Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Glob Chang Biol ; 26(7): 4056-4067, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32237246

RESUMEN

Reducing the number of tillers per plant using a tiller inhibition (tin) gene has been considered as an important trait for wheat production in dryland environments. We used a spatial analysis approach with a daily time-step coupled radiation and transpiration efficiency model to simulate the impact of the reduced-tillering trait on wheat yield under different climate change scenarios across Australia's arable land. Our results show a small but consistent yield advantage of the reduced-tillering trait in the most water-limited environments both under current and likely future conditions. Our climate scenarios show that whilst elevated [CO2 ] (e[CO2 ]) alone might limit the area where the reduced-tillering trait is advantageous, the most likely climate scenario of e[CO2 ] combined with increased temperature and reduced rainfall consistently increased the area where restricted tillering has an advantage. Whilst long-term average yield advantages were small (ranged from 31 to 51 kg ha-1  year-1 ), across large dryland areas the value is large (potential cost-benefits ranged from Australian dollar 23 to 60 MIL/year). It seems therefore worthwhile to further explore this reduced-tillering trait in relation to a range of different environments and climates, because its benefits are likely to grow in future dry environments where wheat is grown around the world.


Asunto(s)
Cambio Climático , Triticum , Australia , Fenotipo
2.
J Exp Bot ; 70(9): 2535-2548, 2019 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-30918963

RESUMEN

Early vigour, or faster early leaf area development, has been considered an important trait for rainfed wheat in dryland regions such as Australia. However, early vigour is a genetically complex trait, and results from field experiments have been highly variable. Whether early vigour can lead to improved water use efficiency and crop yields is strongly dependent on climate and management conditions across the entire growing season. Here, we present a modelling framework for simulating the impact of early vigour on wheat growth and yield at eight sites representing the major climate types in Australia. On a typical soil with plant available water capacity (PAWC) of 147 mm, simulated yield increase with early vigour associated with larger seed size was on average 4% higher compared with normal vigour wheat. Early vigour through selection of doubled early leaf sizes could increase yield by 16%. Increase in yield was mainly from increase in biomass and grain number, and was reduced at sites with seasonal rainfall plus initial soil water <300 mm. Opportunities exists for development of early vigour wheat varieties for wetter sites. Soil PAWC could play a significant role in delivering the benefit of early vigour and would require particular attention.


Asunto(s)
Hojas de la Planta/fisiología , Triticum/fisiología , Australia , Genotipo , Hojas de la Planta/genética , Triticum/genética
3.
Plants (Basel) ; 10(3)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652737

RESUMEN

Phenology algorithms in crop growth models have inevitable systematic errors and uncertainties. In this study, the phenology simulation algorithms in APSIM classical (APSIM 7.9) and APSIM next generation (APSIM-NG) were compared for spring barley models at high latitudes. Phenological data of twelve spring barley varieties were used for the 2014-2018 cropping seasons from northern Sweden and Finland. A factorial-based calibration approach provided within APSIM-NG was performed to calibrate both models. The models have different mechanisms to simulate days to anthesis. The calibration was performed separately for days to anthesis and physiological maturity, and evaluations for the calibrations were done with independent datasets. The calibration performance for both growth stages of APSIM-NG was better compared to APSIM 7.9. However, in the evaluation, APSIM-NG showed an inclination to overestimate days to physiological maturity. The differences between the models are possibly due to slower thermal time accumulation mechanism, with higher cardinal temperatures in APSIM-NG. For a robust phenology prediction at high latitudes with APSIM-NG, more research on the conception of thermal time computation and implementation is suggested.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda