Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Subcell Biochem ; 104: 1-16, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38963480

RESUMEN

The global emergence of multidrug resistance (MDR) in gram-negative bacteria has become a matter of worldwide concern. MDR in these pathogens is closely linked to the overexpression of certain efflux pumps, particularly the resistance-nodulation-cell division (RND) efflux pumps. Inhibition of these pumps presents an attractive and promising strategy to combat antibiotic resistance, as the efflux pump inhibitors can effectively restore the potency of existing antibiotics. AcrAB-TolC is one well-studied RND efflux pump, which transports a variety of substrates, therefore providing resistance to a broad spectrum of antibiotics. To develop effective pump inhibitors, a comprehensive understanding of the structural aspect of the AcrAB-TolC efflux pump is imperative. Previous studies on this pump's structure have been limited to individual components or in vitro determination of fully assembled pumps. Recent advancements in cellular cryo-electron tomography (cryo-ET) have provided novel insights into this pump's assembly and functional mechanism within its native cell membrane environment. Here, we present a summary of the structural data regarding the AcrAB-TolC efflux pump, shedding light on its assembly pathway and operational mechanism.


Asunto(s)
Antibacterianos , Antibacterianos/farmacología , Antibacterianos/metabolismo , Farmacorresistencia Bacteriana Múltiple , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas Portadoras/metabolismo , Proteínas Portadoras/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Microscopía por Crioelectrón , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química
2.
J Bacteriol ; 206(1): e0040323, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38084964

RESUMEN

In a recent study by Inga V. Leus, Sean R. Roberts, Anhthu Trinh, Edward W. Yu, and Helen I. Zgurskaya (J Bacteriol, 2023, https://doi.org/10.1128/jb.00217-23), it was found that the clinically relevant resistance-nodulation-cell division (RND)-type AdeABC antibiotic efflux pump from Acinetobacter baumannii exhibits close communication between its antibiotic binding sites. Alterations in one of them can have far-reaching impacts on the drug translocation pathway. These insights could reshape our understanding of RND-type efflux pump mechanisms.


Asunto(s)
Acinetobacter baumannii , Proteínas Bacterianas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Transporte Biológico , División Celular , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana
3.
Appl Environ Microbiol ; 90(2): e0209623, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38289137

RESUMEN

Multidrug efflux pumps are the frontline defense mechanisms of Gram-negative bacteria, yet little is known of their relative fitness trade-offs under gut conditions such as low pH and the presence of antimicrobial food molecules. Low pH contributes to the proton-motive force (PMF) that drives most efflux pumps. We show how the PMF-dependent pumps AcrAB-TolC, MdtEF-TolC, and EmrAB-TolC undergo selection at low pH and in the presence of membrane-permeant phytochemicals. Competition assays were performed by flow cytometry of co-cultured Escherichia coli K-12 strains possessing or lacking a given pump complex. All three pumps showed negative selection under conditions that deplete PMF (pH 5.5 with carbonyl cyanide 3-chlorophenylhydrazone or at pH 8.0). At pH 5.5, selection against AcrAB-TolC was increased by aromatic acids, alcohols, and related phytochemicals such as methyl salicylate. The degree of fitness cost for AcrA was correlated with the phytochemical's lipophilicity (logP). Methyl salicylate and salicylamide selected strongly against AcrA, without genetic induction of drug resistance regulons. MdtEF-TolC and EmrAB-TolC each had a fitness cost at pH 5.5, but salicylate or benzoate made the fitness contribution positive. Pump fitness effects were not explained by gene expression (measured by digital PCR). Between pH 5.5 and 8.0, acrA and emrA were upregulated in the log phase, whereas mdtE expression was upregulated in the transition-to-stationary phase and at pH 5.5 in the log phase. Methyl salicylate did not affect pump gene expression. Our results suggest that lipophilic non-acidic molecules select against a major efflux pump without inducing antibiotic resistance regulons.IMPORTANCEFor drugs that are administered orally, we need to understand how ingested phytochemicals modulate drug resistance in our gut microbiome. Bacteria maintain low-level resistance by proton-motive force (PMF)-driven pumps that efflux many different antibiotics and cell waste products. These pumps play a key role in bacterial defense by conferring resistance to antimicrobial agents at first exposure while providing time for a pathogen to evolve resistance to higher levels of the antibiotic exposed. Nevertheless, efflux pumps confer energetic costs due to gene expression and pump energy expense. The bacterial PMF includes the transmembrane pH difference (ΔpH), which may be depleted by permeant acids and membrane disruptors. Understanding the fitness costs of efflux pumps may enable us to develop resistance breakers, that is, molecules that work together with antibiotics to potentiate their effect. Non-acidic aromatic molecules have the advantage that they avoid the Mar-dependent induction of regulons conferring other forms of drug resistance. We show that different pumps have distinct selection criteria, and we identified non-acidic aromatic molecules as promising candidates for drug resistance breakers.


Asunto(s)
Escherichia coli K12 , Proteínas de Escherichia coli , Escherichia coli/genética , Salicilatos/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Pruebas de Sensibilidad Microbiana
4.
Biochemistry (Mosc) ; 89(2): 212-222, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38622091

RESUMEN

Quinone derivatives of triphenylphosphonium have proven themselves to be effective geroprotectors and antioxidants that prevent oxidation of cell components with participation of active free radicals - peroxide (RO2·), alkoxy (RO·), and alkyl (R·) radicals, as well as reactive oxygen species (superoxide anion, singlet oxygen). Their most studied representatives are derivatives of plastoquinone (SkQ1) and ubiquinone (MitoQ), which in addition to antioxidant properties also have a strong antibacterial effect. In this study, we investigated antibacterial properties of other quinone derivatives based on decyltriphenylphosphonium (SkQ3, SkQT, and SkQThy). We have shown that they, just like SkQ1, inhibit growth of various Gram-positive bacteria at micromolar concentrations, while being less effective against Gram-negative bacteria, which is associated with recognition of the triphenylphosphonium derivatives by the main multidrug resistance (MDR) pump of Gram-negative bacteria, AcrAB-TolC. Antibacterial action of SkQ1 itself was found to be dependent on the number of bacterial cells. It is important to note that the cytotoxic effect of SkQ1 on mammalian cells was observed at higher concentrations than the antibacterial action, which can be explained by (i) the presence of a large number of membrane organelles, (ii) lower membrane potential, (iii) spatial separation of the processes of energy generation and transport, and (iv) differences in the composition of MDR pumps. Differences in the cytotoxic effects on different types of eukaryotic cells may be associated with the degree of membrane organelle development, energy status of the cell, and level of the MDR pump expression.


Asunto(s)
Antineoplásicos , Benzoquinonas , Mitocondrias , Animales , Mitocondrias/metabolismo , Antioxidantes/farmacología , Compuestos Organofosforados/farmacología , Plastoquinona/farmacología , Antibacterianos/farmacología , Antibacterianos/metabolismo , Antineoplásicos/farmacología , Mamíferos/metabolismo
5.
Int J Mol Sci ; 25(11)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38892325

RESUMEN

Mitochondria-targeted antioxidants (MTAs) have been studied quite intensively in recent years as potential therapeutic agents and vectors for the delivery of other active substances to mitochondria and bacteria. Their most studied representatives are MitoQ and SkQ1, with its fluorescent rhodamine analog SkQR1, a decyl ester of rhodamine 19 carrying plastoquinone. In the present work, we observed a pronounced antibacterial action of SkQR1 against Gram-positive bacteria, but virtually no effect on Gram-negative bacteria. The MDR pump AcrAB-TolC, known to expel SkQ1, did not recognize and did not pump out SkQR1 and dodecyl ester of rhodamine 19 (C12R1). Rhodamine 19 butyl (C4R1) and ethyl (C2R1) esters more effectively suppressed the growth of ΔtolC Escherichia coli, but lost their potency with the wild-type E. coli pumping them out. The mechanism of the antibacterial action of SkQR1 may differ from that of SkQ1. The rhodamine derivatives also proved to be effective antibacterial agents against various Gram-positive species, including Staphylococcus aureus and Mycobacterium smegmatis. By using fluorescence correlation spectroscopy and fluorescence microscopy, SkQR1 was shown to accumulate in the bacterial membrane. Thus, the presentation of SkQR1 as a fluorescent analogue of SkQ1 and its use for visualization should be performed with caution.


Asunto(s)
Antibacterianos , Ésteres , Pruebas de Sensibilidad Microbiana , Rodaminas , Antibacterianos/farmacología , Antibacterianos/química , Rodaminas/química , Rodaminas/farmacología , Ésteres/química , Ésteres/farmacología , Plastoquinona/análogos & derivados , Plastoquinona/farmacología , Plastoquinona/química , Bacterias Grampositivas/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Staphylococcus aureus/efectos de los fármacos , Colorantes Fluorescentes/química
6.
Microbiology (Reading) ; 169(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37224055

RESUMEN

The problem of antibiotic resistance among pathogenic bacteria has reached a crisis level. The treatment options against infections caused by multiple drug-resistant bacteria are shrinking gradually. The current pace of the discovery of new antibacterial entities is lagging behind the rate of development of new resistance. Efflux pumps play a central role in making a bacterium resistant to multiple antibiotics due to their ability to expel a wide range of structurally diverse compounds. Besides providing an escape from antibacterial compounds, efflux pumps are also involved in bacterial stress response, virulence, biofilm formation, and altering host physiology. Efflux pumps are unique yet challenging targets for the discovery of novel efflux pump inhibitors (EPIs). EPIs could help rejuvenate our currently dried pipeline of antibacterial drug discovery. The current article highlights the recent developments in the field of efflux pumps, challenges faced during the development of EPIs and potential approaches for their development. Additionally, this review highlights the utility of resources such as natural products and machine learning to expand our EPIs arsenal using these latest technologies.


Asunto(s)
Antibacterianos , Productos Biológicos , Virulencia , Farmacorresistencia Microbiana , Antibacterianos/farmacología , Bacterias/genética
7.
Mol Biol Evol ; 38(9): 3847-3863, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-33693929

RESUMEN

To determine the dosage at which antibiotic resistance evolution is most rapid, we treated Escherichia coli in vitro, deploying the antibiotic erythromycin at dosages ranging from zero to high. Adaptation was fastest just below erythromycin's minimal inhibitory concentration (MIC) and genotype-phenotype correlations determined from whole genome sequencing revealed the molecular basis: simultaneous selection for copy number variation in three resistance mechanisms which exhibited an "inverted-U" pattern of dose-dependence, as did several insertion sequences and an integron. Many genes did not conform to this pattern, however, reflecting changes in selection as dose increased: putative media adaptation polymorphisms at zero antibiotic dosage gave way to drug target (ribosomal RNA operon) amplification at mid dosages whereas prophage-mediated drug efflux amplifications dominated at the highest dosages. All treatments exhibited E. coli increases in the copy number of efflux operons acrAB and emrE at rates that correlated with increases in population density. For strains where the inverted-U was no longer observed following the genetic manipulation of acrAB, it could be recovered by prolonging the antibiotic treatment at subMIC dosages.


Asunto(s)
Antibacterianos , Proteínas de Escherichia coli , Antibacterianos/farmacología , Antiportadores/genética , Variaciones en el Número de Copia de ADN , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Amplificación de Genes , Pruebas de Sensibilidad Microbiana
8.
Biosci Biotechnol Biochem ; 86(8): 1128-1135, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35648476

RESUMEN

Improving the organic solvent tolerance of bacteria is beneficial for the bioproduction of various valuable chemicals. In this study, we found that 1,4-dihydroxy-2-naphthoic acid (DHNA), known as a prebiotic, increased organic solvent tolerance in Escherichia coli. The AcrAB-TolC multidrug efflux pump contributes to the intrinsic organic solvent tolerance of E. coli. The addition of DHNA increased this pump's expression level. Transcriptional activators MarA, SoxS, and Rob proteins are known to control the expression of marA/soxS/rob regulon genes, including acrAB and tolC. Evaluation of the organic solvent tolerances of ΔmarA mutant, ΔsoxS mutant, and Δrob mutant showed that ΔmarA mutant and ΔsoxS mutant did not improve organic solvent tolerance by the addition of DHNA. In addition, DHNA increased the promoter activities of both marA and soxS. These results indicated that DHNA induces the AcrAB-TolC pump through both the marRAB system and the soxRS system.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Naftoles , Solventes/metabolismo , Transactivadores/genética
9.
Appl Environ Microbiol ; 87(16): e0072421, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34085861

RESUMEN

Bacterial genomes encode various multidrug efflux pumps (MDR) whose specific conditions for fitness advantage are unknown. We show that the efflux pump MdtEF-TolC, in Escherichia coli, confers a fitness advantage during exposure to extreme acid (pH 2). Our flow cytometry method revealed pH-dependent fitness trade-offs between bile acids (a major pump substrate) and salicylic acid, a membrane-permeant aromatic acid that induces a drug resistance regulon but depletes proton motive force (PMF). The PMF drives MdtEF-TolC and related pumps such as AcrAB-TolC. Deletion of mdtE (with loss of the pump MdtEF-TolC) increased the strain's relative fitness during growth with or without salicylate or bile acids. However, when the growth cycle included a 2-h incubation at pH 2 (below the pH growth range), MdtEF-TolC conferred a fitness advantage. The fitness advantage required bile salts but was decreased by the presence of salicylate, whose uptake is amplified by acid. For comparison, AcrAB-TolC, the primary efflux pump for bile acids, conferred a PMF-dependent fitness advantage with or without acid exposure in the growth cycle. A different MDR pump, EmrAB-TolC, conferred no selective benefit during growth in the presence of bile acids. Without bile acids, all three MDR pumps incurred a large fitness cost with salicylate when exposed at pH 2. These results are consistent with the increased uptake of salicylate at low pH. Overall, we showed that MdtEF-TolC is an MDR pump adapted for transient extreme-acid exposure and that low pH amplifies the salicylate-dependent fitness cost for drug pumps. IMPORTANCE Antibiotics and other drugs that reach the gut must pass through stomach acid. However, little is known of how extreme acid modulates the effect of drugs on gut bacteria. We find that extreme-acid exposure leads to a fitness advantage for a multidrug pump that otherwise incurs a fitness cost. At the same time, extreme acid amplifies the effect of salicylate selection against multidrug pumps. Thus, organic acids and stomach acid could play important roles in regulating multidrug resistance in the gut microbiome. Our flow cytometry assay provides a way to measure the fitness effects of extreme-acid exposure to various membrane-soluble organic acids, including plant-derived nutrients and pharmaceutical agents. Therapeutic acids might be devised to control the prevalence of multidrug pumps in environmental and host-associated habitats.


Asunto(s)
Proteínas Portadoras/metabolismo , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ácidos/metabolismo , Proteínas Portadoras/genética , Escherichia coli K12/genética , Escherichia coli K12/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/genética
10.
J Math Biol ; 82(4): 31, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33694073

RESUMEN

Efflux pumps are a mechanism of intrinsic and evolved resistance in bacteria. If an efflux pump can expel an antibiotic so that its concentration within the cell is below a killing threshold the bacteria are resistant to the antibiotic. Efflux pumps may be specific or they may pump various different substances. This is why many efflux pumps confer multi drug resistance (MDR). In particular over expression of the AcrAB-TolC efflux pump system confers MDR in both Salmonella and Escherichia coli. We consider the complex gene regulation network that controls expression of genes central to controlling the efflux associated genes acrAB and acrEF in Salmonella. We present the first mathematical model of this gene regulatory network in the form of a system of ordinary differential equations. Using a time dependent asymptotic analysis, we examine in detail the behaviour of the efflux system on various different timescales. Asymptotic approximations of the steady states provide an analytical comparison of targets for efflux inhibition.


Asunto(s)
Proteínas de Escherichia coli , Redes Reguladoras de Genes , Modelos Biológicos , Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/metabolismo , Proteínas de Transporte de Membrana/genética , Salmonella/genética , Salmonella/metabolismo , Tiempo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda