Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Circ Res ; 132(2): 208-222, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36656967

RESUMEN

OBJECTIVE: ASPP1 (apoptosis stimulating of p53 protein 1) is critical in regulating cell apoptosis as a cofactor of p53 to promote its transcriptional activity in the nucleus. However, whether cytoplasmic ASPP1 affects p53 nuclear trafficking and its role in cardiac diseases remains unknown. This study aims to explore the mechanism by which ASPP1 modulates p53 nuclear trafficking and the subsequent contribution to cardiac ischemia/reperfusion (I/R) injury. METHODS AND RESULTS: The immunofluorescent staining showed that under normal condition ASPP1 and p53 colocalized in the cytoplasm of neonatal mouse ventricular cardiomyocytes, while they were both upregulated and translocated to the nuclei upon hypoxia/reoxygenation treatment. The nuclear translocation of ASPP1 and p53 was interdependent, as knockdown of either ASPP1 or p53 attenuated nuclear translocation of the other one. Inhibition of importin-ß1 resulted in the cytoplasmic sequestration of both p53 and ASPP1 in neonatal mouse ventricular cardiomyocytes with hypoxia/reoxygenation stimulation. Overexpression of ASPP1 potentiated, whereas knockdown of ASPP1 inhibited the expression of Bax (Bcl2-associated X), PUMA (p53 upregulated modulator of apoptosis), and Noxa, direct apoptosis-associated targets of p53. ASPP1 was also increased in the I/R myocardium. Cardiomyocyte-specific transgenic overexpression of ASPP1 aggravated I/R injury as indicated by increased infarct size and impaired cardiac function. Conversely, knockout of ASPP1 mitigated cardiac I/R injury. The same qualitative data were observed in neonatal mouse ventricular cardiomyocytes exposed to hypoxia/reoxygenation injury. Furthermore, inhibition of p53 significantly blunted the proapoptotic activity and detrimental effects of ASPP1 both in vitro and in vivo. CONCLUSIONS: Binding of ASPP1 to p53 triggers their nuclear cotranslocation via importin-ß1 that eventually exacerbates cardiac I/R injury. The findings imply that interfering the expression of ASPP1 or the interaction between ASPP1 and p53 to block their nuclear trafficking represents an important therapeutic strategy for cardiac I/R injury.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Daño por Reperfusión , Proteína p53 Supresora de Tumor , Animales , Ratones , Apoptosis/fisiología , Hipoxia/metabolismo , Isquemia/metabolismo , Carioferinas , Miocitos Cardíacos/metabolismo , Daño por Reperfusión/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas Adaptadoras Transductoras de Señales/genética
2.
BMC Bioinformatics ; 25(1): 262, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118026

RESUMEN

BACKGROUND: In complex agricultural environments, the presence of shadows, leaf debris, and uneven illumination can hinder the performance of leaf segmentation models for cucumber disease detection. This is further exacerbated by the imbalance in pixel ratios between background and lesion areas, which affects the accuracy of lesion extraction. RESULTS: An original image segmentation framework, the LS-ASPP model, which utilizes a two-stage Atrous Spatial Pyramid Pooling (ASPP) approach combined with adaptive loss to address these challenges has been proposed. The Leaf-ASPP stage employs attention modules and residual structures to capture multi-scale semantic information and enhance edge perception, allowing for precise extraction of leaf contours from complex backgrounds. In the Spot-ASPP stage, we adjust the dilation rate of ASPP and introduce a Convolutional Attention Block Module (CABM) to accurately segment lesion areas. CONCLUSIONS: The LS-ASPP model demonstrates improved performance in semantic segmentation accuracy under complex conditions, providing a robust solution for precise cucumber lesion segmentation. By focusing on challenging pixels and adapting to the specific requirements of agricultural image analysis, our framework has the potential to enhance disease detection accuracy and facilitate timely and effective crop management decisions.


Asunto(s)
Cucumis sativus , Procesamiento de Imagen Asistido por Computador , Enfermedades de las Plantas , Procesamiento de Imagen Asistido por Computador/métodos , Hojas de la Planta , Algoritmos
3.
Sensors (Basel) ; 24(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39275672

RESUMEN

Coal mining in the Loess Plateau can very easily generate ground cracks, and these cracks can immediately result in ventilation trouble under the mine shaft, runoff disturbance, and vegetation destruction. Advanced UAV (Unmanned Aerial Vehicle) high-resolution mapping and DL (Deep Learning) are introduced as the key methods to quickly delineate coal mining ground surface cracks for disaster prevention. Firstly, the dataset named the Ground Cracks of Coal Mining Area Unmanned Aerial Vehicle (GCCMA-UAV) is built, with a ground resolution of 3 cm, which is suitable to make a 1:500 thematic map of the ground crack. This GCCMA-UAV dataset includes 6280 images of ground cracks, and the size of the imagery is 256 × 256 pixels. Secondly, the DRA-UNet model is built effectively for coal mining ground surface crack delineation. This DRA-UNet model is an improved UNet DL model, which mainly includes the DAM (Dual Dttention Dechanism) module, the RN (residual network) module, and the ASPP (Atrous Spatial Pyramid Pooling) module. The DRA-UNet model shows the highest recall rate of 77.29% when the DRA-UNet was compared with other similar DL models, such as DeepLabV3+, SegNet, PSPNet, and so on. DRA-UNet also has other relatively reliable indicators; the precision rate is 84.92% and the F1 score is 78.87%. Finally, DRA-UNet is applied to delineate cracks on a DOM (Digital Orthophoto Map) of 3 km2 in the mining workface area, with a ground resolution of 3 cm. There were 4903 cracks that were delineated from the DOM in the Huojitu Coal Mine Shaft. This DRA-UNet model effectively improves the efficiency of crack delineation.

4.
J Cell Mol Med ; 27(5): 659-671, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36752127

RESUMEN

Abnormal energy metabolism is one of the characteristics of tumours. In the last few years, more and more attention is being paid to the role and regulation of tumour aerobic glycolysis. Cancer cells display enhanced aerobic glycolysis, also known as the Warburg effect, whereby tumour cells absorb glucose to produce a large amount of lactic acid and energy under aerobic conditions to favour tumour proliferation and metastasis. In this study, we report that the haploinsufficient tumour suppressor ASPP2, can inhibit HCC growth and stemness characteristics by regulating the Warburg effect through the WNT/ß-catenin pathway. we performed glucose uptake, lactate production, pyruvate production, ECAR and OCR assays to verify ASPP2 can inhibit glycolysis in HCC cells. The expression of ASPP2 and HK2 was significantly inversely correlated in 80 HCC tissues. Our study reveals downregulation of ASPP2 can promote the aerobic glycolysis metabolism pathway, increasing HCC proliferation, glycolysis metabolism, stemness and drug resistance. This ASPP2-induced inhibition of glycolysis metabolism depends on the WNT/ß-catenin pathway. ASPP2-regulated Warburg effect is associated with tumour progression and provides prognostic value. and suggest that may be promising as a new therapeutic strategy in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Glucólisis/genética , Neoplasias Hepáticas/patología , Vía de Señalización Wnt/genética , Proteínas Reguladoras de la Apoptosis
5.
J Gen Virol ; 104(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37750869

RESUMEN

Hepatitis C virus (HCV) infects millions of people worldwide and is a leading cause of liver disease. Despite recent advances in antiviral therapies, viral resistance can limit drug efficacy and understanding the mechanisms that confer viral escape is important. We employ an unbiased interactome analysis to discover host binding partners of the HCV non-structural protein 5A (NS5A), a key player in viral replication and assembly. We identify ASPP2, apoptosis-stimulating protein of p53, as a new host co-factor that binds NS5A via its SH3 domain. Importantly, silencing ASPP2 reduces viral replication and spread. Our study uncovers a previously unknown role for ASPP2 to potentiate HCV RNA replication.


Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Hepacivirus/genética , Dominios Homologos src , Replicación Viral , Proteínas no Estructurales Virales/metabolismo , Dominios Proteicos
6.
Multimed Syst ; : 1-14, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37360154

RESUMEN

The coronavirus disease 2019, initially named 2019-nCOV (COVID-19) has been declared a global pandemic by the World Health Organization in March 2020. Because of the growing number of COVID patients, the world's health infrastructure has collapsed, and computer-aided diagnosis has become a necessity. Most of the models proposed for the COVID-19 detection in chest X-rays do image-level analysis. These models do not identify the infected region in the images for an accurate and precise diagnosis. The lesion segmentation will help the medical experts to identify the infected region in the lungs. Therefore, in this paper, a UNet-based encoder-decoder architecture is proposed for the COVID-19 lesion segmentation in chest X-rays. To improve performance, the proposed model employs an attention mechanism and a convolution-based atrous spatial pyramid pooling module. The proposed model obtained 0.8325 and 0.7132 values of the dice similarity coefficient and jaccard index, respectively, and outperformed the state-of-the-art UNet model. An ablation study has been performed to highlight the contribution of the attention mechanism and small dilation rates in the atrous spatial pyramid pooling module.

7.
J Cell Sci ; 133(22)2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33093242

RESUMEN

Cell polarity is essential for various asymmetric cellular events, and the partitioning defective (PAR) protein PAR3 (encoded by PARD3 in mammals) plays a unique role as a cellular landmark to establish polarity. In epithelial cells, PAR3 localizes at the subapical border, such as the tight junction in vertebrates, and functions as an apical determinant. Although we know a great deal about the regulators of PAR3 localization, how PAR3 is concentrated and localized to a specific membrane domain remains an important question to be clarified. In this study, we demonstrate that ASPP2 (also known as TP53BP2), which controls PAR3 localization, links PAR3 and protein phosphatase 1 (PP1). The ASPP2-PP1 complex dephosphorylates a novel phosphorylation site, Ser852, of PAR3. Furthermore, Ser852- or Ser889-unphosphorylatable PAR3 mutants form protein clusters, and ectopically localize to the lateral membrane. Concomitance of clustering and ectopic localization suggests that PAR3 localization is a consequence of local clustering. We also demonstrate that unphosphorylatable forms of PAR3 exhibited a low molecular turnover and failed to coordinate rapid reconstruction of the tight junction, supporting that both the phosphorylated and dephosphorylated states are essential for the functional integrity of PAR3.


Asunto(s)
Polaridad Celular , Proteína Quinasa C , Animales , Proteínas de Ciclo Celular/metabolismo , Análisis por Conglomerados , Fosforilación , Proteína Quinasa C/metabolismo , Uniones Estrechas/metabolismo
8.
Biochem Biophys Res Commun ; 610: 61-69, 2022 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-35436632

RESUMEN

BACKGROUND & AIM: P53 Apoptosis Stimulating Protein 2 (ASPP2) is confirmed to participate in cellular activities including apoptosis, proliferation, autophagy, injury and so on. However, the role of ASPP2 in Hepatitis B virus (HBV) infection has not been reported in detail. The study explored the role of ASPP2 in HBV induced chronic liver damage. METHODS: Transcriptome profiling of ASPP2-konckdown mouse liver were analyzed by RNA-sequencing. HBV-ASPP2-knockdown mice was the hybrid offspring of HBV transgenic mice and ASPP2 knockdown mice. Liver tissues were taken for the experiments such as western Blot (WB), PCR, Hematoxylin and Eosin (HE), Immunohistochemistry and high throughput sequencing of transcriptome. RESULTS: Pathological and transcriptomic analysis of liver tissue from ASPP2 knockdown vs con mice showed that after ASPP2 knockdown, the pathological changes in the liver tissue of mice were not significant, but transcriptomics showed obvious changes in immune system process, and response to stimulus, metabolism, Human Diseases and other directions etc. In the HBV-ASPP2-knockdown mice, liver tissue HE staining found less cell swelling and necrosis foci; F4/80 and MPO staining showed less inflammatory cell infiltration; serum ALT and AST decreased than the HBV-ASPP2-con mice. Transcriptome results showed significantly changed in HBV-ASPP2-knockdown mice including immune system process, inflammatory response, and innate immune response etc. Further comparison of the two transcriptomes yielded 9 identical pathways related to inflammatory and cell injury. The PPAR pathway was verified, and found that the increase of PPARγ caused by the reduction of ASPP2 is likely to be the reason for the reduction of HBV-related liver injury. The expression of PPARγ was then analyzed by transcriptome and PCR, it was found that in the absence of HBV, ASPP2 knockdown resulted in a mild decrease in PPARγ, and in the presence of HBV infection, ASPP2 knockdown resulted in a marked increase in PPARγ.In addition, this study found that high expression of ASPP2 had opposite effects on HCC (HBV-none) and HCC (HBV-yes). CONCLUSION: This study demonstrated that reduction of ASPP2 reduces HBV-induced hepatocyte damage during chronic HBV infection. This phenomenon is related to the different regulation of PPARγ by ASPP2 in the presence or absence of HBV stimulation.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B , Neoplasias Hepáticas , Proteínas Supresoras de Tumor , Animales , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/virología , Modelos Animales de Enfermedad , Hepatitis B/complicaciones , Hepatitis B/genética , Virus de la Hepatitis B , Hígado/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Ratones , PPAR gamma/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
9.
BMC Cancer ; 22(1): 725, 2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35780096

RESUMEN

BACKGROUND: Metastatic soft tissue sarcoma (STS) are a heterogeneous group of malignancies which are not curable with chemotherapy alone. Therefore, understanding the molecular mechanisms of sarcomagenesis and therapy resistance remains a critical clinical need. ASPP2 is a tumor suppressor, that functions through both p53-dependent and p53-independent mechanisms. We recently described a dominant-negative ASPP2 isoform (ASPP2κ), that is overexpressed in human leukemias to promote therapy resistance. However, ASPP2κ  has never been studied in STS.  MATERIALS AND METHODS: Expression of ASPP2κ was quantified in human rhabdomyosarcoma tumors using immunohistochemistry and qRT-PCR from formalin-fixed paraffin-embedded (FFPE) and snap-frozen tissue. To study the functional role of ASPP2κ in rhabdomyosarcoma, isogenic cell lines were generated by lentiviral transduction with short RNA hairpins to silence ASPP2κ expression. These engineered cell lines were used to assess the consequences of ASPP2κ silencing on cellular proliferation, migration and sensitivity to damage-induced apoptosis. Statistical analyses were performed using Student's t-test and 2-way ANOVA. RESULTS: We found elevated ASPP2κ mRNA in different soft tissue sarcoma cell lines, representing five different sarcoma sub-entities. We found that ASSP2κ mRNA expression levels were induced in these cell lines by cell-stress. Importantly, we found that the median ASPP2κ expression level was higher in human rhabdomyosarcoma in comparison to a pool of tumor-free tissue. Moreover, ASPP2κ levels were elevated in patient tumor samples versus adjacent tumor-free tissue within individual patients. Using isogenic cell line models with silenced ASPP2κ expression, we found that suppression of ASPP2κ enhanced chemotherapy-induced apoptosis and attenuated cellular proliferation. CONCLUSION: Detection of oncogenic ASPP2κ in human sarcoma provides new insights into sarcoma tumor biology. Our data supports the notion that ASPP2κ promotes sarcomagenesis and resistance to therapy. These observations provide the rationale for further evaluation of ASPP2κ as an oncogenic driver as well as a prognostic tool and potential therapeutic target in STS.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Carcinogénesis , Rabdomiosarcoma , Sarcoma , Neoplasias de los Tejidos Blandos , Empalme Alternativo , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/fisiología , Humanos , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo , Rabdomiosarcoma/genética , Rabdomiosarcoma/metabolismo , Sarcoma/genética , Sarcoma/metabolismo , Neoplasias de los Tejidos Blandos/genética , Neoplasias de los Tejidos Blandos/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
10.
J Cell Mol Med ; 25(14): 6899-6908, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34085409

RESUMEN

Hepatitis B virus (HBV) is a kind of virus with the capability to induce autophagy, thereby facilitating its replication. Reducing hepatocyte autophagy is proved to be a useful way to inhibit HBV replication. Herein, we reported that p53-binding protein 2 (apoptosis-stimulating protein of p53-2, ASPP2) could attenuate HBV-induced hepatocyte autophagy in a p53-independent manner. Mechanistically, overexpressed ASPP2 binds to HSF1 in cytoplasm of HBV-infected cells, which prevents the translocation of HSF1 to nuclei, thereby inhibiting the transactivation of Atg7. By regulating the transcription of Atg7, ASPP2 reduces hepatocyte autophagy, thereby inhibiting HBV replication. Therefore, ASPP2 is a key regulator of cell autophagy, and overexpression of ASPP2 could be a novel method to inhibit HBV replication in hepatocytes.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 7 Relacionada con la Autofagia/metabolismo , Núcleo Celular/metabolismo , Factores de Transcripción del Choque Térmico/metabolismo , Hepatitis B/metabolismo , Replicación Viral , Transporte Activo de Núcleo Celular , Proteínas Reguladoras de la Apoptosis/genética , Autofagia , Células Hep G2 , Hepatitis B/virología , Virus de la Hepatitis B/patogenicidad , Virus de la Hepatitis B/fisiología , Humanos
11.
FASEB J ; 34(1): 525-539, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914679

RESUMEN

Whereas much is known about the genes regulated by ΔNp63α in keratinocytes, how ΔNp63α is regulated is less clear. During studies with the hydroxylase, factor inhibiting hypoxia-inducible factor 1 (FIH-1), we observed increases in epidermal ΔNp63α expression along with proliferative capacity in a conditional FIH-1 transgenic mouse. Conversely, loss of FIH-1 in vivo and in vitro attenuated ΔNp63α expression. To elucidate the FIH-1/p63 relationship, BioID proteomics assays identified FIH-1 binding partners that had the potential to regulate p63 expression. FIH-1 interacts with two previously unknown partners, Plectin1 and signal transducer and activator of transcription 1 (STAT1) leading to the regulation of ΔNp63α expression. Two known interactors of FIH-1, apoptosis-stimulating of P53 protein 2 (ASPP2) and histone deacetylase 1 (HDAC1), were also identified. Knockdown of ASPP2 upregulated ΔNp63α and reversed the decrease in ΔNp63α by FIH-1 depletion. Additionally, FIH-1 regulates growth arrest and DNA damage-45 alpha (GADD45α), a negative regulator of ΔNp63α by interacting with HDAC1. GADD45α knockdown rescued reduction in ΔNp63α by FIH-1 depletion. Collectively, our data reveal that FIH-1 positively regulates ΔNp63α in keratinocytes via variety of signaling partners: (a) Plectin1/STAT1, (b) ASPP2, and (c) HDAC1/GADD45α signaling pathways.


Asunto(s)
Proteínas Portadoras/metabolismo , Proliferación Celular , Células Epiteliales/citología , Queratinocitos/citología , Proteínas de la Membrana/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteoma/metabolismo , Proteínas Represoras/metabolismo , Animales , Células Cultivadas , Células Epiteliales/metabolismo , Humanos , Queratinocitos/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Oxigenasas de Función Mixta/genética , Proteoma/análisis , Proteínas Represoras/genética
12.
Histochem Cell Biol ; 154(2): 197-213, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32266459

RESUMEN

Apoptosis-stimulating p53 protein 2 (ASPP2) is an apoptosis inducer that acts via binding with p53 and epithelial polarity molecule PAR3. Lipolysis-stimulated lipoprotein receptor (LSR) is an important molecule at tricellular contacts, and loss of LSR promotes cell migration and invasion via Yes-associated protein (YAP) in human endometrial cancer cells. In the present study, to find how ASPP2 suppression promotes malignancy in human endometrial cancer, we investigated its mechanisms including the relationship with LSR. In endometriosis and endometrial cancers (G1 and G2), ASPP2 was observed as well as PAR3 and LSR in the subapical region. ASPP2 decreased in G3 endometrial cancer compared to G1. In human endometrial cancer cell line Sawano, ASPP2 was colocalized with LSR and tricellulin at tricellular contacts and binding to PAR3, LSR, and tricellulin in the confluent state. ASPP2 suppression promoted cell migration and invasion, decreased LSR expression, and induced expression of phosphorylated YAP, claudin-1, -4, and -7 as effectively as the loss of LSR. Knockdown of YAP prevented the upregulation of pYAP, cell migration and invasion induced by the ASPP2 suppression. Treatment with a specific antibody against ASPP2 downregulated ASPP2 and LSR, affected F-actin at tricellular contacts, upregulated expression of pYAP and claudin-1, and induced cell migration and invasion via YAP. In normal human endometrial epithelial cells, ASPP2 was in part colocalized with LSR at tricellular contacts and knockdown of ASPP2 or LSR induced expression of claudin-1 and claudin-4. ASPP2 suppression promoted cell invasion and migration via LSR and YAP in human endometrial cancer cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Neoplasias Endometriales/metabolismo , Receptores de Lipoproteína/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Movimiento Celular , Células Cultivadas , Neoplasias Endometriales/patología , Femenino , Humanos , Inmunohistoquímica , Receptores de Lipoproteína/genética , Factores de Transcripción/genética , Proteínas Señalizadoras YAP
13.
Bull Entomol Res ; 110(2): 177-184, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31559929

RESUMEN

p53, DNA damage regulated gene (PDRG) and apoptosis-stimulating p53 protein 2 (ASPP2) are p53-related genes which can promote apoptosis. The full-length cDNA sequence of the Px-pdrg and Px-aspp2 genes were characterized and their mRNA expression dynamics under heat stress were studied in diamondback moth (DBM) Plutella xylostella collected from Fuzhou, China. The full-length cDNA of Px-pdrg and Px-aspp2 spans 721 and 4201 bp, containing 395 and 3216 bp of the open reading frame, which encode a putative protein comprising 130 and 1072 amino acids with a calculated molecular weight of 14.58 and 118.91 kDa, respectively. As compared to 25°C, both Px-pdrg and Px-aspp2 were upregulated in chlorpyrifos-resistant (Rc) and -susceptible (Sm) strains of DBM adults and pupae under heat stress. In addition, Rc DBM showed a significantly higher expression level of Px-pdrg and Px-aspp2 in contrast to Sm DBM. The results indicate that high temperature can significantly promote apoptosis process, especially in Rc-DBM. Significant fitness cost in Rc-DBM might be associated with drastically higher transcript abundance of Px-pdrg and Px-aspp2 under the heat stress.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al ADN/metabolismo , Respuesta al Choque Térmico , Resistencia a los Insecticidas/genética , Mariposas Nocturnas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas de Unión al ADN/genética , Aptitud Genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Mariposas Nocturnas/genética , Análisis de Secuencia de ADN
14.
Proteins ; 87(10): 837-849, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31134671

RESUMEN

Half of the world population is infected by the Gram-negative bacterium Helicobacter pylori (H. pylori). It colonizes in the stomach and is associated with severe gastric pathologies including gastric cancer and peptic ulceration. The most virulent factor of H. pylori is the cytotoxin-associated gene A (CagA) that is injected into the host cell. CagA interacts with several host proteins and alters their function, thereby causing several diseases. The most well-known target of CagA is the tumor suppressor protein ASPP2. The subdomain I at the N-terminus of CagA interacts with the proline-rich motif of ASPP2. Here, in this study, we carried out alanine scanning mutagenesis and an extensive molecular dynamics simulation summing up to 3.8 µs to find out hot spot residues and discovered some new protein-protein interaction (PPI)-modulating molecules. Our findings are in line with previous biochemical studies and further suggested new residues that are crucial for binding. The alanine scanning showed that mutation of Y207 and T211 residues to alanine decreased the binding affinity. Likewise, dynamics simulation and molecular mechanics with generalized Born surface area (MMGBSA) analysis also showed the importance of these two residues at the interface. A four-feature pharmacophore model was developed based on these two residues, and top 10 molecules were filtered from ZINC, NCI, and ChEMBL databases. The good binding affinity of the CHEMBL17319 and CHEMBL1183979 molecules shows the reliability of our adopted protocol for binding hot spot residues. We believe that our study provides a new insight for using CagA as the therapeutic target for gastric cancer treatment and provides a platform for a future experimental study.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Descubrimiento de Drogas , Mutación , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Proteínas Supresoras de Tumor/metabolismo , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética
15.
Biochem Biophys Res Commun ; 508(3): 769-774, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30528232

RESUMEN

Apoptosis stimulated protein of p53-2 (ASPP2) induces the transcription of p53-targeted genes to stimulates its pro-apoptosis function. The poor chemotherapeutic sensitivity is associated with the decreased ASPP2 expression in many human cancers. Here, multiple genes real-time RT-PCR array and western blotting analysis show that ASPP2 suppress the expression of X-linked inhibitor of apoptosis protein (XIAP), determinant of chemoresistance in cancer, in hepatocellular carcinoma (HCC) in a p53-independent manner. Further experiments with ASPP2-rAd and ASPP2-Lv confirmed that ASPP2 enhanced sensitivity of sorafenib to HCC via suppressing XIAP expression. XIAP mainly found on the cytoplasm and perinuclear areas of ASPP2 over-expressed HepG2 cells, while both cytoplasm and nucleus in ASPP2 shut down HepG2 cells. The association of poor sensitivity of sorafenib and XIAP expression was also found both in ASPP2 shut down and overexpress mice, where liver tissue with decreased or increased ASPP2 displayed less or more apoptosis, respectively. Finally, ASPP2 and XIAP expression analyzed in 43 hepatocellular carcinoma tumors and 44 adjacent normal tissues from 38 hepatocellular carcinoma patients for fully understand their expression within HCC patients. Compared with the tumor tissues, ASPP2 mRNA levels were increased, and XIAP levels decreased in the adjacent normal tissues. Taken together, XIAP suppressed ASPP2 increased tumor sensitivity to chemotherapy in a p53-independent manner, which was associated with chemotherapy resistance, suggesting that p53 activation and XIAP suppression were two independent ways that ASPP2 enhance the sensitivity of chemotherapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Proteínas Reguladoras de la Apoptosis/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Regulación hacia Abajo , Neoplasias Hepáticas/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Carcinoma Hepatocelular/patología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Ratones Endogámicos BALB C , Sorafenib/farmacología , Sorafenib/uso terapéutico , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo
16.
Cell Physiol Biochem ; 46(3): 999-1008, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29669316

RESUMEN

BACKGROUND/AIMS: Lung cancer is one of the most common malignancies in the world. Apoptosis-stimulating protein of p53 (ASPP2), a tumorigenesis related protein, plays a critical role in the initiation and development of various types of cancers. However, the effect of ASPP2 on lung cancer remains unknown. The purpose of this study aims to investigate the mechanism of ASPP2 regulated by miR-21 in lung cancer in vitro and in vivo. METHODS: In the study, migration and invasion assays, apoptosis assay, caspase activity assay, TUNEL staining, real time PCR and western blot were used to investigate the mechanism of ASPP2 regulated by miR-21 in lung cancer in vitro and in vivo. RESULTS: We demonstrated that the miR-21 inhibitor induced apoptosis through inhibiting the PI3K/Akt/NF-κB signaling pathway in non-small cell lung carcinoma (NSCLC). Moreover, ASPP2 was directly targeted by miR-21 in NSCLC cells. Down-regulation of miR-21 suppressed cell migration and invasion, as well as the EMT signaling pathway in NSCLC cells. Furthermore, the miR-21 inhibitor induced cell apoptosis via the caspase dependent pathway in NSCLC cells. The miR-21 inhibitor enhanced caspase-3, 8, 9 activity in NSCLC cells. In addition, the caspase inhibitor significantly reduced the apoptosis induced by the miR-21 inhibitor in NSCLC cells. CONCLUSIONS: Our results revealed that the miR-21 inhibitor could induce apoptosis through inhibiting the PI3K/Akt/NF-κB signaling pathway in human NSCLC cells, and might serve as a therapeutic strategy to treat NSCLC.


Asunto(s)
Apoptosis/genética , MicroARNs/metabolismo , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células A549 , Animales , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Caspasas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Transducción de Señal
17.
Dig Dis Sci ; 63(1): 146-154, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29196956

RESUMEN

BACKGROUND: Apoptosis-stimulating protein of p53-2 (ASPP2) is a damage-inducible P53-binding protein that enhances damage-induced apoptosis. Fibrosis is a wound-healing response, and hepatic stellate cells (HSCs) are key players in liver fibrogenesis. However, little is known about the relationship between ASPP2 and hepatic fibrosis. AIMS: We investigated the effects of ASPP2 overexpression in HSCs and the role of ASPP2 in mouse liver fibrogenesis. METHODS: Human HSCs (LX-2 cells) were pre-incubated with GFP adenovirus (Ad) or ASPP2 adenovirus (AdASPP2) for 24 h and then treated with or without TGF-ß1. ASPP2+/- and ASPP2+/+ Balb/c mice were used to examine the effects of ASPP2 on liver fibrosis in vivo. ASPP2+/+ Balb/c mice were generated by injecting AdASPP2 into the tail vein of ASPP2 WT Balb/c mice; all mice received intraperitoneal injections of carbon tetrachloride. RESULTS: In this study, ASPP2 was found to markedly inhibit TGF-ß1-induced fibrogenic activation of LX-2 cells. Further experiments using an autophagic flux assay confirmed that ASPP2 reduced the fibrogenic activation of LX-2 cells by inhibiting autophagy. Moreover, we found that ASPP2 overexpression attenuated the anti-apoptotic effects of TGF-ß1 in LX-2 cells. The extent of liver fibrosis was markedly reduced in ASPP2+/+ mouse liver tissue compared with control mice; however, in ASPP2+/- mice, hepatic collagen deposition was significantly increased. CONCLUSION: These results suggest that TGF-ß1-induced autophagy is required for the fibrogenic response in LX-2 cells and that ASPP2 may both inhibit TGF-ß1-induced autophagy and decrease liver fibrosis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/efectos de los fármacos , Células Estrelladas Hepáticas/efectos de los fármacos , Factor de Crecimiento Transformador beta1/farmacología , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Intoxicación por Tetracloruro de Carbono , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Humanos , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Ratones , Ratones Endogámicos BALB C , Proteínas Supresoras de Tumor/genética
18.
J Cell Biochem ; 118(9): 2645-2653, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28012196

RESUMEN

Central nervous system lymphoma (CNSL) remains a diagnostical and therapeutical challenge. MiRNAs post-transcriptionally regulate expression of targeted mRNAs through binding to their 3' UTR to inhibit their translation or promote their degradation. Oncoprotein inhibitory member of the ASPP family (iASPP), a key inhibitor of tumor suppressor p53, has been reported to play oncogenic role in cancers. Our present study was aimed to determine whether the miR-184/iASPP axis is involved in the proliferation and invasion of CNSL. A reduced level of miR-184 was observed in CNSL tissues. Exogenous miR-184 inhibited cell survival and invasion, as well as the tumor volumes, while miR-184 inhibition could reverse this process. The RNA and protein levels of iASPP were significantly inhibited by miR-184, and the 3' UTR of iASPP was shown to be a target of miR-184. The expression of iASPP was up-regulated in CNSL tissues, compared to that of the normal brain tissues. The inhibition of iASPP by shRNA iASPP significantly repressed CNSL cells' proliferation and invasion, and reduced the volume of the tumor. Besides, iASPP overexpression could partly restore the suppressive effect of miR-184 on CNSL cell proliferation and invasive capability. We also revealed that miR-184/iASPP axis regulated the proliferation and invasion via PI3K/Akt signaling pathway, which presents a novel potential therapy for intervention of CNSL. Taken together, our findings revealed the detailed role of the miR-184/iASPP axis in CNSL and this axis might modulate the proliferation and invasion of CNSL via regulating the PI3K/Akt signaling pathway. J. Cell. Biochem. 118: 2645-2653, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Regiones no Traducidas 3' , Proliferación Celular , Neoplasias del Sistema Nervioso Central/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Linfoma/metabolismo , MicroARNs/metabolismo , Proteínas de Neoplasias/metabolismo , ARN Neoplásico/metabolismo , Proteínas Represoras/metabolismo , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Linfoma/genética , Linfoma/patología , Masculino , MicroARNs/genética , Invasividad Neoplásica , Proteínas de Neoplasias/genética , ARN Neoplásico/genética , Proteínas Represoras/genética , Transducción de Señal/genética , Células Tumorales Cultivadas
19.
Int J Cancer ; 141(7): 1422-1433, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28656647

RESUMEN

Inactivation of p53 has been shown to correlate with drug resistance in tumors. However, in clear cell renal cell carcinoma (ccRCC), p53 is rarely mutated, yet the tumors remain highly insensitive to the conventional chemotherapeutic drugs. The underlying mechanisms responsible for the non-genetic p53 inactivation remain obscure. Here, we report, for the first time, that Apoptosis Stimulating of P53 Protein 1 (ASPP1) was remarkably downregulated at both mRNA (about 3.9-fold) and protein (about 4.9-fold) levels in ccRCC human specimens in comparison with the paired normal controls. In addition, lower ASPP1 was closely related to the higher grade of tumors and shorter life expectancy of ccRCC patients, both with p < 0.001. We also find that CpG island hypermethylation at promoter region contributed to the suppression of ASPP1 expression in ccRCC that contained relatively low levels of ASPP1. Further functional studies demonstrated that forced expression ASPP1 not only significantly inhibited the growth rate of ccRCC, but also promoted sensitivity of ccRCC to the conventional chemotherapeutic drug 5-fluorouracil (5-FU)-induced apoptosis. Moreover, ASPP1 expression was accompanied with the apoptosis-prone alterations of p53 targets expression and p53 target PIG3 luciferase reporter activation. In contrast, ASPP1 knockdown promoted cell growth and prevent 5-FU-induced p53 activation and apoptosis. In conclusion, our results suggest that ASPP1 silencing is one of dominate mechanisms in inhibiting wild type p53 in ccRCC. ASPP1, therefore, may be potentially used as a promising biomarker for prognosis and therapeutic intervention in ccRCC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/metabolismo , Islas de CpG , Resistencia a Antineoplásicos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Antimetabolitos Antineoplásicos/farmacología , Apoptosis , Proteínas Reguladoras de la Apoptosis/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/mortalidad , Línea Celular Tumoral , Metilación de ADN , Regulación hacia Abajo , Epigénesis Genética , Femenino , Fluorouracilo/farmacología , Silenciador del Gen , Genes p53 , Humanos , Riñón/metabolismo , Neoplasias Renales/genética , Neoplasias Renales/mortalidad , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Proteínas de Neoplasias/genética , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Activación Transcripcional , Trasplante Heterólogo
20.
Biochem Biophys Res Commun ; 482(4): 1271-1277, 2017 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-27939881

RESUMEN

ASPP2 is a tumor suppressor that works, at least in part, through enhancing p53-dependent apoptosis. We now describe a new ASPP2 isoform, ΔN-ASPP2, generated from an internal transcription start site that encodes an N-terminally truncated protein missing a predicted 254 amino acids. ΔN-ASPP2 suppresses p53 target gene transactivation, promoter occupancy, and endogenous p53 target gene expression in response to DNA damage. Moreover, ΔN-ASPP2 promotes progression through the cell cycle, as well as resistance to genotoxic stress-induced growth inhibition and apoptosis. Additionally, we found that ΔN-ASPP2 expression is increased in human breast tumors as compared to adjacent normal breast tissue; in contrast, ASPP2 is suppressed in the majority of these breast tumors. Together, our results provide insight into how this new ASPP2 isoform may play a role in regulating the ASPP2-p53 axis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/química , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/química , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Clonación Molecular , Daño del ADN , Femenino , Humanos , Ratones , Dominios Proteicos , Activación Transcripcional , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda