUT2-associated synapses. Our nanoscopy techniques showed no difference in the subsynaptic expression of pTDP-43 in the ALS mouse model, SOD1G93a, compared to healthy controls, despite prominent structural deficits in VGLUT1-associated synapses in SOD1G93a mice. This research characterises the basic synaptic expression of TDP-43 with nanoscale precision and provides a framework with which to investigate the potential relationship between TDP-43 pathology and synaptic pathology in neurodegenerative diseases.

9.
Front Cell Neurosci ; 17: 1112405, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937187

RESUMEN

Introduction: Caveolin-1 and Caveolin-2 (CAV1 and CAV2) are proteins associated with intercellular neurotrophic signalling. There is converging evidence that CAV1 and CAV2 (CAV1/2) genes have a role in amyotrophic lateral sclerosis (ALS). Disease-associated variants have been identified within CAV1/2 enhancers, which reduce gene expression and lead to disruption of membrane lipid rafts. Methods: Using large ALS whole-genome sequencing and post-mortem RNA sequencing datasets (5,987 and 365 tissue samples, respectively), and iPSC-derived motor neurons from 55 individuals, we investigated the role of CAV1/2 expression and enhancer variants in the ALS phenotype. Results: We report a differential expression analysis between ALS cases and controls for CAV1 and CAV2 genes across various post-mortem brain tissues and three independent datasets. CAV1 and CAV2 expression was consistently higher in ALS patients compared to controls, with significant results across the primary motor cortex, lateral motor cortex, and cerebellum. We also identify increased survival among carriers of CAV1/2 enhancer mutations compared to non-carriers within Project MinE and slower progression as measured by the ALSFRS. Carriers showed a median increase in survival of 345 days. Discussion: These results add to an increasing body of evidence linking CAV1 and CAV2 genes to ALS. We propose that carriers of CAV1/2 enhancer mutations may be conceptualised as an ALS subtype who present a less severe ALS phenotype with a longer survival duration and slower progression. Upregulation of CAV1/2 genes in ALS cases may indicate a causal pathway or a compensatory mechanism. Given prior research supporting the beneficial role of CAV1/2 expression in ALS patients, we consider a compensatory mechanism to better fit the available evidence, although further investigation into the biological pathways associated with CAV1/2 is needed to support this conclusion.

10.
Prog Mol Biol Transl Sci ; 198: 165-184, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37225320

RESUMEN

Higher-order DNA structure and gene expression are governed by epigenetic processes like DNA methylation and histone modifications. Abnormal epigenetic mechanisms are known to contribute to the emergence of numerous diseases, including cancer. Historically, the chromatin abnormalities were only considered to be limited to discrete DNA sequences and were thought to be associated with rare genetic syndrome however, recent discoveries have pointed to genome-wide level changes in the epigenetic machinery which has contributed to a better knowledge of the mechanisms underlying developmental and degenerative neuronal problems associated with diseases such as Parkinson's disease, Huntington's disease, Epilepsy, Multiple sclerosis, etc. In the given chapter we describe the epigenetic alterations seen in various neurological disorders and further discuss the influence of these epigenetic changes on developing novel therapies.


Asunto(s)
Enfermedades del Sistema Nervioso , Enfermedad de Parkinson , Humanos , Enfermedades del Sistema Nervioso/genética , Epigénesis Genética , Enfermedad de Parkinson/genética , Metilación de ADN/genética , Cromatina
11.
IBRO Neurosci Rep ; 14: 210-234, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36880056

RESUMEN

Some of the greatest challenges in medicine are the neurodegenerative diseases (NDs), which remain without a cure and mostly progress to death. A companion study employed a toolkit methodology to document 2001 plant species with ethnomedicinal uses for alleviating pathologies relevant to NDs, focusing on its relevance to Alzheimer's disease (AD). This study aimed to find plants with therapeutic bioactivities for a range of NDs. 1339 of the 2001 plant species were found to have a bioactivity from the literature of therapeutic relevance to NDs such as Parkinson's disease, Huntington's disease, AD, motor neurone diseases, multiple sclerosis, prion diseases, Neimann-Pick disease, glaucoma, Friedreich's ataxia and Batten disease. 43 types of bioactivities were found, such as reducing protein misfolding, neuroinflammation, oxidative stress and cell death, and promoting neurogenesis, mitochondrial biogenesis, autophagy, longevity, and anti-microbial activity. Ethno-led plant selection was more effective than random selection of plant species. Our findings indicate that ethnomedicinal plants provide a large resource of ND therapeutic potential. The extensive range of bioactivities validate the usefulness of the toolkit methodology in the mining of this data. We found that a number of the documented plants are able to modulate molecular mechanisms underlying various key ND pathologies, revealing a promising and even profound capacity to halt and reverse the processes of neurodegeneration.

12.
eNeurologicalSci ; 31: 100452, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36875937

RESUMEN

Objective: To systematically evaluate post-exercise outcomes related to function and quality of life in people with ALS. Methods: PRISMA guidelines were used for identifying and extracting articles. Levels of evidence and quality of articles were judged based on The Oxford Centre for Evidence-based Medicine Levels of Evidence and the QualSyst. Outcomes were analyzed with Comprehensive Meta-Analysis V2 software, random effects models, and Hedge's G. Effects were examined at 0-4 months, up to 6 months, and > 6 months. Pre-specified sensitivity analyses were performed for 1) controlled trials vs. all studies and 2) ALSFRS-R bulbar, respiratory, and motor subscales. Heterogeneity of pooled outcomes was computed with the I2 statistic. Results: 16 studies and seven functional outcomes met inclusion for the meta-analysis. Of the outcomes explored, the ALSFRS-R demonstrated a favorable summary effect size and had acceptable heterogeneity and dispersion. While FIM scores demonstrated a favorable summary effect size, heterogeneity limited interpretations. Other outcomes did not demonstrate a favorable summary effect size and/or could not be reported due to few studies reporting outcomes. Conclusions: This study provides inconclusive guidance regarding exercise regimens to maintain function and quality of life in people with ALS due to study limitations (e.g., small sample size, high attrition rate, heterogeneity in methods and participants, etc.). Future research is warranted to determine optimal treatment regimens and dosage parameters in this patient population.

13.
Front Neurol ; 13: 886379, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873773

RESUMEN

Introduction: Frontotemporal dementia (FTD) is considered to be part of a continuum with amyotrophic lateral sclerosis (ALS). Many genes are associated with both ALS and FTD. Yet, many genes associated with ALS have not been shown to cause FTD. We aimed to study a Portuguese cohort of FTD patients, searching for variants in genes associated with both FTD and/or ALS. Methods: We included 57 thoroughly characterized index FTD patients from our memory clinic, who were not carriers of pathogenic variants in GRN, MAPT or C9orf72. We performed exome sequencing and 1) prioritized potential FTD and ALS causing variants by using Exomiser to annotate and filter results; and 2) looked specifically at rare variability in genes associated with FTD (excluding GRN, MAPT and C9ORF72) and/or ALS. Results: We identified 13 rare missense variants in 10 patients (three patients had two variants) in the following genes: FUS, OPTN, CCNF, DCTN1, TREM2, ERBB4, ANG, CHRNA4, CHRNB4 and SETX. We found an additional frameshift variant on GLT8D1 in one patient. One variant (ERBB4 p.Arg1112His) gathered enough evidence to be classified as likely pathogenic by the ACMG criteria. Discussion: We report, for the first time, an expanded study of genes known to cause FTD-ALS, in the Portuguese population. Potentially pathogenic variants in ERBB4, FUS, SETX, ANG, CHRNA4 and CHRNB4 were identified in FTD patients. These findings provide additional evidence for the potential role of rare variability in ALS-associated genes in FTD, expanding the genetic spectrum between the two diseases.

14.
Front Mol Neurosci ; 15: 894230, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774867

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is an incurable neurodegenerative disease characterized by dysfunction and loss of upper and lower motor neurons (MN). Despite several studies identifying drastic alterations affecting synaptic composition and functionality in different experimental models, the specific contribution of impaired activity to the neurodegenerative processes observed in ALS-related MN remains controversial. In particular, contrasting lines of evidence have shown both hyper- as well as hypoexcitability as driving pathomechanisms characterizing this specific neuronal population. In this study, we combined high definition multielectrode array (HD-MEA) techniques with transcriptomic analysis to longitudinally monitor and untangle the activity-dependent alterations arising in human C9orf72-mutant MN. We found a time-dependent reduction of neuronal activity in ALSC9orf72 cultures occurring as synaptic contacts undergo maturation and matched by a significant loss of mutant MN upon aging. Notably, ALS-related neurons displayed reduced network synchronicity most pronounced at later stages of culture, suggesting synaptic imbalance. In concordance with the HD-MEA data, transcriptomic analysis revealed an early up-regulation of synaptic terms in ALSC9orf72 MN, whose expression was decreased in aged cultures. In addition, treatment of older mutant cells with Apamin, a K+ channel blocker previously shown to be neuroprotective in ALS, rescued the time-dependent loss of firing properties observed in ALSC9orf72 MN as well as the expression of maturity-related synaptic genes. All in all, this study broadens the understanding of how impaired synaptic activity contributes to MN degeneration in ALS by correlating electrophysiological alterations to aging-dependent transcriptional programs.

15.
J Pers Med ; 12(3)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35330435

RESUMEN

Amyotrophic Lateral Sclerosis (ALS), also known as Motor Neuron Disease (MND), is a rare and fatal neurodegenerative disease. As ALS is currently incurable, the aim of the treatment is mainly to alleviate symptoms and improve quality of life (QoL). We designed a prototype Clinical Decision Support System (CDSS) to alert clinicians when a person with ALS is experiencing low QoL in order to inform and personalise the support they receive. Explainability is important for the success of a CDSS and its acceptance by healthcare professionals. The aim of this work isto announce our prototype (C-ALS), supported by a first short evaluation of its explainability. Given the lack of similar studies and systems, this work is a valid proof-of-concept that will lead to future work. We developed a CDSS that was evaluated by members of the team of healthcare professionals that provide care to people with ALS in the ALS/MND Multidisciplinary Clinic in Dublin, Ireland. We conducted a user study where participants were asked to review the CDSS and complete a short survey with a focus on explainability. Healthcare professionals demonstrated some uncertainty in understanding the system's output. Based on their feedback, we altered the explanation provided in the updated version of our CDSS. C-ALS provides local explanations of its predictions in a post-hoc manner, using SHAP (SHapley Additive exPlanations). The CDSS predicts the risk of low QoL in the form of a probability, a bar plot shows the feature importance for the specific prediction, along with some verbal guidelines on how to interpret the results. Additionally, we provide the option of a global explanation of the system's function in the form of a bar plot showing the average importance of each feature. C-ALS is available online for academic use.

16.
Ann Med Surg (Lond) ; 84: 104840, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36582889

RESUMEN

Introduction: Amyotrophic lateral sclerosis is a neurodegenerative disease with wide variation of genetics associated with it. Among the different genes described, mutation in TFG is a rare finding in amyotrophic lateral sclerosis. Case presentation: A 35 years old right-handed male presenting with ipsilateral weakness was diagnosed with amyotrophic lateral sclerosis. He was found to have missense variant of TFG with uncertain significance on exome sequencing. Clinical discussion: The genetics involved in amyotrophic lateral sclerosis is ever-evolving. The identification of new TFG variant in this disease adds another evidence to the role of TFG in neurodegenerative disease. Conclusions: The finding of TFG variant of uncertain significance is a rare finding in amyotrophic lateral sclerosis. And with the identification of new TFG variant, it leads to further understanding of spectrum of TFG and its pathophysiology in amyotrophic lateral sclerosis.

17.
Respir Med Case Rep ; 37: 101649, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35480384

RESUMEN

When the ability to cough is impaired, secretion clearance may be assisted and augmented by Mechanical Insufflation-Exsufflation (MI-E) treatment. In patients with Amyotrophic Lateral Sclerosis, the efficacy of MI-E may be hampered by counterproductive upper airway responses. Careful adjustment of MI-E settings can be beneficial. During the disease progression, a 41-year-old woman with bulbar Amyotrophic Lateral Sclerosis experienced that treatment with MI-E was exhausting and inefficient. Despite adjustments of settings, all treatment led to retching. A change of MI-E device led to more effective treatment. A bench test revealed variations in flow and pressure waveforms in the two devices. When MI-E treatment fails, differences in equipment delivery need to be considered in addition to the adjustment of MI-E settings.

18.
Eur J Radiol Open ; 9: 100394, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35059473

RESUMEN

PURPOSE: The partial volume effect (PVE) complicates PET studies of neurodegenerative diseases, since a decreased 18F-FDG retention might be influenced by atrophy-related changes of cortical regions. Multiple partial volume correction (PVC) methods have been therefore developed, but their application in amyotrophic lateral sclerosis (ALS) is still rare. Additionally, even if metabolic changes have been established in ALS, no study yet has investigated how these may be influenced by aging and disease course. The aim of the present study was therefore to apply and compare multiple PVC approaches to explore aging and disease course-related hypometabolism in ALS. METHODS: PET and MRI data from 15 ALS patients were analyzed using PETSurfer to implement 4 distinct PVC methods: noPVC, Meltzer (MZ), Müller-Gärtner (MG) and Symmetric Geometric Transfer Matrix (SGTM). For each method and Region of Interest (ROI), the 18F-FDG value was regressed against subject age and disease duration. RESULTS: MG/SGTM application almost halved the number of regions showing a significant age-related hypometabolism, while the same effect was not observed for disease course, where only the distribution of identified regions varied. Three distinct patterns emerged: regions showing a significant age/disease course-related effect across all the different methods, regions yielding significance only with MG/SGTM application, and regions maintaining significance only with noPVC/MZ application. CONCLUSIONS: Significant changes in the distribution of aging and disease course-related hypometabolism were observed when the effect of the underlying structural status was considered, supporting the need for investigate the impact of PVE on PET-assessed metabolic changes in clinical and research settings.

19.
Clin Neurophysiol Pract ; 7: 273-278, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36263296

RESUMEN

Objective: Using transcranial magnetic stimulation (TMS) to delineate upper motor neuron (UMN) signs of two neurodegenerative disorders: amyotrophic lateral sclerosis (ALS) and multiple system atrophy (MSA). Methods: Medical records including clinical signs for UMN damage and TMS results were reviewed retrospectively. The UMN signs were classified into none, mild, and severe based on neurological examination of various reflexes. Then TMS-elicited motor evoked potentials (MEPs) were recorded from a hand and a leg muscle to calculate the central motor conduction time (CMCT), which represents fast, mono-synaptic conduction along the corticospinal tract. Relations between the UMN signs and CMCT were analysed for the two diseases. Results: Prevalence and severity of the UMN signs for ALS and MSA were comparable for both upper and lower limbs. However, abnormality in CMCT was found more frequently in ALS: CMCT abnormalities were found in upper limbs for 44% in ALS patients but only for 7% in MSA patients; CMCT abnormalities in lower limbs were 55% in ALS and 20% in MSA. Some ALS patients showed abnormal CMCT in limbs without UMN signs, which was not true for most MSA patients. Conclusions: The abnormalities of CMCT were different in ALS and MSA, even for those who clinically had similar UMN signs. Sometimes, CMCT can reveal UMN damage in the absence of clinical UMN signs. Differences presumably derive from selective degeneration of different fibres in the motor descending pathways. Longitudinal studies must be conducted to accumulate neuroimaging and pathological findings. Significance: CMCT can be useful to differentiate ALS and MSA.

20.
Comput Struct Biotechnol J ; 20: 4251-4256, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051868

RESUMEN

Telomere length (TL) is a biomarker of biological aging. Shorter telomeres have been associated with mortality and increased rates of age-related diseases. However, observational studies are unable to conclude whether TL is causally associated with those outcomes. Mendelian randomization (MR) was developed for assessing causality using genetic variants in epidemiological research. The objective of this study was to test the potential causal role of TL in neurodegenerative disorders and life expectancy through MR analysis. Summary level data were extracted from the most recent genome-wide association studies for TL, Alzheimer's disease (AD), Parkinson's disease, Frontotemporal dementia, Amyotrophic Lateral Sclerosis, Progressive Supranuclear Palsy and life expectancy. MR estimates revealed that longer telomeres inferred a protective effect on risk of AD (OR = 0.964; adjusted p-value = 0.039). Moreover, longer telomeres were significantly associated with increased life expectancy (ßIVW  = 0.011; adjusted p-value = 0.039). Sensitivity analyses suggested evidence for directional pleiotropy in AD analyses. Our results showed that genetically predicted longer TL may increase life expectancy and play a protective causal effect on AD. We did not observe significant causal relationships between longer TL and other neurodegenerative diseases. This suggests that the involvement of TL on specific biological mechanisms might differ between AD and life expectancy, with respect to that in other neurodegenerative diseases. Moreover, the presence of pleiotropy may reflect the complex interplay between TL homeostasis and AD pathophysiology. Further observational studies are needed to confirm these results.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda