Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Environ Res ; 252(Pt 4): 119086, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38723986

RESUMEN

Uncontrolled coal mining using non-scientific methods has presented a major threat to the quality of environment, particularly the water resources in eastern himalayan sub-region of India. Water bodies in the vicinity of mining areas are contaminated by acid mine drainage (AMD) that is released into streams and rivers. This study attempted to assess the impact of AMD, deciphering hydrogeochemical processes, seasonal fluctuations, and stable isotope features of water bodies flowing through and around coal mining areas. Self-organizing maps (SOMs) used to separate and categorize AMD, AMD-impacted and non-AMD impacted water from the different study locations for two sampling seasons revealed four clusters (C), with C1 and C2 impacted by AMD, C3 and C4 showing negligible to no impact of AMD. AMD impacted water was SO42- - Mg2+- Ca2+ hydrochemical type with sulphide oxidation and evaporation dominating water chemistry, followed by silicate weathering during both the sampling seasons. Water with negligible-to-no AMD-impact was Mg2+- Ca2+- SO42- to Ca2+ - HCO3- to mixed hydrochemical type with rock weathering and dissolution, followed by ion exchange as major factors controlling water chemistry during both the sampling seasons. Most of physicochemical parameters of C1 and C2 exceeded the prescribed limits, whereas in C3 and C4 water samples, parameters were found within the prescribed limits. Stable isotopes of hydrogen (δ2H) and oxygen (δ18O) during post-monsoon (PoM) varied between -41.04 ‰ and -29.98 ‰, and -6.60 ‰ to -3.94 ‰; and during pre-monsoon (PrM) varied between -58.18 ‰ and - 33.76 ‰ and -8.60 ‰ to -5.46 ‰. Deuterium excess (d-excess) ranged between 1.57 ‰ and 12.47 ‰ during PoM and 5.70 ‰ to 15.17 ‰ during PrM season. The stable isotopes analysis revealed that evaporation, mineral dissolution and mixing with rainwater are the key factors in study area.


Asunto(s)
Minas de Carbón , Monitoreo del Ambiente , Isótopos de Oxígeno , Estaciones del Año , India , Isótopos de Oxígeno/análisis , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Deuterio/análisis , Ríos/química
2.
Molecules ; 29(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39124926

RESUMEN

Acid mine drainage (AMD) is one of the main environmental problems associated with mining activity, whether the mine is operational or abandoned. In this work, several precipitates from this mine drainage generated by the oxidation of sulfide minerals, when exposed to weathering, were used as adsorbents. Such AMD precipitates from abandoned Portuguese mines (AGO, AGO-1, CF, and V9) were compared with two raw materials from Morocco (ClayMA and pyrophyllite) in terms of their efficiency in wastewater treatment. Different analytical techniques, such as XRD diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), N2 adsorption isotherms, and Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) were used to characterize these natural materials. The adsorption properties were studied by optimizing different experimental factors, such as type of adsorbent, adsorbent mass, and dye concentration by the Box-Behnken Design model, using methylene blue (MB) and crystal violet (CV) compounds as organic pollutants. The obtained kinetic data were examined using the pseudo-first and pseudo-second order equations, and the equilibrium adsorption data were studied using the Freundlich and Langmuir models. The adsorption behavior of the different adsorbents was perfectly fitted by the pseudo-second order kinetic model and the Langmuir isotherm. The most efficient adsorbent for both dyes was AGO-1 due to the presence of the cellulose molecules, with qm equal to 40.5 and 16.0 mg/g for CV and MB, respectively. This study confirms the possibility of employing AMD precipitates to adsorb organic pollutants in water, providing valuable information for developing future affordable solutions to reduce the wastes associated with mining activity.

3.
J Environ Manage ; 308: 114507, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35124315

RESUMEN

The treatment of acid mine drainage (AMD) is of paramount importance for environmental sustainability. A two-stage process involving AMD remediation and simultaneous lipid production represents a highly efficient approach with zero-waste generation. Alkaline (NaOH) treatment of AMD at pH 8.0, 10.0, and 12.0 had significantly reduced metal loads (copper (Cu), cobalt (Co), chromium (Cr), cadmium (Cd), nickel (Ni), and zinc (Zn)) compared to the acidic pH range (4.0 and 6.0). The concentration levels of sulfates (SO4 = 4520 mg/L), iron (Fe = 788 mg/L), aluminum (Al = 310 mg/L), and manganese (Mn = 19.4) were reduced to 2971 mg/L, 10.3 mg/L, 16.4 mg/L, and 1.3 mg/L, respectively at pH value 8.0. AMD with a pH value of 8.0 was later chosen as an ideal medium to favor the lipid accumulation by Chlorella vulgaris. Algal biomass was increasing to 5.5 g/L from 0.6 g/L of AMD-based medium within 15 days of cultivation. The FTIR and SEM-EDS studies revealed significant morphological changes in the microbial cell wall. The metals might positively impact lipid production in microalgae, where lipid yield achieved 0.18 g/g of glucose with lipid content of 0.35 g/g of biomass. The fatty acid profile presented 53.4% of saturated fatty acid content with a cetane value of 60.7. Thus, the efficiency of C. vulgaris was demonstrated with AMD treatment proving it to be a good candidate for bioenergy production.


Asunto(s)
Chlorella vulgaris , Metales Pesados , Contaminantes Químicos del Agua , Concentración de Iones de Hidrógeno , Lípidos , Minería , Contaminantes Químicos del Agua/análisis
4.
Molecules ; 27(11)2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35684545

RESUMEN

Tailing sand contains a large number of heavy metals and sulfides that are prone to forming acid mine drainage (AMD), which pollutes the surrounding surface environment and groundwater resources and damages the ecological environment. Microbially induced calcium carbonate precipitation (MICP) technology can biocement heavy metals and sulfides in tailing sand and prevent pollution via source control. In this study, through an unconfined compressive strength test, permeability test, and toxic leaching test (TCLP), the curing effect of MICP was investigated in the laboratory and the effect of grouting rounds on curing was also analyzed. In addition, the curing mechanism of MICP was studied by means of Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction spectroscopy (XRD), and scanning electron microscopy (SEM). The experimental results showed that MICP could induce calcium carbonate precipitation through relatively complex biochemical and physicochemical reactions to achieve the immobilization of heavy metals and sulfides and significantly reduce the impact of tailing sand on the surrounding environment.


Asunto(s)
Carbonato de Calcio , Arena , Carbonato de Calcio/química , Carbonatos/química , Precipitación Química , Hierro , Sulfuros/química
5.
Molecules ; 27(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35208975

RESUMEN

1H NMR and LC-MS, commonly used metabolomics analytical platforms, were used to annotate the metabolites found in potato (Solanum tuberosum L.) irrigated with four different treatments based on FA to AMD ratios, namely: control (0% AMD; tap water), 1:1 (50% AMD), 3:1 (75% AMD is 75% FA: AMD), and 100% AMD (untreated). The effects of stress on plants were illustrated by the primary metabolite shifts in the region from δH 0.0 to δH 4.0 and secondary metabolites peaks were prominent in the region ranging from δH 4.5 to δH 8.0. The 1:3 irrigation treatment enabled, in two potato cultivars, the production of significantly high concentrations of secondary metabolites due to the 75% FA: AMD content in the irrigation mixture, which induced stress. The findings suggested that 1:1 irrigation treatment induced production of lower amounts of secondary metabolites in all crops compared to crops irrigated with untreated acid mine drainage treatment and with other FA-treated AMD solutions.


Asunto(s)
Riego Agrícola , Ceniza del Carbón/farmacología , Minas de Carbón , Metabolómica , Solanum tuberosum/metabolismo , Solanum tuberosum/crecimiento & desarrollo
6.
J Environ Manage ; 291: 112708, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33971511

RESUMEN

Groundwater is the dominant source of freshwater in many countries around the globe, and the deterioration in its quality by contaminants originating from anthropogenic sources raises serious concern. In this study, a scenario where groundwater is contaminated by acid mine drainage (AMD) from mining activities and/or sewage was envisaged, and the performance of a direct contact membrane distillation (DCMD) system was investigated comprehensively for different compositions of the AMD- and sewage-impacted groundwater. Regardless of the composition, MD membrane achieved 98-100% removal of metals and bulk organics, while the removal of the selected micropollutants ranged between 80 and 100%. Effective retention of contaminants by the MD led to their accumulation over time, which affected the hydraulic performance of the MD membrane by reducing the permeate flux by 29-76%. When persulfate (PS)-mediated oxidation process was integrated with the DCMD, degradation of bulk organics (50-71%) and micropollutants (50-100%) by PS reduced their accumulation. Characterisation of the fouling layer revealed the occurrence of membrane scaling that was mainly due to the deposition of iron oxide or oxyhydroxide precipitates. For an identical composition of the AMD- and sewage-impacted groundwater, flux decline was 10% less in PS-assisted DCMD as compared to that in the standalone DCMD. However, this did not prevent the formation of iron oxide scales on MD membrane during the operation of PS-assisted DCMD. This study demonstrates the long-term performance of a standalone and PS-assisted DCMD operated in continuous-flow mode to treat AMD- and sewage-impacted groundwater for the first time.


Asunto(s)
Destilación , Agua Subterránea , Membranas Artificiales , Minería , Aguas del Alcantarillado
7.
Ecotoxicol Environ Saf ; 182: 109443, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31398782

RESUMEN

The continuous presence of toxic elements in the aquatic environments around mine tailings occurs due to bioleaching or chemical extraction promoted by the mining operations. Biogenic passivation treatment of tailings dams can be a new environment-friendly technique to inhibit the solubility of heavy metals. In spite of current bioleaching researches, we tried to minimize the mobility of the trace elements in the laboratory scale through the formation of a passivation layer in the presence of a mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. The X-ray diffraction (XRD) and scanning electron microscope (SEM) represented the jarosite generation as an inhibitory layer on the mineral surfaces of the tested materials. More detailed observations on electron probe micro-analyzer (EPMA) showed the co-precipitation of metals with the passivation layer. Thereby, the passivation layer demonstrates potential in elements immobilization which, in turn, can be optimized in the natural systems. Our working hypothesis was to exploit and optimize the formation of the passivation layer to maximize the immobilization of heavy metals (e.g., Cu, Cr). The optimization process of bioleaching experiments using indigenous bacteria caused a reduced solubility for Cu (from around 20% to 4.5%) and Cr (from around 30% to 10.6%) and the formation of 6.5 gr passivation layer. The analyses finally represented the high efficiency of the passivation technique to minimize metals bioleaching in comparison to earlier studies.


Asunto(s)
Metales Pesados/química , Minería , Sulfuros/química , Contaminantes Químicos del Agua/química , Acidithiobacillus , Acidithiobacillus thiooxidans , Bacterias , Biodegradación Ambiental , Compuestos Férricos , Metales Pesados/análisis , Minerales , Solubilidad , Sulfatos , Sulfuros/análisis , Contaminantes Químicos del Agua/análisis
8.
J Environ Manage ; 236: 499-509, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30771670

RESUMEN

In this study, the authors report a facile thermal activation of non-reactive cryptocrystalline magnesite and explore its application on the treatment of acid mine drainage (AMD). The primary aim was to optimize the calcination-water interface reactive conditions. Parameters evaluated include calcination temperature, calcination time, AMD-calcination temperature interface, and AMD-calcination duration interface. PHREEQC geochemical modelling was also applied to substantiate obtained results. The results indicated that the formation of MgO and CaO increase with an increase in calcination temperature and time. The optimum temperature and calcination time were observed to be 800 °C and 30 min in the furnace. The pH was observed to increase with an increase in calcination temperature and time but reached equilibrium at 800 °C and 30 min respectively. Geochemical modelling validated the formation of gypsum with attenuation in Ca ions and predicted the formation of MgSO4(aq). Metal species were observed to precipitate with an increase in pH. At 700 °C, Fe was completely removed, while Al, and Mn were completely removed from an aqueous system at 800 °C. This novel study invented the new calcination condition for non-reactive cryptocrystalline magnesite and proved its potential application in wastewater treatment. The calcination conditions were very short and therefore will save industries energy due to replacement of uneconomical and less environmental friendly pre-treatment options that lead to environmental degradation.


Asunto(s)
Minería , Contaminantes Químicos del Agua , Ácidos , Magnesio , Aguas Residuales
9.
J Environ Manage ; 183(Pt 3): 601-612, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27633144

RESUMEN

Acid mine drainage (AMD) impacted waters are a worldwide concern for the mining industry and countries dealing with this issue; both active and passive technologies are employed for the treatment of such waters. Mussel shell bioreactors (MSB) represent a passive technology that utilizes waste from the shellfish industry as a novel substrate. The aim of this study is to provide insight into the biogeochemical dynamics of a novel full scale MSB for AMD treatment. A combination of water quality data, targeted geochemical extractions, and metagenomic analyses were used to evaluate MSB performance. The MSB raised the effluent pH from 3.4 to 8.3 while removing up to ∼99% of the dissolved Al, and Fe and >90% Ni, Tl, and Zn. A geochemical gradient was observed progressing from oxidized to reduced conditions with depth. The redox conditions helped define the microbial consortium that consists of a specialized niche of organisms that influence elemental cycling (i.e. complex Fe and S cycling). MSB technology represents an economic and effective means of full scale, passive AMD treatment that is an attractive alternative for developing economies due to its low cost and ease of implementation.


Asunto(s)
Exoesqueleto/microbiología , Bacterias/metabolismo , Reactores Biológicos/microbiología , Metales/metabolismo , Azufre/metabolismo , Contaminantes Químicos del Agua/metabolismo , Ácidos/metabolismo , Animales , Bacterias/genética , Bivalvos , Concentración de Iones de Hidrógeno , Metales/análisis , Consorcios Microbianos , Minería , Análisis de Componente Principal , ARN Ribosómico 16S/genética , Azufre/análisis , Contaminantes Químicos del Agua/análisis
10.
Environ Manage ; 57(3): 711-21, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26467674

RESUMEN

Coal mining activities can have severe and long-term impacts on freshwater ecosystems. At the individual stream scale, these impacts have been well studied; however, few attempts have been made to determine the predictors of mine impacts at a regional scale. We investigated whether catchment-scale measures of mining impacts could be used to predict biological responses. We collated data from multiple studies and analyzed algae, benthic invertebrate, and fish community data from 186 stream sites, including un-mined streams, and those associated with 620 mines on the West Coast of the South Island, New Zealand. Algal, invertebrate, and fish richness responded to mine impacts and were significantly higher in un-mined compared to mine-impacted streams. Changes in community composition toward more acid- and metal-tolerant species were evident for algae and invertebrates, whereas changes in fish communities were significant and driven by a loss of nonmigratory native species. Consistent catchment-scale predictors of mining activities affecting biota included the time post mining (years), mining density (the number of mines upstream per catchment area), and mining intensity (tons of coal production per catchment area). Mining was associated with a decline in stream biodiversity irrespective of catchment size, and recovery was not evident until at least 30 years after mining activities have ceased. These catchment-scale predictors can provide managers and regulators with practical metrics to focus on management and remediation decisions.


Asunto(s)
Biodiversidad , Minas de Carbón , Monitoreo del Ambiente , Animales , Ecosistema , Peces , Predicción , Invertebrados , Nueva Zelanda , Plantas , Dinámica Poblacional , Ríos
11.
Aquat Toxicol ; 266: 106795, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38070394

RESUMEN

Acid mine water (AMD) is a global environmental problem caused by coal mining with the characteristics of low pH and high concentrations of metals and sulfates. It is a pertinent topic to seek both economical and environmentally friendly approaches to minimize the harmful effects of AMD on the environment. Insect larvae are considered a promising solution for pollution treatment. Chironomidae is the most tolerant family to contaminants in pools and its larvae have a strong capacity for metal accumulation from sediment. This paper aimed to evaluate the larvae of Propsilocerus akamusi, a dominant species in the chironomid community, as a new species for entomoremediation in AMD-polluted areas. We detected the toxic effects of AMD on P. akamusi larvae based on their survival and the trace metals bioaccumulation capabilities of P. akamusi larvae. Moreover, we analyzed the expression patterns of four stress-response genes, HSP70, Eno1, HbV, and Hb VII in P. akamusi larvae. Our results revealed that AMD exposure did not significantly affect the survival of the P. akamusi larvae and individuals exposed to some AMD gradients even exhibited higher survival. We also observed the significantly accumulated concentrations of Fe, Ni, and Zn as well as higher bioaccumulation factors (BAFs) for Ni and Zn in the P. akamusi larvae exposure to AMD. Induced expression of Eno1 and Hb VII may play important roles in the AMD tolerance of P. akamusi larvae. This study indicated the potential application of P. akamusi larvae in the metal bioremediation of AMD-polluted areas. STATEMENT OF ENVIRONMENTAL IMPLICATION: Acid mine drainage (AMD) is a global environmental problem related to coal mining activities. AMD pollution has become a long-term, worldwide issue for its interactive and complex stress factors. Bioremediation is an effective method to remove the metals of AMD from wastewater to prevent downstream pollution. However, the disadvantages of the slow growth rate, susceptibility to seasonal changes, difficult post-harvest management, and small biomass of hyperaccumulating plants greatly limit the usefulness of phytoremediation. Insect larvae may be useful candidate organisms to overcome these shortcomings and have been considered a promising pollution solution. Propsilocerus akamusi is a dominant species in the chironomid community and is distributed widely in many lakes of eastern Asia. This species has extraordinary abilities to resist various stresses. This research is the first time to our knowledge to evaluate the application of P. akamusi as a new species in entomoremediation in AMD-contaminated areas.


Asunto(s)
Chironomidae , Contaminantes Químicos del Agua , Humanos , Animales , Biodegradación Ambiental , Contaminantes Químicos del Agua/toxicidad , Metales/metabolismo , Larva , Lagos
12.
Materials (Basel) ; 17(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38893826

RESUMEN

Acid mine drainage (AMD) is an environmental issue linked with mining activities, causing the release of toxic water from mining areas. Polyethersulphone (PES) membranes are explored for AMD treatment, but their limited hydrophilicity hinders their performance. Chitosan enhances hydrophilicity, addressing this issue. However, the effectiveness depends on chitosan's degree of deacetylation (DD), determined during the deacetylation process for chitosan production. This study optimized the chitin deacetylation temperature, alkaline (NaOH) concentration, and reaction time, yielding the highest chitosan degree of deacetylation (DD) for PES/chitosan membrane applications. Prior research has shown that high DD chitosan enhances membrane antifouling and hydrophilicity, increasing contaminant rejection and permeate flux. Evaluation of the best deacetylation conditions in terms of temperature (80, 100, 120 °C), NaOH concentration (20, 40, 60 wt.%), and time (2, 4, 6 h) was performed. The highest chitosan DD obtained was 87.11% at 80 °C, 40 wt. %NaOH at 4 h of chitin deacetylation. The PES/0.75 chitosan membrane (87.11%DD) showed an increase in surface hydrophilicity (63.62° contact angle) as compared to the pristine PES membrane (72.83° contact angle). This was an indicated improvement in membrane performance. Thus, presumably leading to high contaminant rejection and permeate flux in the AMD treatment context, postulate to literature.

13.
Heliyon ; 10(4): e26590, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38420429

RESUMEN

The accumulation and uptake efficiency of heavy metals, including As, Mn, and Cu, in water hyacinth (Eichhornia crassipes (Mart.) Solms) grown in synthetic acidic wastewater supplemented with sodium phytate (SP) was examined. Three treatments were studied using synthetic acidic wastewater containing 0.25, 5.0, and 1.0 mg/L of As, Mn, and Cu, respectively, (SM + heavy metals) and having pH in the range of 4-6, which comprised of (1) control treatments using SM + heavy metals at pH 4, 5, 6 without SP, and treatments using SM + heavy metals at pH 4, 5, 6 with SP: Cu (2) in a 1:3 M ratio and (3) a 1:6 M ratio. The translocation factor (TF < 1) indicated that plants had a lower capacity to transport heavy metals from the roots to the stems. The shoots of water hyacinth exhibited the highest capacity to absorb and store As in the pH 4-treatment with SP (SP:Cu1:3 mol), whereas the roots showed the greatest capacity at pH 4 without SP. The roots and shoots of the water hyacinth showed the greatest capacity to take up and store Mn in the pH 5-treatment with a 1:3 M ratio of SP:Cu. The roots showed the greatest capacity to take up and store Cu in the pH 6-treatment, and the shoots showed the highest capability in the pH 5-treatment with 1:3 M ratio of SP:Cu. Moreover, analysis of the chemical forms revealed that As accumulated in the arsenate form, whereas Mn accumulated in the divalent form.

14.
Microorganisms ; 12(10)2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39458249

RESUMEN

Acid mine drainage (AMD) pollutes natural waters, but some impacted systems show natural attenuation. We sought to identify the biogeochemical mechanisms responsible for the natural attenuation of AMD. We hypothesized that biogenic sulfide-mediated iron reduction is one mechanism and tested this in an experimental model system. We found sulfate reduction occurred under acidic conditions and identified a suite of sulfate-reducing bacteria (SRB) belonging to the groups Desulfotomaculum, Desulfobacter, Desulfovibrio, and Desulfobulbus. Iron reduction was not detected in microcosms when iron-reducing bacteria or SRB were selectively inhibited. SRB also did not reduce iron enzymatically. Rather, the biogenic sulfide produced by SRB was found to be responsible for the reduction of iron at low pH. Addition of organic substrates and nutrients stimulated iron reduction and increased the pH. X-ray diffraction and an electron microprobe analysis revealed that the polycrystalline, black precipitate from SRB bioactive samples exhibited a greater diversity of iron chalcogenide minerals with reduced iron oxidation states, and minerals incorporating multiple metals compared to abiotic controls. The implication of this study is that iron reduction mediated by biogenic sulfide may be more significant than previously thought in acidic environments. This study not only describes an additional mechanism by which SRB attenuate AMD, which has practical implications for AMD-impacted sites, but also provides a link between the biogeochemical cycling of iron and sulfur.

15.
Environ Sci Pollut Res Int ; 31(43): 55490-55506, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39231842

RESUMEN

Stockpiles containing sulfide minerals are subject to oxidation reactions when exposed to atmospheric conditions, which can result in the formation of acid mine drainage (AMD). Reactive waste rock has limited re-use potential due to the contamination risk associated with the generated drainage water. The re-use of reactive waste rock could lead to a significant reduction in the volume of waste rock as it mitigates the environmental impact of mine waste deposition. Acid mine drainage generation rate depends on sulfide weathering kinetics which are controlled by many parameters such as the mineralogy and the particle size. Fine fractions of waste rock have higher specific surface areas and degree of liberation of sulfides, resulting in greater reactivity than the coarse fractions. The objective of this research was therefore to evaluate the potential of re-use by controlling particle size using the sieving method. Two different potentially acid-generating waste rocks were divided into six fractions and subjected to both static and kinetic tests. Prediction of the geochemical behavior using static test did not consider the liberation of the minerals, and the long-term prediction was therefore overestimated. Results of the kinetic columns showed there was less oxidation of the sulfide minerals in the coarse fractions than in the fine fractions. Additionally, the distribution of sulfidic minerals and neutralizing minerals with particle size is influencing the potential of the re-use of the reactive waste rock.


Asunto(s)
Minería , Tamaño de la Partícula , Minerales/química , Cinética
16.
J Contam Hydrol ; 261: 104290, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38176293

RESUMEN

Quantitative forecasts of acid mine drainage (AMD) production are important for remediation planning. Reactive transport simulations corresponding to a detailed sampling location at a covered legacy tailings impoundment in northern Ontario, Canada, were conducted to quantitatively assess the predominant hydrogeochemical reactions. The simulations span the period from the end of tailings deposition (circa 1970) to early 2020, 12 years after remediation by a five-layer composite cover. The conceptual model of uncovered tailings weathering and subsequent geochemistry of the covered tailings system was implemented in 1D using the multi-component reactive transport code MIN3P. Transient monthly infiltration, post-cover boundary condition changes, and a dynamic temperature regime were incorporated. The shrinking core model, including parallel O2(aq) and Fe3+ oxidation reactions for the waste rock in the cover and the underlying tailings, was implemented to simulate the oxidation of As-bearing pyrite, chalcopyrite, and sphalerite. Primary carbonate and aluminosilicate host minerals promoted acid-neutralization reactions. Precipitation of secondary phases and sorption/desorption of Cu, Zn, and arsenite were incorporated into the model. The overall agreement between key simulated and field-measured post-cover aqueous geochemical parameters suggests that the conceptual model captured the primary hydrogeochemical processes in the covered tailings. A lack of reliable data on initial tailings mineralogy and pre-cover hydrogeochemistry increased simulation uncertainty. Simulated reaction rates indicate that where intact, the cover decreased sulfide oxidation rates by both O2(aq) and Fe3+ and improved pore-water quality over time. Simulation results indicate that elevated concentrations of Zn and As are likely to persist in the tailings regardless of cover performance, whereas concentrations of Cu and Al are the parameters most sensitive to cover effectiveness.


Asunto(s)
Minerales , Sulfuros , Minerales/análisis , Oxidación-Reducción , Ontario
17.
J Hazard Mater ; 471: 134344, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38678706

RESUMEN

More information is needed to fully comprehend how acid mine drainage (AMD) affects the phototransformation of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in karst water and sewage-irrigated farmland soil with abundant carbonate rocks (CaCO3) due to increasing pollution of AMD formed from pyrite (FeS2). The results showed FeS2 accelerated the inactivation of ARB with an inactivation of 8.7 log. Notably, extracellular and intracellular ARGs and mobile genetic elements (MGEs) also experienced rapid degradation. Additionally, the pH of the solution buffered by CaCO3 significantly influenced the photo-inactivation of ARB. The Fe2+ in neutral solution was present in Fe(II) coordination with strong reducing potential and played a crucial role in generating •OH (7.0 µM), which caused severe damage to ARB, ARGs, and MGEs. The •OH induced by photo-Fenton of FeS2 posed pressure to ARB, promoting oxidative stress response and increasing generation of reactive oxygen species (ROS), ultimately damaging cell membranes, proteins and DNA. Moreover, FeS2 contributed to a decrease in MIC of ARB from 24 mg/L to 4 mg/L. These findings highlight the importance of AMD in influencing karst water and sewage-irrigated farmland soil ecosystems. They are also critical in advancing the utilization of FeS2 to inactivate pathogenic bacteria.


Asunto(s)
Carbonato de Calcio , Hierro , Minería , Sulfuros , Carbonato de Calcio/química , Hierro/química , Sulfuros/química , Secuencias Repetitivas Esparcidas , Farmacorresistencia Microbiana/genética , Bacterias/genética , Bacterias/efectos de los fármacos , Genes Bacterianos , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología
18.
mSystems ; 8(1): e0073622, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36507660

RESUMEN

Methylmercury (MeHg) is a notorious neurotoxin, and its production and degradation in the environment are mainly driven by microorganisms. A variety of microbial MeHg producers carrying the gene pair hgcAB and degraders carrying the merB gene have been separately reported in recent studies. However, surprisingly little attention has been paid to the simultaneous investigation of the diversities of microbial MeHg producers and degraders in a given habitat, and no studies have been performed to explore to what extent these two contrasting microbial groups correlate with MeHg accumulation in the habitat of interest. Here, we collected 86 acid mine drainage (AMD) sediments from an area spanning approximately 500,000 km2 in southern China and profiled the sediment-borne putative MeHg producers and degraders using genome-resolved metagenomics. 46 metagenome-assembled genomes (MAGs) containing hgcAB and 93 MAGs containing merB were obtained, including those from various taxa without previously known MeHg-metabolizing microorganisms. These diverse MeHg-metabolizing MAGs were formed largely via multiple independent horizontal gene transfer (HGT) events. The putative MeHg producers from Deltaproteobacteria and Firmicutes as well as MeHg degraders from Acidithiobacillia were closely correlated with MeHg accumulation in the sediments. Furthermore, these three taxa, in combination with two abiotic factors, explained over 60% of the variance in MeHg accumulation. Most of the members of these taxa were characterized by their metabolic potential for nitrogen fixation and copper tolerance. Overall, these findings improve our understanding of the ecology of MeHg-metabolizing microorganisms and likely have implications for the development of management strategies for the reduction of MeHg accumulation in the AMD sediments. IMPORTANCE Microorganisms are the main drivers of MeHg production and degradation in the environment. However, little attention has been paid to the simultaneous investigation of the diversities of microbial MeHg producers and degraders in a given habitat. We used genome-resolved metagenomics to reveal the vast phylogenetic and metabolic diversities of putative MeHg producers and degraders in AMD sediments. Our results show that the diversity of MeHg-metabolizing microorganisms (particularly MeHg degraders) in AMD sediments is much higher than was previously recognized. Via multiple linear regression analysis, we identified both microbial and abiotic factors affecting MeHg accumulation in AMD sediments. Despite their great diversity, only a few taxa of MeHg-metabolizing microorganisms were closely correlated with MeHg accumulation. This work underscores the importance of using genome-resolved metagenomics to survey MeHg-metabolizing microorganisms and provides a framework for the illumination of the microbial basis of MeHg accumulation via the characterization of physicochemical properties, MeHg-metabolizing microorganisms, and the correlations between them.


Asunto(s)
Compuestos de Metilmercurio , Compuestos de Metilmercurio/análisis , Bacterias/genética , Filogenia , Metagenoma , Firmicutes/genética
19.
Environ Microbiome ; 18(1): 61, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37464403

RESUMEN

BACKGROUND: Archaea of the order Thermoplasmatales are widely distributed in natural acidic areas and are amongst the most acidophilic prokaryotic organisms known so far. These organisms are difficult to culture, with currently only six genera validly published since the discovery of Thermoplasma acidophilum in 1970. Moreover, known great diversity of uncultured Thermoplasmatales represents microbial dark matter and underlines the necessity of efforts in cultivation and study of these archaea. Organisms from the order Thermoplasmatales affiliated with the so-called "alphabet-plasmas", and collectively dubbed "E-plasma", were the focus of this study. These archaea were found predominantly in the hyperacidic site PM4 of Parys Mountain, Wales, UK, making up to 58% of total metagenomic reads. However, these archaea escaped all cultivation attempts. RESULTS: Their genome-based metabolism revealed its peptidolytic potential, in line with the physiology of the previously studied Thermoplasmatales isolates. Analyses of the genome and evolutionary history reconstruction have shown both the gain and loss of genes, that may have contributed to the success of the "E-plasma" in hyperacidic environment compared to their community neighbours. Notable genes among them are involved in the following molecular processes: signal transduction, stress response and glyoxylate shunt, as well as multiple copies of genes associated with various cellular functions; from energy production and conversion, replication, recombination, and repair, to cell wall/membrane/envelope biogenesis and archaella production. History events reconstruction shows that these genes, acquired by putative common ancestors, may determine the evolutionary and functional divergences of "E-plasma", which is much more developed than other representatives of the order Thermoplasmatales. In addition, the ancestral hereditary reconstruction strongly indicates the placement of Thermogymnomonas acidicola close to the root of the Thermoplasmatales. CONCLUSIONS: This study has analysed the metagenome-assembled genome of "E-plasma", which denotes the basis of their predominance in Parys Mountain environmental microbiome, their global ubiquity, and points into the right direction of further cultivation attempts. The results suggest distinct evolutionary trajectories of organisms comprising the order Thermoplasmatales, which is important for the understanding of their evolution and lifestyle.

20.
Materials (Basel) ; 16(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36769935

RESUMEN

A passive treatment process using sulfate-reducing bacteria (SRB) is known to be effective in removing heavy metals from acid mine drainage (AMD), though there has been little discussion of the mechanism involved to date. In this work, a sulfate-reducing column test was carried out using supplementary ethanol as an electron donor for microorganisms, and the reaction mechanism was examined using geochemical modeling and X-ray absorption fine structure (XAFS) analysis. The results showed that Cu was readily removed from the AMD on the top surface of the column (0-0.2 m), while Zn and Cd depletion was initiated in the middle of the column (0.2-0.4 m), where sulfide formation by SRB became noticeable. Calculations by a developed geochemical model suggested that ethanol decomposition by aerobic microbes contributed to the reduction of Cu, while sulfide produced by SRB was the major cause of Zn and Cd removal. XAFS analysis of column residue detected ZnS, ZnSO4 (ZnS oxidized by atmospheric exposure during the drying process), and CuCO3, thus confirming the validity of the developed geochemical model. Based on these results, the application of the constructed geochemical model to AMD treatment with SRB could be a useful approach in predicting the behavior of heavy metal removal.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda