Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Brain Behav Immun ; 118: 437-448, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38499210

RESUMEN

Systemic activation of toll-like receptor 3 (TLR3) signaling using poly(I:C), a TLR3 agonist, drives ethanol consumption in several rodent models, while global knockout of Tlr3 reduces drinking in C57BL/6J male mice. To determine if brain TLR3 pathways are involved in drinking behavior, we used CRISPR/Cas9 genome editing to generate a Tlr3 floxed (Tlr3F/F) mouse line. After sequence confirmation and functional validation of Tlr3 brain transcripts, we injected Tlr3F/F male mice with an adeno-associated virus expressing Cre recombinase (AAV5-CMV-Cre-GFP) to knockdown Tlr3 in the medial prefrontal cortex, nucleus accumbens, or dorsal striatum (DS). Only Tlr3 knockdown in the DS decreased two-bottle choice, every-other-day (2BC-EOD) ethanol consumption. DS-specific deletion of Tlr3 also increased intoxication and prevented acute functional tolerance to ethanol. In contrast, poly(I:C)-induced activation of TLR3 signaling decreased intoxication in male C57BL/6J mice, consistent with its ability to increase 2BC-EOD ethanol consumption in these mice. We also found that TLR3 was highly colocalized with DS neurons. AAV5-Cre transfection occurred predominantly in neurons, but there was minimal transfection in astrocytes and microglia. Collectively, our previous and current studies show that activating or inhibiting TLR3 signaling produces opposite effects on acute responses to ethanol and on ethanol consumption. While previous studies, however, used global knockout or systemic TLR3 activation (which alter peripheral and brain innate immune responses), the current results provide new evidence that brain TLR3 signaling regulates ethanol drinking. We propose that activation of TLR3 signaling in DS neurons increases ethanol consumption and that a striatal TLR3 pathway is a potential target to reduce excessive drinking.


Asunto(s)
Etanol , Receptor Toll-Like 3 , Ratones , Masculino , Animales , Receptor Toll-Like 3/metabolismo , Ratones Endogámicos C57BL , Etanol/farmacología , Transducción de Señal , Consumo de Bebidas Alcohólicas/metabolismo , Poli I-C/farmacología
2.
Neuropharmacology ; 220: 109255, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36152689

RESUMEN

We previously showed that apremilast, an FDA-approved PDE4 inhibitor, selectively alters behavioral responses to ethanol and certain GABAergic drugs in a PKA-dependent manner in C57BL6/J mice. Here, we investigated if PKA phosphorylation of ß3 GABAA receptor subunits is involved in apremilast regulation of ethanol, propofol, or diazepam responses. Apremilast prolonged rotarod ataxia and loss of the righting reflex by ethanol and propofol in wild-type mice, but not in ß3-S408A/S409A knock-in mice. In contrast, apremilast hastened recovery from the ataxic and sedative effects of diazepam in both genotypes. These findings suggest that apremilast modulation of ethanol and propofol behaviors in wild-type mice is mediated by ß3 subunit phosphorylation, whereas its actions on diazepam responses involve a different mechanism. The PKA inhibitor H-89 prevented apremilast modulation of ethanol-induced ataxia. Apremilast sensitized wild-type males to ethanol-induced ataxia and decreased acute functional tolerance (AFT) in females but had no effect in ß3-S408A/S409A mice of either sex. These results could not be attributed to genotype differences in blood ethanol clearance. There were also no baseline genotype differences in ethanol consumption and preference in two different voluntary drinking procedures. However, the ability of apremilast to reduce ethanol consumption was diminished in ß3-S408A/S409A mice. Our results provide strong evidence that PKA-dependent phosphorylation of ß3 GABAA receptor subunits is an important mechanism by which apremilast increases acute sensitivity to alcohol, decreases AFT, and decreases ethanol drinking.


Asunto(s)
Intoxicación Alcohólica , Alcoholismo , Inhibidores de Fosfodiesterasa 4 , Propofol , Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Animales , Ataxia , Diazepam , Etanol/farmacología , Femenino , Hipnóticos y Sedantes , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Inhibidores de Fosfodiesterasa 4/farmacología , Fosforilación , Receptores de GABA-A/metabolismo , Talidomida/análogos & derivados , Ácido gamma-Aminobutírico
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda