Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Funct Integr Genomics ; 24(1): 19, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38265702

RESUMEN

The adenosine-signaling axis has been recognized as an important immunomodulatory pathway in tumor immunity. However, the biological role of the adenosine-signaling axis in the remodeling of the tumor microenvironment (TME) in lung adenocarcinoma (LUAD) remains unclear. Here, we quantified adenosine signaling (ado_sig) in LUAD samples using the GSVA method and assessed the prognostic value of adenosine in LUAD. Afterward, we explored the heterogeneity of the tumor-immune microenvironment at different adenosine levels. In addition, we analyzed the potential biological pathways engaged by adenosine. Next, we established single-cell transcriptional profiles of LUAD and analyzed cellular composition and cell-cell communication analysis under different adenosine microenvironments. Moreover, we established adenosine-related prognostic signatures (ARS) based on comprehensive bioinformatics analysis and evaluated the efficacy of ARS in predicting immunotherapy. The results demonstrated that adenosine signaling adversely impacted the survival of immune-enriched LUAD. The high-adenosine microenvironment exhibited elevated pro-tumor-immune infiltration, including M2 macrophages and displayed notably increased epithelial-mesenchymal transition (EMT) transformation. Furthermore, adenosine signaling displayed significant associations with the expression patterns and prognostic value of immunomodulators within the TME. Single-cell sequencing data revealed increased fibroblast occupancy and a prominent activation of the SPP1 signaling pathway in the high adenosine-signaling microenvironment. The ARS exhibited promising effectiveness in prognostication and predicting immunotherapy response in LUAD. In summary, overexpression of adenosine can cause a worsened prognosis in the LUAD with abundant immune infiltration. Moreover, increased adenosine levels are associated with pro-tumor-immune infiltration, active EMT transformation, pro-tumor angiogenesis, and other factors promoting cancer progression, which collectively contribute to the formation of an immunosuppressive microenvironment. Importantly, the ARS developed in this study demonstrate high efficacy in evaluating the response to immunotherapy.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Pronóstico , Microambiente Tumoral , Análisis de Secuencia de ARN , Inmunoterapia , Adenosina
2.
Vasc Med ; 29(3): 245-255, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38568107

RESUMEN

BACKGROUND: Arterial calcification due to deficiency of CD73 (ACDC; OMIM 211800) is a rare genetic disease resulting in calcium deposits in arteries and small joints causing claudication, resting pain, severe joint pain, and deformities. Currently, there are no standard treatments for ACDC. Our previous work identified etidronate as a potential targeted ACDC treatment, using in vitro and in vivo disease models with patient-derived cells. In this study, we test the safety and effectiveness of etidronate in attenuating the progression of lower-extremity arterial calcification and vascular blood flow based on the computed tomography (CT) calcium score and ankle-brachial index (ABI). METHODS: Seven adult patients with a confirmed genetic diagnosis of ACDC were enrolled in an open-label, nonrandomized, single-arm pilot study for etidronate treatment. They took etidronate daily for 14 days every 3 months and were examined at the NIH Clinical Center bi-annually for 3 years. They received a baseline evaluation as well as yearly follow up after treatment. Study visits included imaging studies, exercise tolerance tests with ABIs, clinical blood and urine testing, and full dental exams. RESULTS: Etidronate treatment appeared to have slowed the progression of further vascular calcification in lower extremities as measured by CT but did not have an effect in reversing vascular and/or periarticular joint calcifications in our small ACDC cohort. CONCLUSIONS: Etidronate was found to be safe and well tolerated by our patients and, despite the small sample size, appeared to show an effect in slowing the progression of calcification in our ACDC patient cohort.(ClinicalTrials.gov Identifier NCT01585402).


Asunto(s)
5'-Nucleotidasa , Ácido Etidrónico , Proteínas Ligadas a GPI , Calcificación Vascular , Humanos , Proyectos Piloto , Calcificación Vascular/tratamiento farmacológico , Calcificación Vascular/diagnóstico por imagen , Ácido Etidrónico/uso terapéutico , Ácido Etidrónico/efectos adversos , Masculino , Femenino , Persona de Mediana Edad , Resultado del Tratamiento , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/deficiencia , Factores de Tiempo , Proteínas Ligadas a GPI/sangre , Índice Tobillo Braquial , Adulto , Conservadores de la Densidad Ósea/uso terapéutico , Conservadores de la Densidad Ósea/efectos adversos , Progresión de la Enfermedad , Enfermedad Arterial Periférica/tratamiento farmacológico , Enfermedad Arterial Periférica/diagnóstico , Enfermedad Arterial Periférica/fisiopatología , Anciano , Extremidad Inferior/irrigación sanguínea , Angiografía por Tomografía Computarizada , Predisposición Genética a la Enfermedad , Flujo Sanguíneo Regional
3.
FASEB J ; 34(3): 4041-4054, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31930569

RESUMEN

Recent evidence indicates that elevated placental adenosine signaling contributes to preeclampsia (PE). However, the molecular basis for the chronically enhanced placental adenosine signaling in PE remains unclear. Here, we report that hypoxia-inducible factor-1α (HIF-1α) is crucial for the enhancement of placental adenosine signaling. Utilizing a pharmacologic approach to reduce placental adenosine levels, we found that enhanced adenosine underlies increased placental HIF-1α in an angiotensin receptor type 1 receptor agonistic autoantibody (AT1 -AA)-induced mouse model of PE. Knockdown of placental HIF-1α in vivo suppressed the accumulation of adenosine and increased ecto-5'-nucleotidase (CD73) and adenosine A2B receptor (ADORA2B) in the placentas of PE mouse models induced by AT1 -AA or LIGHT, a TNF superfamily cytokine (TNFSF14). Human in vitro studies using placental villous explants demonstrated that increased HIF-1α resulting from ADORA2B activation facilitates the induction of CD73, ADORA2B, and FLT-1 expression. Overall, we demonstrated that (a) elevated placental HIF-1α by AT1 -AA or LIGHT upregulates CD73 and ADORA2B expression and (b) enhanced adenosine signaling through upregulated ADORA2B induces placental HIF-1α expression, which creates a positive feedback loop that promotes FLT-1 expression leading to disease development. Our results suggest that adenosine-based therapy targeting the malicious cycle of placental adenosine signaling may elicit therapeutic effects on PE.


Asunto(s)
Adenosina/metabolismo , Autoanticuerpos/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Placenta/metabolismo , Preeclampsia/metabolismo , ARN Interferente Pequeño/metabolismo , Animales , Autoanticuerpos/genética , Presión Sanguínea/genética , Presión Sanguínea/fisiología , Femenino , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Immunoblotting , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Preeclampsia/genética , Embarazo , ARN Interferente Pequeño/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
4.
Am J Physiol Endocrinol Metab ; 318(5): E655-E666, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32045262

RESUMEN

Excessive alcohol consumption, including binge drinking, is a common cause of fatty liver disease. Binge drinking rapidly induces hepatic steatosis, an early step in the pathogenesis of chronic liver injury. Despite its prevalence, the process by which excessive alcohol consumption promotes hepatic lipid accumulation remains unclear. Alcohol exerts potent effects on the brain, including hypothalamic neurons crucial for metabolic regulation. However, whether or not the brain plays a role in alcohol-induced hepatic steatosis is unknown. In the brain, alcohol increases extracellular levels of adenosine, a potent neuromodulator, and previous work implicates adenosine signaling as being important for the development of alcoholic fatty liver disease. Acute alcohol exposure also increases both the activity of agouti-related protein (AgRP)-expressing neurons and AgRP immunoreactivity. Here, we show that adenosine receptor A2B signaling in the brain modulates the extent of alcohol-induced fatty liver in mice and that both the AgRP neuropeptide and the sympathetic nervous system are indispensable for hepatic steatosis induced by bingelike alcohol consumption. Together, these results indicate that the brain plays an integral role in alcohol-induced hepatic lipid accumulation and that central adenosine signaling, hypothalamic AgRP, and the sympathetic nervous system are crucial mediators of this process.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Hígado Graso Alcohólico/metabolismo , Hipotálamo/metabolismo , Metabolismo de los Lípidos/fisiología , Hígado/metabolismo , Neuronas/metabolismo , Proteína Relacionada con Agouti/metabolismo , Animales , Masculino , Ratones
5.
Neurobiol Dis ; 134: 104634, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31678405

RESUMEN

Dystonia is a neurological movement disorder characterized by sustained or intermittent involuntary muscle contractions. Loss-of-function mutations in the GNAL gene have been identified to be the cause of "isolated" dystonia DYT25. The GNAL gene encodes for the guanine nucleotide-binding protein G(olf) subunit alpha (Gαolf), which is mainly expressed in the olfactory bulb and the striatum and functions as a modulator during neurotransmission coupling with D1R and A2AR. Previously, heterozygous Gαolf -deficient mice (Gnal+/-) have been generated and showed a mild phenotype at basal condition. In contrast, homozygous deletion of Gnal in mice (Gnal-/-) resulted in a significantly reduced survival rate. In this study, using the CRISPR-Cas9 system we generated and characterized heterozygous Gnal knockout rats (Gnal+/-) with a 13 base pair deletion in the first exon of the rat Gnal splicing variant 2, a major isoform in both human and rat striatum. Gnal+/- rats showed early-onset phenotypes associated with impaired dopamine transmission, including reduction in locomotor activity, deficits in rotarod performance and an abnormal motor skill learning ability. At cellular and molecular level, we found down-regulated Arc expression, increased cell surface distribution of AMPA receptors, and the loss of D2R-dependent corticostriatal long-term depression (LTD) in Gnal+/- rats. Based on the evidence that D2R activity is normally inhibited by adenosine A2ARs, co-localized on the same population of striatal neurons, we show that blockade of A2ARs restores physiological LTD. This animal model may be a valuable tool for investigating Gαolf function and finding a suitable treatment for dystonia associated with deficient dopamine transmission.


Asunto(s)
Adenosina/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Distonía , Depresión Sináptica a Largo Plazo/fisiología , Animales , Distonía/metabolismo , Distonía/fisiopatología , Subunidades alfa de la Proteína de Unión al GTP/genética , Técnicas de Inactivación de Genes , Masculino , Ratas , Ratas Sprague-Dawley , Receptor de Adenosina A2A/metabolismo , Transducción de Señal/fisiología
6.
Circulation ; 138(18): 1988-2002, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-29871977

RESUMEN

BACKGROUND: cAMP plays a critical role in regulating cardiomyocyte survival. Various cAMP signaling pathways behave distinctly or in opposition. We have previously reported that activation of cAMP hydrolysis by cyclic nucleotide phosphodiesterase 1C (PDE1C) promotes cardiomyocytes death/apoptosis, yet the underlying molecular mechanism remains unknown. In this study, we aimed to identify the specific cAMP signaling pathway modulated by PDE1C and determine the mechanism by which Ca2+/calmodulin-stimulated PDE1C is activated. METHODS: To study cardiomyocyte death/apoptosis, we used both isolated mouse adult cardiomyocytes in vitro and doxorubicin-induced cardiotoxicity in vivo. We used a variety of pharmacological activators and inhibitors as well as genetically engineered molecular tools to manipulate the expression and activity of proteins of interest. RESULTS: We found that the protective effect of PDE1C inhibition/deficiency on Ang II or doxorubicin-induced cardiomyocyte death/apoptosis is dependent on cAMP-generating adenosine A2 receptors (A2Rs), suggesting that PDE1C's cAMP-hydrolyzing activity selectively modulates A2R-cAMP signaling in cardiomyocytes. In addition, we found that the effects of PDE1C activation on Ang II-mediated cAMP reduction and cardiomyocyte death are dependent on transient receptor potential-canonical (TRPC) channels, in particular TRPC3. We also observed synergistic protective effects on cardiomyocyte survival from the combination of A2R stimulation together with PDE1 or TRPC inhibition. Coimmunostaining and coimmunoprecipitation studies showed that PDE1C is localized in proximity with A2R and TRPC3 in the plasma membrane and perhaps T tubules. It is important to note that we found that doxorubicin-induced cardiac toxicity and dysfunction in mice are attenuated by the PDE1 inhibitor IC86340 or in PDE1C knockout mice, and this protective effect is significantly diminished by A2R antagonism. CONCLUSIONS: We have characterized a novel multiprotein complex comprised of A2R, PDE1C, and TRPC3, in which PDE1C is activated by TRPC3-derived Ca2+, thereby antagonizing A2R-cAMP signaling and promoting cardiomyocyte death/apoptosis. Targeting these molecules individually or in combination may represent a compelling therapeutic strategy for potentiating cardiomyocyte survival.


Asunto(s)
AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/metabolismo , Receptores de Adenosina A2/metabolismo , Canales Catiónicos TRPC/metabolismo , Antagonistas del Receptor de Adenosina A2/farmacología , Angiotensina II/toxicidad , Animales , Apoptosis/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/antagonistas & inhibidores , Doxorrubicina/farmacología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores de Adenosina A2/química , Canales Catiónicos TRPC/antagonistas & inhibidores , Canales Catiónicos TRPC/genética
7.
Invest New Drugs ; 37(4): 711-721, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30569245

RESUMEN

Adenosine suppresses antitumor immune responses via A2a and A2b receptors expressed on intratumoral immune cells. This effect is mediated by increased cyclic adenosine 5'-monophosphate (AMP) levels and phosphorylation of cyclic AMP response element binding protein (CREB). We conducted a phase 1, placebo-controlled, single-ascending-dose (SAD) and multiple-ascending-dose (MAD) study to assess the safety, tolerability, pharmacokinetics (PK), including food effect (FE), and pharmacodynamics (PD) of oral AB928, a novel dual A2aR/A2bR antagonist, in healthy volunteers. AB928 doses between 10 and 200 mg once daily and 100 mg twice daily were evaluated. The study enrolled 85 subjects (randomized 3:1, AB928:placebo), 40 each in the SAD and MAD cohorts, and 5 in the FE cohort. AB928 was well tolerated up to the highest dose tested and did not affect any physiologic parameters potentially sensitive to adenosine inhibition. No safety concern was identified. The PK profile of AB928 was linear and dose-proportional, and a clear PK/PD correlation was demonstrated. Significant inhibition of adenosine receptor-mediated phosphorylated CREB was observed at peak plasma concentrations in all dose cohorts and at trough plasma concentrations in the higher-dose cohorts. AB928 plasma levels ≥1 µM were associated with ≥90% adenosine receptor inhibition. In the postprandial state, the rate of AB928 absorption decreased but the extent of absorption was unchanged. Together, these data support further clinical development of oral AB928 in cancer patients.


Asunto(s)
Antagonistas de Receptores Purinérgicos P1/administración & dosificación , Administración Oral , Adolescente , Adulto , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Método Doble Ciego , Femenino , Interacciones Alimento-Droga , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Antagonistas de Receptores Purinérgicos P1/sangre , Antagonistas de Receptores Purinérgicos P1/farmacocinética , Adulto Joven
8.
J Cell Physiol ; 233(4): 2715-2722, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28617999

RESUMEN

Extracellular concentration of adenosine increases in the hypoxic tumor microenvironment. Adenosine signaling regulates apoptosis, angiogenesis, metastasis, and immune suppression in cancer cells. Adenosine-induced cell responses depend upon different subtypes of adenosine receptors activation and type of cancer. Suppression of adenosine signaling via inhibition of adenosine receptors or adenosine generating enzymes including CD39 and CD73 on ovarian or cervical cancer cells is a potentially novel therapeutic approach for gynecological cancer patients. This review summarizes the role of adenosine in the pathogenesis of gynecological cancer for a better understanding and hence a better management of this disease.


Asunto(s)
Adenosina/metabolismo , Neoplasias de los Genitales Femeninos/etiología , Neoplasias de los Genitales Femeninos/metabolismo , Animales , Femenino , Neoplasias de los Genitales Femeninos/patología , Humanos , Modelos Biológicos , Transducción de Señal
9.
Am J Physiol Regul Integr Comp Physiol ; 315(3): R500-R508, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29791204

RESUMEN

Fetal anemia causes rapid and profound changes in cardiac structure and function, stimulating proliferation of the cardiac myocytes, expansion of the coronary vascular tree, and impairing early contraction and relaxation. Although hypoxia-inducible factor-1α is sure to play a role, adenosine, a metabolic byproduct that increases coronary flow and growth, is implicated as a major stimulus for these adaptations. We hypothesized that genes involved in myocardial adenosine signaling would be upregulated in chronically anemic fetuses and that calcium-handling genes would be downregulated. After sterile surgical instrumentation under anesthesia, gestationally timed fetal sheep were made anemic by isovolumetric hemorrhage for 1 wk (16% vs. 35% hematocrit). At 87% of gestation, necropsy was performed to collect heart tissue for PCR and immunohistochemical analysis. Anemia increased mRNA expression levels of adenosine receptors ADORA 1, ADORA2A, and ADORA2B in the left and right ventricles (adenosine receptor ADORA3 was unchanged). In both ventricles, anemia also increased expression of ectonucleoside triphosphate diphosphohydrolase 1 and ecto-5'-nucleotidase. The genes for both equilibrative nucleoside transporters 1 and 2 were expressed more abundantly in the anemic right ventricle but were not different in the left ventricle. Neither adenosine deaminase nor adenosine kinase cardiac levels were significantly changed by chronic fetal anemia. Chronic fetal anemia did not significantly change cardiac mRNA expression levels of the voltage-dependent L-type calcium channel, ryanodine receptor 1, sodium-calcium exchanger, sarcoplasmic/endoplasmic reticulum calcium transporting ATPase 2, phospholamban, or cardiac calsequestrin. These data support local metabolic integration of vascular and myocyte function through adenosine signaling in the anemic fetal heart.


Asunto(s)
Adenosina/metabolismo , Anemia/metabolismo , Señalización del Calcio , Vasos Coronarios/metabolismo , Enfermedades Fetales/metabolismo , Miocitos Cardíacos/metabolismo , Neovascularización Fisiológica , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/metabolismo , Anemia/sangre , Anemia/embriología , Anemia/genética , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Apirasa/genética , Apirasa/metabolismo , Señalización del Calcio/genética , Enfermedad Crónica , Vasos Coronarios/embriología , Modelos Animales de Enfermedad , Proteínas de Transporte de Nucleósido Equilibrativas/genética , Proteínas de Transporte de Nucleósido Equilibrativas/metabolismo , Femenino , Enfermedades Fetales/sangre , Enfermedades Fetales/genética , Regulación del Desarrollo de la Expresión Génica , Neovascularización Fisiológica/genética , Embarazo , Receptores Purinérgicos P1/genética , Receptores Purinérgicos P1/metabolismo , Oveja Doméstica
10.
Toxicol Appl Pharmacol ; 355: 80-92, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29959027

RESUMEN

"Sterile inflammation" is a type of pathogen-free inflammation which may be induced by various physical, chemical, or metabolic insults, including environmental particles e.g. silica dioxide crystals and asbestos. The possible role of nanomaterials as danger signals able to trigger sterile inflammatory responses is not yet fully understood. Therefore, the aim of this review was to investigate conditions of sterile inflammation induced by nanomaterial exposure with a specific focus on possible modes of action. Metal-, metal-oxide- and carbon-based nanomaterials may trigger a sterile inflammatory cascade by means of different damage-associated molecular patterns, including chromatin associated protein high-mobility group box-1 secretion, ATP, ADP and adenosine purinergic signaling, interleukin-1α alarmin, and NLPR-3 inflammasome activation. However, such preliminary results do not enable us to draw definite conclusions regarding the sterile inflammatory potential of nanomaterials and possible underlying molecular mechanisms. Therefore, further research is required to understand the complex "interplay" between the multitude of nanomaterial intrinsic or acquired physico-chemical properties and the extremely changeable immunological competence of organisms. The identification of possible nanomaterial modes of action in sterile inflammation could provide early indicators of the biological reactivity of nano-sized chemicals and could direct "safe by design" efforts for improving occupational safety and that of the general population. Moreover, the possible pathological consequences of nanomaterial-induced sterile inflammatory reactions need to be clarified in order to define suitable preventive measures to protect the health of chronically exposed subjects.


Asunto(s)
Inflamación/patología , Nanoestructuras/toxicidad , Animales , Humanos , Inflamasomas/efectos de los fármacos , Inflamación/inducido químicamente , Exposición Profesional
11.
Am J Physiol Regul Integr Comp Physiol ; 308(7): R614-26, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25632022

RESUMEN

To what extent hypoxia alters the adenosine (ADO) system and impacts on cardiac function during embryogenesis is not known. Ectonucleoside triphosphate diphosphohydrolase (CD39), ecto-5'-nucleotidase (CD73), adenosine kinase (AdK), adenosine deaminase (ADA), equilibrative (ENT1,3,4), and concentrative (CNT3) transporters and ADO receptors A1, A2A, A2B, and A3 constitute the adenosinergic system. During the first 4 days of development chick embryos were exposed in ovo to normoxia followed or not followed by 6 h hypoxia. ADO and glycogen content and mRNA expression of the genes were determined in the atria, ventricle, and outflow tract of the normoxic (N) and hypoxic (H) hearts. Electrocardiogram and ventricular shortening of the N and H hearts were recorded ex vivo throughout anoxia/reoxygenation ± ADO. Under basal conditions, CD39, CD73, ADK, ADA, ENT1,3,4, CNT3, and ADO receptors were differentially expressed in the atria, ventricle, and outflow tract. In H hearts ADO level doubled, glycogen decreased, and mRNA expression of all the investigated genes was downregulated by hypoxia, except for A2A and A3 receptors. The most rapid and marked downregulation was found for ADA in atria. H hearts were arrhythmic and more vulnerable to anoxia-reoxygenation than N hearts. Despite downregulation of the genes, exposure of isolated hearts to ADO 1) preserved glycogen through activation of A1 receptor and Akt-GSK3ß-GS pathway, 2) prolonged activity and improved conduction under anoxia, and 3) restored QT interval in H hearts. Thus hypoxia-induced downregulation of the adenosinergic system can be regarded as a coping response, limiting the detrimental accumulation of ADO without interfering with ADO signaling.


Asunto(s)
Adenosina/metabolismo , Corazón/embriología , Hipoxia/embriología , Hipoxia/metabolismo , Miocardio/metabolismo , Receptores Purinérgicos P1/metabolismo , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/metabolismo , Adaptación Fisiológica , Adenosina Quinasa/genética , Adenosina Quinasa/metabolismo , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Apirasa/genética , Apirasa/metabolismo , Embrión de Pollo , Metabolismo Energético , Proteínas de Transporte de Nucleósido Equilibrativas/genética , Proteínas de Transporte de Nucleósido Equilibrativas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Glucógeno/metabolismo , Glucógeno Sintasa/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Corazón/fisiopatología , Hipoxia/genética , Hipoxia/fisiopatología , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Organogénesis , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/metabolismo , Receptores Purinérgicos P1/genética , Transducción de Señal , Factores de Tiempo
12.
Elife ; 122024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700995

RESUMEN

Adenine phosphoribosyltransferase (APRT) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) are two structurally related enzymes involved in purine recycling in humans. Inherited mutations that suppress HGPRT activity are associated with Lesch-Nyhan disease (LND), a rare X-linked metabolic and neurological disorder in children, characterized by hyperuricemia, dystonia, and compulsive self-injury. To date, no treatment is available for these neurological defects and no animal model recapitulates all symptoms of LND patients. Here, we studied LND-related mechanisms in the fruit fly. By combining enzymatic assays and phylogenetic analysis, we confirm that no HGPRT activity is expressed in Drosophila melanogaster, making the APRT homolog (Aprt) the only purine-recycling enzyme in this organism. Whereas APRT deficiency does not trigger neurological defects in humans, we observed that Drosophila Aprt mutants show both metabolic and neurobehavioral disturbances, including increased uric acid levels, locomotor impairments, sleep alterations, seizure-like behavior, reduced lifespan, and reduction of adenosine signaling and content. Locomotor defects could be rescued by Aprt re-expression in neurons and reproduced by knocking down Aprt selectively in the protocerebral anterior medial (PAM) dopaminergic neurons, the mushroom bodies, or glia subsets. Ingestion of allopurinol rescued uric acid levels in Aprt-deficient mutants but not neurological defects, as is the case in LND patients, while feeding adenosine or N6-methyladenosine (m6A) during development fully rescued the epileptic behavior. Intriguingly, pan-neuronal expression of an LND-associated mutant form of human HGPRT (I42T), but not the wild-type enzyme, resulted in early locomotor defects and seizure in flies, similar to Aprt deficiency. Overall, our results suggest that Drosophila could be used in different ways to better understand LND and seek a cure for this dramatic disease.


Asunto(s)
Drosophila melanogaster , Síndrome de Lesch-Nyhan , Animales , Drosophila melanogaster/fisiología , Drosophila melanogaster/genética , Síndrome de Lesch-Nyhan/genética , Síndrome de Lesch-Nyhan/metabolismo , Purinas/metabolismo , Modelos Animales de Enfermedad , Conducta Animal , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Hipoxantina Fosforribosiltransferasa/deficiencia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Locomoción
13.
Am J Transplant ; 13(10): 2524-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23924168

RESUMEN

The purine nucleoside adenosine is clinically employed in the treatment of supraventricular tachycardia. In addition, it has direct coronary vasodilatory effects, and may influence platelet aggregation. Experimental observations mechanistically link extracellular adenosine to cellular adaptation to hypoxia. Adenosine generation has been implicated in several pathophysiologic processes including angiogenesis, tumor defenses and neurodegeneration. In solid organ transplantation, prolonged tissue ischemia and subsequent reperfusion injury may lead to profound graft dysfunction. Importantly, conditions of limited oxygen availability are associated with increased production of extracellular adenosine and subsequent tissue protection. Within the rapidly expanding field of adenosine biology, several enzymatic steps in adenosine production have been characterized and multiple receptor subtypes have been identified. In this review, we briefly examine the biologic steps involved in adenosine generation and chronicle the current state of adenosine signaling in hepatic ischemia and reperfusion injury.


Asunto(s)
Adenosina/metabolismo , Isquemia/metabolismo , Hepatopatías/metabolismo , Daño por Reperfusión/metabolismo , Animales , Humanos , Isquemia/patología , Isquemia/prevención & control , Hepatopatías/patología , Hepatopatías/prevención & control , Daño por Reperfusión/patología , Daño por Reperfusión/prevención & control
14.
Adv Healthc Mater ; 12(11): e2200976, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36808718

RESUMEN

Bone autografts remain the gold standard for bone grafting surgeries despite having increased donor site morbidity and limited availability. Bone morphogenetic protein-loaded grafts represent another successful commercial alternative. However, the therapeutic use of recombinant growth factors has been associated with significant adverse clinical outcomes. This highlights the need to develop biomaterials that closely approximate the structure and composition of bone autografts, which are inherently osteoinductive and biologically active with embedded living cells, without the need for added supplements. Here, injectable growth factor-free bone-like tissue constructs are developed, that closely approximate the cellular, structural, and chemical composition of bone autografts. It is demonstrated that these micro-constructs are inherently osteogenic, and demonstrate the ability to stimulate mineralized tissue formation and regenerate bone in critical-sized defects in-vivo. Furthermore, the mechanisms that allow human mesenchymal stem cells (hMSCs) to be highly osteogenic in these constructs, despite the lack of osteoinductive supplements, are assessed, whereby Yes activated protein (YAP) nuclear localization and adenosine signaling appear to regulate osteogenic cell differentiation. The findings represent a step toward a new class of minimally invasive, injectable, and inherently osteoinductive scaffolds, which are regenerative by virtue of their ability to mimic the tissue cellular and extracellular microenvironment, thus showing promise for clinical applications in regenerative engineering.


Asunto(s)
Microgeles , Humanos , Regeneración Ósea/fisiología , Osteogénesis/fisiología , Huesos , Materiales Biocompatibles/química , Diferenciación Celular/fisiología , Ingeniería de Tejidos , Andamios del Tejido/química
15.
J Cancer Res Clin Oncol ; 149(7): 3193-3208, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35902382

RESUMEN

BACKGROUND: In salivary gland carcinomas (SGC), there is only a small fraction of entities that appears to profit from immune checkpoint inhibition (ICI). Recent findings connected the activation of adenosine-signaling with a tolerogenic microenvironment. Therefore, the inhibition of adenosine pathway markers (CD39 and/or CD73) can augment ICI and/or display a novel immunotherapeutic strategy beyond ICI. Here, we assessed the immuno-histochemical expression of CD39 and CD73 across a wide spectrum of SGCs. METHODS: In total, 114 patients with SGCs consecutively diagnosed between 2001 and 2021 were assessed for clinicopathological baseline characteristics and underwent confirmatory histopathological review. Immunohistochemical expression levels of CD39 and CD73 were assessed by applying the tumor proportion score (TPS) and the immune proportional score (IPS) comparable to PD-L1 expression analysis in routine clinical practice. Additionally, findings were correlated with PD-L1 expression levels. RESULTS: The median age was 60.6 and 51.8% patients were female. The cohort covered a spectrum of eight distinct entities. Advanced-stage disease (UICC/AJCC III/IVA-IVC) at initial diagnosis was present in the majority of patients (64/114). Immunohistochemical staining revealed positivity for CD39 and CD73 in 48.2% and 21.1% on tumor cells (TPS ≥ 1%) as well as 46.4% and 42.9% within the immune cell infiltrate (IPS ≥ 1%), respectively. Further comparative analyses revealed immune-cold entities such adenoid cystic carcinoma (AdCC), immune-hot tumors such as adenocarcinoma, not otherwise specified (AC (NOS)) and entities with intermediate immunologic features such as acinic cell carcinoma (ACC). CONCLUSION: Current results indicate entity-specific adenosine signaling signatures. These findings suggest that the adenosine pathway plays a decisive role in tumor immunity among the major spectrum of SGCs. Targeting the adenosine pathway might pose a promising therapeutic option for selected entities.


Asunto(s)
Carcinoma , Neoplasias de las Glándulas Salivales , Femenino , Humanos , Masculino , Adenosina/metabolismo , Antígenos CD , Antígeno B7-H1 , Inhibidores de Puntos de Control Inmunológico , Glándulas Salivales/metabolismo , Microambiente Tumoral , Persona de Mediana Edad
16.
Int Immunopharmacol ; 120: 110296, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37187127

RESUMEN

The gut microbiome has been implicated in the development of cardiovascular disease (CVD) and atherosclerosis (AS), a chronic inflammatory condition. Aspirin may improve the immuno-inflammatory status in AS by regulating microbiota dysbiosis. However, the potential role of aspirin in modulating gut microbiota and microbial-derived metabolites remains less explored. In this study, we investigated the effect of aspirin treatment on AS progression by modulating gut microbiota and microbial-derived metabolites in apolipoprotein E-deficient (ApoE-/-) mice. We analyzed the fecal bacterial microbiome and targeted metabolites, including short-chain fatty acids (SCFAs) and bile acids (BAs). The immuno-inflammatory status of AS was evaluated by analyzing regulatory T cells (Tregs), Th17 cells, and the CD39-CD73 adenosine signaling pathway involved in purinergic signaling. Our results indicated that aspirin altered gut microbiota, leading to an increase in the phylum Bacteroidetes and a decrease in the Firmicutes to Bacteriodetes (F/B) ratio. Aspirin treatment also increased levels of targeted SCFA metabolites, such as propionic acid, valeric acid, isovaleric acid, and isobutyric acid. Furthermore, aspirin impacted BAs by reducing the level of harmful deoxycholic acid (DCA) and increasing the levels of beneficial isoalloLCA and isoLCA. These changes were accompanied by a rebalancing of the ratio of Tregs to Th17 cells and an increase in the expression of ectonucleotidases CD39 and CD73, thereby ameliorating inflammation. These findings suggest that aspirin has an athero-protective effect with an improved immuno-inflammatory profile, partially attributed to its manipulation of the gut microbiota.


Asunto(s)
Aterosclerosis , Microbioma Gastrointestinal , Animales , Ratones , Aspirina/farmacología , Aspirina/uso terapéutico , Células Th17 , Adenosina , Linfocitos T Reguladores , Aterosclerosis/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Apolipoproteínas E/genética , Transducción de Señal
17.
Biomolecules ; 13(6)2023 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-37371474

RESUMEN

In recent years, the use of multi-target compounds has become an increasingly pursued strategy to treat complex pathologies, including cerebral ischemia. Adenosine and its receptors (A1AR, A2AAR, A2BAR, A3AR) are known to play a crucial role in synaptic transmission either in normoxic or ischemic-like conditions. Previous data demonstrate that the selective antagonism of A2AAR or A2BAR delays anoxic depolarization (AD) appearance, an unequivocal sign of neuronal injury induced by a severe oxygen-glucose deprivation (OGD) insult in the hippocampus. Furthermore, the stimulation of A2AARs or A2BARs by respective selective agonists, CGS21680 and BAY60-6583, increases pre-synaptic neurotransmitter release, as shown by the decrease in paired-pulse facilitation (PPF) at Schaffer collateral-CA1 synapses. In the present research, we investigated the effect/s of the newly synthesized dual A2AAR/A2BAR antagonist, P626, in preventing A2AAR- and/or A2BAR-mediated effects by extracellular recordings of synaptic potentials in the CA1 rat hippocampal slices. We demonstrated that P626 prevented PPF reduction induced by CGS21680 or BAY60-6583 and delayed, in a concentration-dependent manner, AD appearance during a severe OGD. In conclusion, P626 may represent a putative neuroprotective compound for stroke treatment with the possible translational advantage of reducing side effects and bypassing differences in pharmacokinetics due to combined treatment.


Asunto(s)
Adenosina , Hipocampo , Ratas , Animales , Adenosina/farmacología , Isquemia , Transmisión Sináptica , Hipoxia , Oxígeno/farmacología , Plasticidad Neuronal , Glucosa/farmacología
18.
Cells ; 11(1)2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-35011609

RESUMEN

Protein phosphorylation plays critical roles in a variety of intracellular signaling pathways and physiological functions that are controlled by neurotransmitters and neuromodulators in the brain. Dysregulation of these signaling pathways has been implicated in neurodevelopmental disorders, including autism spectrum disorder, attention deficit hyperactivity disorder and schizophrenia. While recent advances in mass spectrometry-based proteomics have allowed us to identify approximately 280,000 phosphorylation sites, it remains largely unknown which sites are phosphorylated by which kinases. To overcome this issue, previously, we developed methods for comprehensive screening of the target substrates of given kinases, such as PKA and Rho-kinase, upon stimulation by extracellular signals and identified many candidate substrates for specific kinases and their phosphorylation sites. Here, we developed a novel online database to provide information about the phosphorylation signals identified by our methods, as well as those previously reported in the literature. The "KANPHOS" (Kinase-Associated Neural Phospho-Signaling) database and its web portal were built based on a next-generation XooNIps neuroinformatics tool. To explore the functionality of the KANPHOS database, we obtained phosphoproteomics data for adenosine-A2A-receptor signaling and its downstream MAPK-mediated signaling in the striatum/nucleus accumbens, registered them in KANPHOS, and analyzed the related pathways.


Asunto(s)
Encéfalo/metabolismo , Bases de Datos de Proteínas , Neuronas/metabolismo , Proteínas Quinasas/metabolismo , Animales , Canales de Calcio/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Ratones Endogámicos C57BL , Fosfoproteínas/metabolismo , Fosforilación , Receptor de Adenosina A2A/metabolismo , Especificidad por Sustrato
19.
J Control Release ; 321: 509-518, 2020 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-32087300

RESUMEN

Clinical intraportal pancreatic islet infusion is popular for treating type I diabetes. However, multiple doses of islets and anti-rejection protocols are needed to compensate for early large cell losses post-infusion due to the harsh hepatic environment. Thus, extrahepatic sites are utilized to enable efficient islet engraftment and reduce islet mass. Here, we reported an effective islet revascularization protocol that was based on the co-implantation of islet/fibrin gel construct with poly(lactic-co-glycolic) acid sheet releasing NECA (5'-(N-ethylcarboxamido) adenosine; a potent agonist of adenosine) into mouse epididymal fat pad. Thin, flexible sheets (d = 4 mm) prepared by simple casting exhibited sustained NECA release for up to 21 days, which effectively improved early islet engraftment with a median diabetic reversal time of 18.5 days. Western blotting revealed the facilitative effect of NECA on VEGF expression from islets in vitro and from grafts in vivo. In addition, NECA directly promoted the angiogenic activities of islet-derived endothelial cells by enhancing their proliferation and vessel-like tube formation. As a result, neovasculatures were effectively formed in the engrafted islet vicinity, as evidenced by vasculature imaging and immunofluorescence. Taken together, we suggest NECA-releasing PLGA sheets offer a safe and effective drug delivery system that enhances islet engraftment while reducing islet mass at extrahepatic sites for clinical relevance.


Asunto(s)
Adenosina-5'-(N-etilcarboxamida) , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Prótesis e Implantes , Animales , Células Endoteliales , Ratones , Trasplante de Órganos , Polímeros
20.
Front Immunol ; 11: 763, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411148

RESUMEN

Although the modulation of host physiology has been interpreted as an essential process supporting baculovirus propagation, the requirement of energy supply for host antivirus reactions could not be ruled out. Our present study showed that metabolic induction upon AcMNPV (budded virus) infection of Bombyx mori stimulated virus clearance and production of the antivirus protein, gloverin. In addition, we demonstrated that adenosine receptor signaling (AdoR) played an important role in regulating such metabolic reprogramming upon baculovirus infection. By using a second lepidopteran model, Spodoptera frugiperda Sf-21 cells, we demonstrated that the glycolytic induction regulated by adenosine signaling was a conservative mechanism modulating the permissiveness of baculovirus infection. Another interesting finding in our present study is that both BmNPV and AcMNPV infection cause metabolic activation, but it appears that BmNPV infection moderates the level of ATP production, which is in contrast to a dramatic increase upon AcMNPV infection. We identified potential AdoR miRNAs induced by BmNPV infection and concluded that BmNPV may attempt to minimize metabolic activation by suppressing adenosine signaling and further decreasing the host's anti-baculovirus response. Our present study shows that activation of energy synthesis by adenosine signaling upon baculovirus infection is a host physiological response that is essential for supporting the innate immune response against infection.


Asunto(s)
Bombyx/metabolismo , Bombyx/virología , Infecciones por Virus ADN/metabolismo , Nucleopoliedrovirus/fisiología , Receptores Purinérgicos P1/metabolismo , Adenosina/metabolismo , Adenosina Trifosfato/biosíntesis , Animales , Infecciones por Virus ADN/virología , Desoxiglucosa/farmacología , Metabolismo Energético , Glucólisis/efectos de los fármacos , Glucólisis/genética , Interacciones Huésped-Patógeno/inmunología , Proteínas de Insectos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Receptores Purinérgicos P1/genética , Células Sf9 , Spodoptera , Transfección , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda