Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 43.524
Filtrar
Más filtros

Publication year range
1.
Annu Rev Immunol ; 39: 719-757, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33646859

RESUMEN

The enigmatic eosinophil has emerged as an exciting component of the immune system, involved in a plethora of homeostatic and inflammatory responses. Substantial progress has been achieved through experimental systems manipulating eosinophils in vivo, initially in mice and more recently in humans. Researchers using eosinophil knockout mice have identified a contributory role for eosinophils in basal and inflammatory processes and protective immunity. Primarily fueled by the purported proinflammatory role of eosinophils in eosinophil-associated diseases, a series of anti-eosinophil therapeutics have emerged as a new class of drugs. These agents, which dramatically deplete eosinophils, provide a valuable opportunity to characterize the consequences of eosinophil knockout humans. Herein, we comparatively describe mouse and human eosinophil knockouts. We put forth the view that human eosinophils negatively contribute to a variety of diseases and, unlike mouse eosinophils, do not yet have an identified role in physiological health; thus, clarifying all roles of eosinophils remains an ongoing pursuit.


Asunto(s)
Eosinófilos , Preparaciones Farmacéuticas , Animales , Terapia Biológica , Humanos , Ratones , Ratones Noqueados
2.
Cell ; 182(2): 481-496.e21, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32649862

RESUMEN

The response to DNA damage is critical for cellular homeostasis, tumor suppression, immunity, and gametogenesis. In order to provide an unbiased and global view of the DNA damage response in human cells, we undertook 31 CRISPR-Cas9 screens against 27 genotoxic agents in the retinal pigment epithelium-1 (RPE1) cell line. These screens identified 890 genes whose loss causes either sensitivity or resistance to DNA-damaging agents. Mining this dataset, we discovered that ERCC6L2 (which is mutated in a bone-marrow failure syndrome) codes for a canonical non-homologous end-joining pathway factor, that the RNA polymerase II component ELOF1 modulates the response to transcription-blocking agents, and that the cytotoxicity of the G-quadruplex ligand pyridostatin involves trapping topoisomerase II on DNA. This map of the DNA damage response provides a rich resource to study this fundamental cellular system and has implications for the development and use of genotoxic agents in cancer therapy.


Asunto(s)
Daño del ADN , Redes Reguladoras de Genes/fisiología , Aminoquinolinas/farmacología , Animales , Sistemas CRISPR-Cas/genética , Línea Celular , Citocromo-B(5) Reductasa/genética , Citocromo-B(5) Reductasa/metabolismo , Daño del ADN/efectos de los fármacos , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Humanos , Ratones , Ácidos Picolínicos/farmacología , ARN Guía de Kinetoplastida/metabolismo , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
3.
Cell ; 170(1): 142-157.e19, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28648661

RESUMEN

Immune-checkpoint-blockade (ICB)-mediated rejuvenation of exhausted T cells has emerged as a promising approach for treating various cancers and chronic infections. However, T cells that become fully exhausted during prolonged antigen exposure remain refractory to ICB-mediated rejuvenation. We report that blocking de novo DNA methylation in activated CD8 T cells allows them to retain their effector functions despite chronic stimulation during a persistent viral infection. Whole-genome bisulfite sequencing of antigen-specific murine CD8 T cells at the effector and exhaustion stages of an immune response identified progressively acquired heritable de novo methylation programs that restrict T cell expansion and clonal diversity during PD-1 blockade treatment. Moreover, these exhaustion-associated DNA-methylation programs were acquired in tumor-infiltrating PD-1hi CD8 T cells, and approaches to reverse these programs improved T cell responses and tumor control during ICB. These data establish de novo DNA-methylation programming as a regulator of T cell exhaustion and barrier of ICB-mediated T cell rejuvenation.


Asunto(s)
Linfocitos T CD8-positivos/citología , Epigénesis Genética , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Adenocarcinoma/tratamiento farmacológico , Animales , Linfocitos T CD8-positivos/inmunología , Metilación de ADN , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Neoplasias de la Próstata/tratamiento farmacológico , Virosis/tratamiento farmacológico
4.
Physiol Rev ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146249

RESUMEN

Syncope is a symptom in which transient loss of consciousness occurs as a consequence of a self-limited, spontaneously-terminating, period of cerebral hypoperfusion. Many circulatory disturbances (e.g. brady- or tachyarrhythmias, reflex cardioinhibition-vasodepression-hypotension) may trigger a syncope or near-syncope episode, and identifying the cause(s) is often challenging. Some syncope may involve multiple etiologies operating in concert, whereas in other cases multiple syncope events may be due to various differing causes at different times. In this communication we address current understanding of the principal contributors to syncope pathophysiology including examination of the manner in which concepts evolved, and an overview of factors that constitute consciousness and loss of consciousness, and aspects of neural-vascular control and communication that are impacted by cerebral hypo perfusion leading to syncope . Emphasis focuses on: 1) current understanding of the way transient systemic hypotension impacts brain blood flow and brain function, 2) the complexity and temporal sequence of vascular, humoral and cardiac factors that may accompany the most common causes of syncope, 3) the range of circumstances and disease states that may lead to syncope, and 4) clinical features associated with syncope and in particular the reflex syncope syndromes.

5.
EMBO J ; 43(12): 2397-2423, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38760575

RESUMEN

The nucleoside analogue decitabine (or 5-aza-dC) is used to treat several haematological cancers. Upon its triphosphorylation and incorporation into DNA, 5-aza-dC induces covalent DNA methyltransferase 1 DNA-protein crosslinks (DNMT1-DPCs), leading to DNA hypomethylation. However, 5-aza-dC's clinical outcomes vary, and relapse is common. Using genome-scale CRISPR/Cas9 screens, we map factors determining 5-aza-dC sensitivity. Unexpectedly, we find that loss of the dCMP deaminase DCTD causes 5-aza-dC resistance, suggesting that 5-aza-dUMP generation is cytotoxic. Combining results from a subsequent genetic screen in DCTD-deficient cells with the identification of the DNMT1-DPC-proximal proteome, we uncover the ubiquitin and SUMO1 E3 ligase, TOPORS, as a new DPC repair factor. TOPORS is recruited to SUMOylated DNMT1-DPCs and promotes their degradation. Our study suggests that 5-aza-dC-induced DPCs cause cytotoxicity when DPC repair is compromised, while cytotoxicity in wild-type cells arises from perturbed nucleotide metabolism, potentially laying the foundations for future identification of predictive biomarkers for decitabine treatment.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1 , Decitabina , Ubiquitina-Proteína Ligasas , Decitabina/farmacología , Humanos , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Metilación de ADN/efectos de los fármacos , Antimetabolitos Antineoplásicos/farmacología , Animales , Sumoilación/efectos de los fármacos
6.
Trends Biochem Sci ; 48(4): 360-374, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36564250

RESUMEN

Prenylation is a post-translational modification (PTM) widely found in primary and secondary metabolism. This modification can enhance the lipophilicity of molecules, enabling them to interact with lipid membranes more effectively. The prenylation of peptides is often carried out by cyanobactin prenyltransferases (PTases) from cyanobacteria. These enzymes are of interest due to their ability to add prenyl groups to unmodified peptides, thus making them more effective therapeutics through the subsequent acquisition of increased membrane permeability and bioavailability. Herein we review the current knowledge of cyanobactin PTases, focusing on their discovery, biochemistry, and bioengineering, and highlight the potential application of them as peptide alkylation biocatalysts to generate peptide therapeutics.


Asunto(s)
Dimetilaliltranstransferasa , Dimetilaliltranstransferasa/química , Dimetilaliltranstransferasa/metabolismo , Péptidos Cíclicos/química , Péptidos , Bioingeniería
7.
Annu Rev Pharmacol Toxicol ; 64: 551-575, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37758192

RESUMEN

Direct oral anticoagulants (DOACs) have largely replaced vitamin K antagonists, mostly warfarin, for the main indications for oral anticoagulation, prevention and treatment of venous thromboembolism, and prevention of embolic stroke in atrial fibrillation. While DOACs offer practical, fixed-dose anticoagulation in many patients, specific restrictions or contraindications may apply. DOACs are not sufficiently effective in high-thrombotic risk conditions such as antiphospholipid syndrome and mechanical heart valves. Patients with cancer-associated thrombosis may benefit from DOACs, but the bleeding risk, particularly in those with gastrointestinal or urogenital tumors, must be carefully weighed. In patients with frailty, excess body weight, and/or moderate-to-severe chronic kidney disease, DOACs must be cautiously administered and may require laboratory monitoring. Reversal agents have been developed and approved for life-threatening bleeding. In addition, the clinical testing of potentially safer anticoagulants such as factor XI(a) inhibitors is important to further optimize anticoagulant therapy in an increasingly elderly and frail population worldwide.


Asunto(s)
Fibrilación Atrial , Insuficiencia Renal Crónica , Humanos , Anciano , Warfarina/uso terapéutico , Warfarina/efectos adversos , Anticoagulantes/efectos adversos , Hemorragia/inducido químicamente , Hemorragia/tratamiento farmacológico , Hemorragia/complicaciones , Fibrilación Atrial/complicaciones , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/inducido químicamente , Insuficiencia Renal Crónica/tratamiento farmacológico , Administración Oral
8.
CA Cancer J Clin ; 70(2): 105-124, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32068901

RESUMEN

Globally, cancer is the second leading cause of death, with numbers greatly exceeding those for human immunodeficiency virus/acquired immunodeficiency syndrome, tuberculosis, and malaria combined. Limited access to timely diagnosis, to affordable, effective treatment, and to high-quality care are just some of the factors that lead to disparities in cancer survival between countries and within countries. In this article, the authors consider various factors that prevent access to cancer medicines (particularly access to essential cancer medicines). Even if an essential cancer medicine is included on a national medicines list, cost might preclude its use, it might be prescribed or used inappropriately, weak infrastructure might prevent it being accessed by those who could benefit, or quality might not be guaranteed. Potential strategies to address the access problems are discussed, including universal health coverage for essential cancer medicines, fairer methods for pricing cancer medicines, reducing development costs, optimizing regulation, and improving reliability in the global supply chain. Optimizing schedules for cancer therapy could reduce not only costs, but also adverse events, and improve access. More and better biomarkers are required to target patients who are most likely to benefit from cancer medicines. The optimum use of cancer medicines depends on the effective delivery of several services allied to oncology (including laboratory, imaging, surgery, and radiotherapy). Investment is necessary in all aspects of cancer care, from these supportive services to technologies, and the training of health care workers and other staff.


Asunto(s)
Accesibilidad a los Servicios de Salud/tendencias , Neoplasias/terapia , Calidad de la Atención de Salud , Terapia Combinada/tendencias , Humanos
9.
Proc Natl Acad Sci U S A ; 121(19): e2313823121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38683980

RESUMEN

HIV latency regulation in monocytes and macrophages can vary according to signals directing differentiation, polarization, and function. To investigate these processes, we generated an HIV latency model in THP-1 monocytes and showed differential levels of HIV reactivation among clonal populations. Monocyte-to-macrophage differentiation of HIV-infected primary human CD14+ and THP-1 cells induced HIV reactivation and showed that virus production increased concomitant with macrophage differentiation. We applied the HIV-infected THP-1 monocyte-to-macrophage (MLat) model to assess the biological mechanisms regulating HIV latency dynamics during monocyte-to-macrophage differentiation. We pinpointed protein kinase C signaling pathway activation and Cyclin T1 upregulation as inherent differentiation mechanisms that regulate HIV latency reactivation. Macrophage polarization regulated latency, revealing proinflammatory M1 macrophages suppressed HIV reactivation while anti-inflammatory M2 macrophages promoted HIV reactivation. Because macrophages rely on reactive-oxygen species (ROS) to exert numerous cellular functions, we disrupted redox pathways and found that inhibitors of the thioredoxin (Trx) system acted as latency-promoting agents in T-cells and monocytes, but opposingly acted as latency-reversing agents in macrophages. We explored this mechanism with Auranofin, a clinical candidate for reducing HIV reservoirs, and demonstrated Trx reductase inhibition led to ROS induced NF-κB activity, which promoted HIV reactivation in macrophages, but not in T-cells and monocytes. Collectively, cell type-specific differences in HIV latency regulation could pose a barrier to HIV eradication strategies.


Asunto(s)
Diferenciación Celular , Infecciones por VIH , VIH-1 , Homeostasis , Macrófagos , Monocitos , Oxidación-Reducción , Especies Reactivas de Oxígeno , Activación Viral , Latencia del Virus , Humanos , Latencia del Virus/fisiología , Macrófagos/virología , Macrófagos/metabolismo , Monocitos/virología , Monocitos/metabolismo , VIH-1/fisiología , Infecciones por VIH/virología , Infecciones por VIH/metabolismo , Activación Viral/fisiología , Especies Reactivas de Oxígeno/metabolismo , Células THP-1 , Transducción de Señal , Proteína Quinasa C/metabolismo
10.
Pharmacol Rev ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39326898

RESUMEN

Eight genetically distinct families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) were described in organisms allover the phylogenetic tree. They catalyze the hydration of CO2 to bicarbonate and protons, and are involved in pH regulation, chemosensing and metabolism. The 15 α-CA isoforms present in humans are pharmacological drug targets known for decades, their inhibitors being used as diuretics, antiglaucoma, antiepileptic or antiobesity drugs, as well as for the management of acute mountain sickness, idiopathic intracranial hypertension and recently, as antitumor theragnostic agents. Other potential applications include the use of CA inhibitors (CAIs) in inflammatory conditions, cerebral ischemia, neuropathic pain, or for Alzheimer's/Parkinson's disease management. CAs from pathogenic bacteria, fungi, protozoans and nematodes started to be considered as drug targets in recent years, with notable advances registered ultimately. CAIs have a complex multipharmacology probably unique to this enzyme, which has been exploited intensely but may lead to other relevant applications in the future, due to the emergence of drug design approaches which afforded highly isoform-selective compounds for most α-CAs known to date. They belong to a multitude of chemical classes (sulfonamides and isosteres, (iso)coumarins and related compounds, mono- and dithiocarbamates, selenols, ninhydrines, boronic acids, benzoxaboroles, etc). The polypharmacology of CAIs will also be discussed since drugs originally discovered for the treatment of non-CA related conditions (topiramate, zonisamide, celecoxib, pazopanib, thiazide and high-ceiling diuretics) show efective inhibition against many CAs, which led to their repurposing for diverse pharmacological applications. Significance Statement Carbonic anhydrase inhibitors have multiple pharmacologic applications as diuretics, antiglaucoma, antiepileptic, antiobesity, anti-acute mountain sickness, anti-idiopathic intracranial hypertension and as antitumor drugs. Their use in inflammatory conditions, cerebral ischemia, neuropathic pain, or neurodegenerations started to be investigated recently. Parasite carbonic anhydrases are also drug targets for antiinfectives with novel mechanisms of action which can by pass drug resistance to commonly used such agents. Drugs discovered for the management of other conditions that effectively inhibit these enzymes exert interesting polypharmacologic effects.

11.
Immunol Rev ; 313(1): 239-261, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36369988

RESUMEN

Dysregulation and accelerated activation of the alternative pathway (AP) of complement is known to cause or accentuate several pathologic conditions in which kidney injury leads to the appearance of hematuria and proteinuria and ultimately to the development of chronic renal failure. Multiple genetic and acquired defects involving plasma- and membrane-associated proteins are probably necessary to impair the protection of host tissues and to confer a significant predisposition to AP-mediated kidney diseases. This review aims to explore how our current understanding will make it possible to identify the mechanisms that underlie AP-mediated kidney diseases and to discuss the available clinical evidence that supports complement-directed therapies. Although the value of limiting uncontrolled complement activation has long been recognized, incorporating complement-targeted treatments into clinical use has proved challenging. Availability of anti-complement therapy has dramatically transformed the outcome of atypical hemolytic uremic syndrome, one of the most severe kidney diseases. Innovative drugs that directly counteract AP dysregulation have also opened new perspectives for the management of other kidney diseases in which complement activation is involved. However, gained experience indicates that the choice of drug should be tailored to each patient's characteristics, including clinical, histologic, genetic, and biochemical parameters. Successfully treating patients requires further research in the field and close collaboration between clinicians and researchers who have special expertise in the complement system.


Asunto(s)
Síndrome Hemolítico Urémico Atípico , Enfermedades Renales , Humanos , Riñón/patología , Enfermedades Renales/terapia , Enfermedades Renales/patología , Proteínas del Sistema Complemento , Síndrome Hemolítico Urémico Atípico/tratamiento farmacológico , Síndrome Hemolítico Urémico Atípico/patología , Activación de Complemento
12.
Mol Cell ; 72(1): 178-186.e5, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30270109

RESUMEN

Substantial improvements in enzyme activity demand multiple mutations at spatially proximal positions in the active site. Such mutations, however, often exhibit unpredictable epistatic (non-additive) effects on activity. Here we describe FuncLib, an automated method for designing multipoint mutations at enzyme active sites using phylogenetic analysis and Rosetta design calculations. We applied FuncLib to two unrelated enzymes, a phosphotriesterase and an acetyl-CoA synthetase. All designs were active, and most showed activity profiles that significantly differed from the wild-type and from one another. Several dozen designs with only 3-6 active-site mutations exhibited 10- to 4,000-fold higher efficiencies with a range of alternative substrates, including hydrolysis of the toxic organophosphate nerve agents soman and cyclosarin and synthesis of butyryl-CoA. FuncLib is implemented as a web server (http://FuncLib.weizmann.ac.il); it circumvents iterative, high-throughput experimental screens and opens the way to designing highly efficient and diverse catalytic repertoires.


Asunto(s)
Dominio Catalítico , Coenzima A Ligasas/química , Hidrolasas de Triéster Fosfórico/química , Ingeniería de Proteínas , Acilcoenzima A/biosíntesis , Acilcoenzima A/química , Catálisis , Coenzima A Ligasas/genética , Cinética , Mutación , Compuestos Organofosforados/química , Hidrolasas de Triéster Fosfórico/genética , Filogenia , Programas Informáticos , Especificidad por Sustrato
13.
Proc Natl Acad Sci U S A ; 120(15): e2220891120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37018203

RESUMEN

Hypoxia is a prognostic biomarker of rapidly growing cancers, where the extent of hypoxia is an indication of tumor progression and prognosis; therefore, hypoxia is also used for staging while performing chemo- and radiotherapeutics for cancer. Contrast-enhanced MRI using EuII-based contrast agents is a noninvasive method that can be used to map hypoxic tumors, but quantification of hypoxia using these agents is challenging due to the dependence of signal on the concentration of both oxygen and EuII. Here, we report a ratiometric method to eliminate concentration dependence of contrast enhancement of hypoxia using fluorinated EuII/III-containing probes. We studied three different EuII/III couples of complexes containing 4, 12, or 24 fluorine atoms to balance fluorine signal-to-noise ratio with aqueous solubility. The ratio between the longitudinal relaxation time (T1) and 19F signal of solutions containing different ratios of EuII- and EuIII-containing complexes was plotted against the percentage of EuII-containing complexes in solution. We denote the slope of the resulting curves as hypoxia indices because they can be used to quantify signal enhancement from Eu, that is related to oxygen concentration, without knowledge of the absolute concentration of Eu. This mapping of hypoxia was demonstrated in vivo in an orthotopic syngeneic tumor model. Our studies significantly contribute toward improving the ability to radiographically map and quantify hypoxia in real time, which is critical to the study of cancer and a wide range of diseases.


Asunto(s)
Flúor , Neoplasias , Humanos , Imagen por Resonancia Magnética/métodos , Hipoxia , Oxígeno
14.
Proc Natl Acad Sci U S A ; 120(27): e2219036120, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37364102

RESUMEN

We report the preparation and spectroscopic characterization of a highly elusive copper site bound exclusively to oxygen donor atoms within a protein scaffold. Despite copper generally being considered unsuitable for use in MRI contrast agents, which in the clinic are largely Gd(III) based, the designed copper coiled coil displays relaxivity values equal to, or superior than, those of the Gd(III) analog at clinical field strengths. The creation of this new-to-biology proteinaceous CuOx-binding site demonstrates the power of the de novo peptide design approach to access chemistry for abiological applications, such as for the development of MRI contrast agents.


Asunto(s)
Medios de Contraste , Cobre , Cobre/metabolismo , Medios de Contraste/química , Imagen por Resonancia Magnética , Sitios de Unión , Péptidos
15.
Clin Microbiol Rev ; 37(2): e0013523, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38421181

RESUMEN

SUMMARYClostridioides difficile infection (CDI) is one of the major issues in nosocomial infections. This bacterium is constantly evolving and poses complex challenges for clinicians, often encountered in real-life scenarios. In the face of CDI, we are increasingly equipped with new therapeutic strategies, such as monoclonal antibodies and live biotherapeutic products, which need to be thoroughly understood to fully harness their benefits. Moreover, interesting options are currently under study for the future, including bacteriophages, vaccines, and antibiotic inhibitors. Surveillance and prevention strategies continue to play a pivotal role in limiting the spread of the infection. In this review, we aim to provide the reader with a comprehensive overview of epidemiological aspects, predisposing factors, clinical manifestations, diagnostic tools, and current and future prophylactic and therapeutic options for C. difficile infection.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Humanos , Infecciones por Clostridium/epidemiología , Infecciones por Clostridium/prevención & control , Infecciones por Clostridium/terapia , Factores de Riesgo , Infección Hospitalaria/epidemiología , Infección Hospitalaria/prevención & control , Infección Hospitalaria/microbiología , Antibacterianos/uso terapéutico , Historia del Siglo XXI
16.
Clin Microbiol Rev ; 37(1): e0009823, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38319102

RESUMEN

Schistosomiasis is a neglected tropical disease caused by the helminth Schistosoma spp. and has the second highest global impact of all parasites. Schistosoma are transmitted through contact with contaminated fresh water predominantly in Africa, Asia, the Middle East, and South America. Due to the widespread prevalence of Schistosoma, co-infection with other infectious agents is common but often poorly described. Herein, we review recent literature describing the impact of Schistosoma co-infection between species and Schistosoma co-infection with blood-borne protozoa, soil-transmitted helminths, various intestinal protozoa, Mycobacterium, Salmonella, various urinary tract infection-causing agents, and viral pathogens. In each case, disease severity and, of particular interest, the immune landscape, are altered as a consequence of co-infection. Understanding the impact of schistosomiasis co-infections will be important when considering treatment strategies and vaccine development moving forward.


Asunto(s)
Coinfección , Helmintiasis , Esquistosomiasis , Humanos , Coinfección/epidemiología , Coinfección/parasitología , Esquistosomiasis/complicaciones , Esquistosomiasis/epidemiología , Esquistosomiasis/parasitología , África , Suelo/parasitología , Prevalencia , Helmintiasis/complicaciones , Helmintiasis/epidemiología , Helmintiasis/parasitología
17.
J Biol Chem ; 300(8): 107492, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925328

RESUMEN

The human alkylation B (AlkB) homologs, ALKBH2 and ALKBH3, respond to methylation damage to maintain genomic integrity and cellular viability. Both ALKBH2 and ALKBH3 are direct reversal repair enzymes that remove 1-methyladenine (1meA) and 3-methylcytosine (3meC) lesions commonly generated by alkylating chemotherapeutic agents. Thus, the existence of deficiencies in ALKBH proteins can be exploited in synergy with chemotherapy. In this study, we investigated possible interactions between ALKBH2 and ALKBH3 with other proteins that could alter damage response and discovered an interaction with the mismatch repair (MMR) system. To test whether the lack of active MMR impacts ALKBH2 and/or ALKBH3 response to methylating agents, we generated cells deficient in ALKBH2, ALKBH3, or both in addition to Mlh homolog 1 (MLH1), another MMR protein. We found that MLH1koALKBH3ko cells showed enhanced resistance toward SN1- and SN2-type methylating agents, whereas MLH1koALKBH2ko cells were only resistant to SN1-type methylating agents. Concomitant loss of ALKBH2 and ALKBH3 (ALKBH2ko3ko) rendered cells sensitive to SN1- and SN2-agents, but the additional loss of MLH1 enhanced resistance to both types of damage. We also showed that ALKBH2ko3ko cells have an ATR-dependent arrest at the G2/M checkpoint, increased apoptotic signaling, and replication fork stress in response to methylation. However, these responses were not observed with the loss of functional MLH1 in MLH1koALKBH2ko3ko cells. Finally, in MLH1koALKBH2ko3ko cells, we observed elevated mutant frequency in untreated and temozolomide treated cells. These results suggest that obtaining a more accurate prognosis of chemotherapeutic outcome requires information on the functionality of ALKBH2, ALKBH3, and MLH1.


Asunto(s)
Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB , Reparación de la Incompatibilidad de ADN , Homólogo 1 de la Proteína MutL , Humanos , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/metabolismo , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/genética , Homólogo 1 de la Proteína MutL/metabolismo , Homólogo 1 de la Proteína MutL/genética , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/metabolismo , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/genética , Desmetilación
18.
J Biol Chem ; 300(6): 107363, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735475

RESUMEN

Cryptophycins are microtubule-targeting agents (MTAs) that belong to the most potent antimitotic compounds known to date; however, their exact molecular mechanism of action remains unclear. Here, we present the 2.2 Å resolution X-ray crystal structure of a potent cryptophycin derivative bound to the αß-tubulin heterodimer. The structure addresses conformational issues present in a previous 3.3 Å resolution cryo-electron microscopy structure of cryptophycin-52 bound to the maytansine site of ß-tubulin. It further provides atomic details on interactions of cryptophycins, which had not been described previously, including ones that are in line with structure-activity relationship studies. Interestingly, we discovered a second cryptophycin-binding site that involves the T5-loop of ß-tubulin, a critical secondary structure element involved in the exchange of the guanosine nucleotide and in the formation of longitudinal tubulin contacts in microtubules. Cryptophycins are the first natural ligands found to bind to this new "ßT5-loop site" that bridges the maytansine and vinca sites. Our results offer unique avenues to rationally design novel MTAs with the capacity to modulate T5-loop dynamics and to simultaneously engage multiple ß-tubulin binding sites.


Asunto(s)
Maitansina , Tubulina (Proteína) , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Maitansina/química , Maitansina/análogos & derivados , Humanos , Cristalografía por Rayos X , Sitios de Unión , Microtúbulos/metabolismo , Microtúbulos/química , Alcaloides de la Vinca/química , Alcaloides de la Vinca/metabolismo
19.
Plant J ; 118(3): 626-644, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38241088

RESUMEN

Drought is one of the major and growing threats to agriculture productivity and food security. Metabolites are involved in the regulation of plant responses to various environmental stresses, including drought stress. The complex drought tolerance can be ascribed to several simple metabolic traits. These traits could then be used for detecting the genetic architecture of drought tolerance. Plant metabolomes show dynamic differences when drought occurs during different developmental stages or upon different levels of drought stress. Here, we reviewed the major and most recent findings regarding the metabolite-mediated plant drought response. Recent progress in the development of drought-tolerant agents is also discussed. We provide an updated schematic overview of metabolome-driven solutions for increasing crop drought tolerance and thereby addressing an impending agricultural challenge.


Asunto(s)
Adaptación Fisiológica , Productos Agrícolas , Sequías , Metaboloma , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Productos Agrícolas/fisiología , Estrés Fisiológico
20.
Circulation ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39229700

RESUMEN

BACKGROUND: Renal denervation (RDN) can lower blood pressure (BP) in patients with hypertension in both the presence and absence of medication. This is the first sham-controlled trial investigating the safety and efficacy of RDN in China. METHODS: This prospective, multicenter, randomized, patient- and outcome-assessor-blinded, sham-controlled trial investigated radiofrequency RDN in patients with hypertension on standardized triple antihypertensive therapy. Eligible patients were randomized 1:1 to undergo RDN using a multi-electrode radiofrequency catheter (Iberis; AngioCare, Shanghai, China) or a sham procedure. The primary efficacy outcome was the between-group difference in baseline-adjusted change in mean 24-hour ambulatory systolic BP from randomization to 6 months. RESULTS: Of 217 randomized patients (mean age, 45.3±10.2 years; 21% female), 107 were randomized to RDN and 110 were randomized to sham control. At 6 months, there was a greater reduction in 24-hour systolic BP in the RDN (-13.0±12.1 mm Hg) compared with the sham control group (-3.0±13.0 mm Hg; baseline-adjusted between-group difference, -9.4 mm Hg [95% CI, -12.8 to -5.9]; P<0.001). Compared with sham, 24-hour diastolic BP was lowered by -5.0 mm Hg ([95% CI, -7.5 to -2.4]; P<0.001) 6 months after RDN, and office systolic and diastolic BP was lowered by -6.4 mm Hg ([95% CI, -10.5 to -2.3]; P=0.003) and -5.1 mm Hg ([95% CI, -8.2 to -2.0]; P=0.001), respectively. One patient in the RDN group experienced an access site complication (hematoma), which resolved without sequelae. No other major device- or procedure-related safety events occurred through follow-up. CONCLUSIONS: In this trial of Chinese patients with uncontrolled hypertension on a standardized triple pharmacotherapy, RDN was safe and reduced ambulatory and office BP at 6 months compared with sham. REGISTRATION: URL: https://clinicaltrials.gov; Unique identifier: NCT02901704.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda