Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
BMC Plant Biol ; 24(1): 520, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853268

RESUMEN

BACKGROUND: One of the most effective strategies to increase phytochemicals production in plant cultures is elicitation. In the present study, we studied the effect of abiotic and biotic elicitors on the growth, key biosynthetic genes expression, antioxidant capacity, and phenolic compounds content in Rhizobium (Agrobacterium) rhizogenes-induced hairy roots cultures of Ficus carica cv. Siah. METHODS: The elicitors included methyl jasmonate (MeJA) as abiotic elicitor, culture filtrate and cell extract of fungus Piriformospora indica as biotic elicitors were prepared to use. The cultures of F. carica hairy roots were exposed to elicitores at different time points. After elicitation treatments, hairy roots were collected, and evaluated for growth index, total phenolic (TPC) and flavonoids (TFC) content, antioxidant activity (2,2-diphenyl-1-picrylhydrazyl, DPPH and ferric ion reducing antioxidant power, FRAP assays), expression level of key phenolic/flavonoid biosynthesis genes, and high-performance liquid chromatography (HPLC) analysis of some main phenolic compounds in comparison to control. RESULTS: Elicitation positively or negatively affected the growth, content of phenolic/flavonoid compounds and DPPH and FRAP antioxidant activities of hairy roots cultures in depending of elicitor concentration and exposure time. The maximum expression level of chalcone synthase (CHS: 55.1), flavonoid 3'-hydroxylase (F3'H: 34.33) genes and transcription factors MYB3 (32.22), Basic helix-loop-helix (bHLH: 45.73) was induced by MeJA elicitation, whereas the maximum expression level of phenylalanine ammonia-lyase (PAL: 26.72) and UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT: 27.57) genes was obtained after P. indica culture filtrate elicitation. The P. indica elicitation also caused greatest increase in the content of gallic acid (5848 µg/g), caffeic acid (508.2 µg/g), rutin (43.5 µg/g), quercetin (341 µg/g), and apigenin (1167 µg/g) phenolic compounds. CONCLUSIONS: This study support that elicitation of F. carica cv. Siah hairy roots can be considered as an effective biotechnological method for improved phenolic/flavonoid compounds production, and of course this approach requires further research.


Asunto(s)
Acetatos , Ciclopentanos , Ficus , Oxilipinas , Fenoles , Raíces de Plantas , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Acetatos/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Fenoles/metabolismo , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Antioxidantes/metabolismo , Basidiomycota , Reguladores del Crecimiento de las Plantas/metabolismo , Agrobacterium
2.
Plant Cell Rep ; 43(9): 223, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39196398

RESUMEN

KEY MESSAGE: Natural transformation with R. rhizogenes enhances osmotic stress tolerance in oilseed rape through increasing osmoregulation capacity, enhancing maintenance of hydraulic integrity and total antioxidant capacity. Transformation of plants using wild strains of agrobacteria is termed natural transformation and is not covered by GMO legislation in, e.g., European Union and Japan. In this study, offspring lines of Rhizobium rhizogenes naturally transformed oilseed rape (Brassica napus), i.e., A11 and B3 (termed root-inducing (Ri) lines), were investigated for osmotic stress resilience. Under polyethylene glycol 6000 (PEG) 10% (w/v)-induced osmotic stress, the Ri lines, particularly A11, had less severe leaf wilting, higher stomatal conductance (8.2 times more than WT), and a stable leaf transpiration rate (about 2.9 mmol m-2 s-1). Although the leaf relative water content and leaf water potential responded similarly to PEG treatment between the Ri lines and WT, a significant reduction of the turgid weight to dry weight ratio in A11 and B3 indicated a greater capacity of osmoregulation in the Ri lines. Moreover, the upregulation of plasma membrane intrinsic proteins genes (PIPs) in roots and downregulation of these genes in leaves of the Ri lines implied a better maintenance of hydraulic integrity in relation to the WT. Furthermore, the Ri lines had greater total antioxidant capacity (TAC) than the WT under PEG stress. Collectively, the enhanced tolerance of the Ri lines to PEG-induced osmotic stress could be attributed to the greater osmoregulation capacity, better maintenance of hydraulic integrity, and greater TAC than the WT. In addition, Ri-genes (particularly rolA and rolD) play roles in response to osmotic stress in Ri oilseed rape. This study reveals the potential of R. rhizogenes transformation for application in plant drought resilience.


Asunto(s)
Brassica napus , Presión Osmótica , Hojas de la Planta , Raíces de Plantas , Brassica napus/genética , Brassica napus/fisiología , Brassica napus/microbiología , Raíces de Plantas/microbiología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Agrobacterium/genética , Agrobacterium/fisiología , Plantas Modificadas Genéticamente , Regulación de la Expresión Génica de las Plantas , Polietilenglicoles/farmacología , Antioxidantes/metabolismo , Osmorregulación/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transformación Genética , Agua/metabolismo
3.
Planta ; 259(1): 23, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38108903

RESUMEN

MAIN CONCLUSION: The ex vitro hairy root system from petioles of detached soybean leaves allows the functional validation of genes using classical transgenesis and CRISPR strategies (e.g., sgRNA validation, gene activation) associated with nematode bioassays. Agrobacterium rhizogenes-mediated root transformation has been widely used in soybean for the functional validation of target genes in classical transgenesis and single-guide RNA (sgRNA) in CRISPR-based technologies. Initial data showed that in vitro hairy root induction from soybean cotyledons and hypocotyls were not the most suitable strategies for simultaneous performing genetic studies and nematode bioassays. Therefore, an ex vitro hairy root system was developed for in planta screening of target molecules during soybean parasitism by root-knot nematodes (RKNs). Applying this method, hairy roots were successfully induced by A. rhizogenes from petioles of detached soybean leaves. The soybean GmPR10 and GmGST genes were then constitutively overexpressed in both soybean hairy roots and tobacco plants, showing a reduction in the number of Meloidogyne incognita-induced galls of up to 41% and 39%, respectively. In addition, this system was evaluated for upregulation of the endogenous GmExpA and GmExpLB genes by CRISPR/dCas9, showing high levels of gene activation and reductions in gall number of up to 58.7% and 67.4%, respectively. Furthermore, morphological and histological analyses of the galls were successfully performed. These collective data validate the ex vitro hairy root system for screening target genes, using classical overexpression and CRISPR approaches, directly in soybean in a simple manner and associated with nematode bioassays. This system can also be used in other root pathosystems for analyses of gene function and studies of parasite interactions with plants, as well as for other purposes such as studies of root biology and promoter characterization.


Asunto(s)
Glycine max , Nematodos , Animales , Glycine max/genética , ARN Guía de Sistemas CRISPR-Cas , Bioensayo , Cotiledón , Nematodos/genética
4.
Crit Rev Biotechnol ; 43(6): 956-970, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35819370

RESUMEN

Bacopa monnieri L. Pennell, commonly known as Brahmi, is an important medicinal plant that belongs to the family Plantaginaceae. Brahmi is rich in innumerable bioactive secondary metabolites, especially bacosides that can be employed to reduce many health issues. This plant is used as a neuro-tonic and treatment for mental health, depression, and cognitive performance. Brahmi is also known for its antioxidant, anti-inflammatory, and anti-hepatotoxic activities. There is a huge demand for its raw materials, particularly for the extraction of bioactive molecules. The conventional mode of propagation could not meet the required commercial demand. To overcome this, biotechnological approaches, such as plant tissue culture techniques have been established for the production of important secondary metabolites through various culture techniques, such as callus and cell suspension cultures and organ cultures, to allow for rapid propagation and conservation of medicinally important plants with increased production of bioactive compounds. It has been found that a bioreactor-based technology can also enhance the multiplication rate of cell and organ cultures for commercial propagation of medicinally important bioactive molecules. The present review focuses on the propagation and production of bacoside A by cell and organ cultures of Bacopa monnieri, a nootropic plant. The review also focuses on the biosynthesis of bacoside A, different elicitation strategies, and the over-expression of genes for the production of bacoside-A. It also identifies research gaps that need to be addressed in future studies for the sustainable production of bioactive molecules from B. monnieri.


Asunto(s)
Bacopa , Nootrópicos , Saponinas , Triterpenos , Bacopa/genética , Bacopa/metabolismo , Nootrópicos/metabolismo , Triterpenos/metabolismo , Extractos Vegetales
5.
Appl Microbiol Biotechnol ; 107(7-8): 2097-2109, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36881118

RESUMEN

The biological function of the agrobacterial oncogene rolA is very poorly understood compared to other components of the mechanism of horizontal gene transfer during agrobacterial colonization of plants. Research groups around the world have worked on this problem, and available information is reviewed in this review, but other rol oncogenes have been studied much more thoroughly. Having one unexplored element makes it impossible to form a complete picture. However, the limited data suggest that the rolA oncogene and its regulatory apparatus have great potential in plant biotechnology and genetic engineering. Here, we collect and discuss available experimental data about the function and structure of rolA. There is still no clear understanding of the mechanism of RolA and its structure and localization. We believe this is because of the nucleotide structure of a frameshift in the most well-studied rolA gene of the agropine type pRi. In fact, interest in the genes of agrobacteria as natural tools for the phenotypic or biochemical engineering of plants increased. We believe that a detailed understanding of the molecular mechanisms will be forthcoming. KEY POINTS: • Among pRi T-DNA oncogenes, rolA is the least understood in spite of many studies. • Frameshift may be the reason for the failure to elucidate the role of agropine rolA. • Understanding of rolA is promising for the phenotypic and biochemical engineering of plants.


Asunto(s)
Transferencia de Gen Horizontal , Rhizobium , Plantas Modificadas Genéticamente , ADN , Ingeniería Genética , Oncogenes , Rhizobium/genética
6.
Plant Cell Rep ; 42(3): 575-585, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36624204

RESUMEN

KEY MESSAGE: A highly efficient transformation procedure to generate transgenic Stylosanthes roots was established. SgEXPB1 is involved in Stylosanthes root growth under phosphorus deficiency. Stylo (Stylosanthes spp.) is an important forage legume widely applied in agricultural systems in the tropics. Due to the recalcitrance of stylo genetic transformation, functional characterization of candidate genes involved in stylo root growth is limited. This study established an efficient procedure for Agrobacterium rhizogenes-mediated transformation for generating transgenic composite plants of S. guianensis cultivar 'Reyan No. 5'. Results showed that composite stylo plants with transgenic hairy roots were efficiently generated by A. rhizogenes strains K599 and Arqual, infecting the residual hypocotyl at 1.0 cm of length below the cotyledon leaves of 9-d-old seedlings, leading to a high transformation efficiency of > 95% based on histochemical ß-glucuronidase (GUS) staining. Notably, 100% of GUS staining-positive hairy roots can be achieved per composite stylo plant. Subsequently, SgEXPB1, a ß-expansin gene up-regulated by phosphorus (P) deficiency in stylo roots, was successfully overexpressed in hairy roots. Analysis of hairy roots showed that root growth and P concentration in the transgenic composite plants were increased by SgEXPB1 overexpression under low-P treatment. Taken together, a highly efficient A. rhizogenes-mediated transformation procedure for generating composite stylo plants was established to study the function of SgEXPB1, revealing that this gene is involved in stylo root growth during P deficiency.


Asunto(s)
Fabaceae , Fósforo , Plantas Modificadas Genéticamente/genética , Fósforo/farmacología , Fabaceae/genética , Genes de Plantas , Hojas de la Planta/genética , Raíces de Plantas , Transformación Genética
7.
Mycorrhiza ; 33(3): 181-185, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37198421

RESUMEN

Composite plants containing transgenic hairy roots produced with Agrobacterium rhizogenes-mediated transformation have become an important method to study the interaction between plants and arbuscular mycorrhizal fungi (AMF). Not all hairy roots induced by A. rhizogenes are transgenic, however, which leads to requirement of a binary vector to carry a reporter gene to distinguish transgenic roots from non-transformed hairy roots. The beta-glucuronidase gene (GUS) and fluorescent protein gene often are used as reporter markers in the process of hairy root transformation, but they require expensive chemical reagents or imaging equipment. Alternatively, AtMYB75, an R2R3 MYB transcription factor from Arabidopsis thaliana, recently has been used as a reporter gene in hairy root transformation in some leguminous plants and can cause anthocyanin accumulation in transgenic hairy roots. Whether AtMYB75 can be used as a reporter gene in the hairy roots of tomato and if the anthocyanins accumulating in the roots will affect AMF colonization, however, are still unknown. In this study, the one-step cutting method was used for tomato hairy root transformation by A.rhizogenes. It is faster and has a higher transformation efficiency than the conventional method. AtMYB75 was used as a reporter gene in tomato hairy root transformation. The results showed that the overexpression of AtMYB75 caused anthocyanin accumulation in the transformed hairy roots. Anthocyanin accumulation in the transgenic hairy roots did not affect their colonization by the arbuscular mycorrhizal fungus, Funneliformis mosseae strain BGC NM04A, and there was no difference in the expression of the AMF colonization marker gene SlPT4 in AtMYB75 transgenic roots and wild-type roots. Hence, AtMYB75 can be used as a reporter gene in tomato hairy root transformation and in the study of symbiosis between tomato and AMF.


Asunto(s)
Micorrizas , Solanum lycopersicum , Simbiosis , Micorrizas/genética , Genes Reporteros , Solanum lycopersicum/genética , Antocianinas/metabolismo , Raíces de Plantas/microbiología
8.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37108215

RESUMEN

Gibberellins (GAs) are the key regulators controlling plant growth, wood production and the stress responses in perennial woody plants. The role of GA in regulating the above-mentioned processes in Eucalyptus remain largely unclear. There is still a lack of systematic identification and functional characterization of GA-related genes in Eucalyptus. In this study, a total of 59,948 expressed genes were identified from the major vegetative tissues of the E. grandis × E. urophylla using transcriptome sequencing. Then, the key gene families in each step of GA biosynthesis, degradation and signaling were investigated and compared with those of Arabidopsis, rice, and Populus. The expression profile generated using Real-time quantitative PCR showed that most of these genes exhibited diverse expression patterns in different vegetative organs and in response to abiotic stresses. Furthermore, we selectively overexpressed EguGA20ox1, EguGA20ox2 and EguGA2ox1 in both Arabidopsis and Eucalyptus via Agrobacterium tumefaciens or A. rhizogenes-mediated transformation. Though both Arabidopsis EguGA20ox1- and EguGA20ox2-overexpressing (OE) lines exhibited better vegetative growth performance, they were more sensitive to abiotic stress, unlike EguGA2ox1-OE plants, which exhibited enhanced stress resistance. Moreover, overexpression of EguGA20ox in Eucalyptus roots caused significantly accelerated hairy root initiation and elongation and improved root xylem differentiation. Our study provided a comprehensive and systematic study of the genes of the GA metabolism and signaling and identified the role of GA20ox and GA2ox in regulating plant growth, stress tolerance, and xylem development in Eucalyptus; this could benefit molecular breeding for obtaining high-yield and stress-resistant Eucalyptus cultivars.


Asunto(s)
Arabidopsis , Eucalyptus , Transcriptoma , Eucalyptus/genética , Eucalyptus/metabolismo , Giberelinas/metabolismo , Arabidopsis/genética , Transducción de Señal/genética , Desarrollo de la Planta , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
9.
Int J Mol Sci ; 25(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38203546

RESUMEN

Taxus, a vital source of the anticancer drug paclitaxel, grapples with a pronounced supply-demand gap. Current efforts to alleviate the paclitaxel shortage involve expanding Taxus cultivation through cutting propagation. However, traditional cutting propagation of Taxus is difficult to root and time-consuming. Obtaining the roots with high paclitaxel content will cause tree death and resource destruction, which is not conducive to the development of the Taxus industry. To address this, establishing rapid and efficient stem rooting systems emerges as a key solution for Taxus propagation, facilitating direct and continuous root utilization. In this study, Agrobacterium rhizogenes were induced in the 1-3-year-old branches of Taxus × media Rehder, which has the highest paclitaxel content. The research delves into the rooting efficiency induced by different A. rhizogenes strains, with MSU440 and C58 exhibiting superior effects. Transcriptome and metabolome analyses revealed A. rhizogenes' impact on hormone signal transduction, amino acid metabolism, zeatin synthesis, and secondary metabolite synthesis pathways in roots. LC-MS-targeted quantitative detection showed no significant difference in paclitaxel and baccatin III content between naturally formed and induced roots. These findings underpin the theoretical framework for T. media rapid propagation, contributing to the sustainable advancement of the Taxus industry.


Asunto(s)
Agrobacterium , Invenciones , Taxus , Taxus/genética , Tecnología , Paclitaxel/farmacología
10.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37108084

RESUMEN

Plant-derived antioxidants are intrinsic components of human diet and factors implicated in tolerance mechanisms against environmental stresses in both plants and humans. They are being used as food preservatives and additives or ingredients of cosmetics. For nearly forty years, Rhizobium rhizogenes-transformed roots (hairy roots) have been studied in respect to their usability as producers of plant specialized metabolites of different, primarily medical applications. Moreover, the hairy root cultures have proven their value as a tool in crop plant improvement and in plant secondary metabolism investigations. Though cultivated plants remain a major source of plant polyphenolics of economic importance, the decline in biodiversity caused by climate changes and overexploitation of natural resources may increase the interest in hairy roots as a productive and renewable source of biologically active compounds. The present review examines hairy roots as efficient producers of simple phenolics, phenylethanoids, and hydroxycinnamates of plant origin and summarizes efforts to maximize the product yield. Attempts to use Rhizobium rhizogenes-mediated genetic transformation for inducing enhanced production of the plant phenolics/polyphenolics in crop plants are also mentioned.


Asunto(s)
Antioxidantes , Rhizobium , Humanos , Plantas Modificadas Genéticamente/genética , Antioxidantes/metabolismo , Agrobacterium/genética , Fenoles/metabolismo , Raíces de Plantas/metabolismo , Transformación Genética , Rhizobium/genética
11.
Molecules ; 28(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37375158

RESUMEN

Various strategies have been used to increase the efficiency of secondary metabolite production in Salvia plants. This report is the first to examine the spontaneous development of Salvia bulleyana shoots transformed by Agrobacterium rhizogenes on hairy roots and the influence of light conditions on the phytochemical profile of this shoot culture. The transformed shoots were cultivated on solid MS medium with 0.1 mg/L of IAA (indole-3-acetic acid) and 1 mg/L of m-Top (meta-topolin), and their transgenic characteristic was confirmed by PCR-based detection of the rolB and rolC genes in the target plant genome. This study assessed the phytochemical, morphological, and physiological responses of the shoot culture under stimulation by light-emitting diodes (LEDs) with different wavelengths (white, WL; blue, B; red, RL; and red/blue, ML) and under fluorescent lamps (FL, control). Eleven polyphenols identified as phenolic acids and their derivatives were detected via ultrahigh-performance liquid chromatography with diode-array detection coupled to electrospray ionization tandem mass spectrometry (UPLC-DAD/ESI-MS) in the plant material, and their content was determined using high-performance liquid chromatography (HPLC). Rosmarinic acid was the predominant compound in the analyzed extracts. The mixed red and blue LEDs gave the highest levels of polyphenol and rosmarinic acid accumulation (respectively, 24.3 mg/g of DW and 20.0 mg/g of DW), reaching two times greater concentrations of polyphenols and three times greater rosmarinic acid levels compared to the aerial parts of two-year-old intact plants. Similar to WL, ML also stimulated regeneration ability and biomass accumulation effectively. However, the highest total photosynthetic pigment production (1.13 mg/g of DW for total chlorophyll and 0.231 mg/g of DW for carotenoids) was found in the shoots cultivated under RL followed by BL, while the culture exposed to BL was characterized as having the highest antioxidant enzyme activities.


Asunto(s)
Polifenoles , Salvia , Polifenoles/análisis , Salvia/química , Depsidos/metabolismo , Cinamatos/metabolismo , Antioxidantes/análisis , Raíces de Plantas/química , Ácido Rosmarínico
12.
Molecules ; 28(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36985658

RESUMEN

The flavonoids in Tetrastigma hemsleyanum Diels et Gilg (T. hemsleyanum) have high medicinal value. However, because of slow growth and harsh ecological environments, T. hemsleyanum is currently an endangered species. In light of this, we present a detailed hairy root induction procedure as a promising alternative to true roots with medicinal value. The percentage of explants induced by Agrobacterium rhizogenes (A. rhizogenes) to produce hairy roots out of the total number of explants infected (induction rate 1) was 95.83 ± 7.22%, and the proportion of hairy roots that contained Rol B fragments among all the hairy roots with or without Rol B fragments (positive rate) was 96.57 ± 1.72%. The transformation was further confirmed by the expression of the GUS protein. A high-productive hairy root line was screened for the comparative profiling of six flavonoids with true roots using high-performance liquid chromatography (HPLC). The contents of (+)-catechin, (-)-epicatechin, neochlorogenic acid, luteolin-6-C-glucoside, and orientin were 692.63 ± 127.24, 163.34 ± 31.86, 45.95 ± 3.46, 209.68 ± 6.03, and 56.82 ± 4.75 µg/g dry weight (DW) of 30-day-old hairy roots, respectively, which were higher than those of 3-year-old true roots. Hairy roots have stronger antioxidant activity than true roots. Overall, the hairy roots of T. hemsleyanum could serve as promising alternative sources for the production of flavonoids with medicinal uses.


Asunto(s)
Catequina , Vitaceae , Flavonoides/metabolismo , Raíces de Plantas/metabolismo , Catequina/metabolismo
13.
Bull Environ Contam Toxicol ; 110(2): 54, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36757451

RESUMEN

In this study, phytoremediation potential of toxic metals like selenium (Se) and lanthanum (La) by transformed hairy roots was investigated and compared with plantlets under in-vitro conditions. Agrobacterium rhizogenes A4RS could induce hairy roots with higher biomass in 5-7 days of infection on in-vitro leaves of Hybanthus enneaspermus. The ICP-OES data indicated that the hairy roots were able to accumulate both selenium and lanthanum efficiently compared to plantlets. The hairy roots and plantlets show optimum absorption at 50 ppm under both individual and combined metal supply. The metal accumulation performances increased by 13.6% (La) and 10.9% (Se) in hairy roots with combined metal supply (La and Se) compared to individual supply (La or Se) conditions. The Se accumulated more than La, but the La accumulation percentage was found to increase substantially under combined metal supply conditions, shows the suitability and potential of hairy roots for phytoremediation of La and Se.


Asunto(s)
Selenio , Violaceae , Plantas Modificadas Genéticamente , Lantano , Adsorción , Biodegradación Ambiental , Raíces de Plantas/microbiología , Agrobacterium/genética
14.
Physiol Mol Biol Plants ; 29(5): 629-640, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37363423

RESUMEN

Biotic factors affect the content of secondary metabolites by interfering with molecular and biochemical pathways. In the current study, A. rhizogenes strains were inoculated into basil (Ocimum basilicum) to examine the effect of plant-microbe interaction on the accumulation of monomeric phenolic metabolites and the transcript levels of selected genes involved in the biochemical synthesis of secondary compounds. Initially, the integration of the rolB gene was validated by performing PCR analysis on genomic DNA samples from the basil plant inoculated with A. rhizogenes strains. We have detected that the accumulation of mRNA transcripts linked to the biosynthesis pathway of phenolic compounds has higher transcript expression levels in the leaves of transformed basil in proportion to uninoculated plants. Basil plants inoculated with A. rhizogenes 39207 strain had higher transcript levels of CAD, C4H, TAT, FLS, EGS, HPPR, PAL, and RAS genes than other experimental groups. We have identified eleven phenolic components, and the level of rosmarinic acid, eugenol, chicoric acid, and rutin increased in the inoculated basil leaves. However, the inoculation of A. rhizogenes did not cause a change in the compounds of chlorogenic acid, methyl chavicol, cinnamic acid, quercetin, vanillic acid, and caffeic acid. In conclusion, the increase in basic secondary metabolites could be achieved by the A. rhizogenes-mediated transformation of basil plants, and especially ATCC 43057 strain may be one of the A. rhizogenes strains. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01320-w.

15.
Curr Issues Mol Biol ; 44(9): 3884-3904, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36135179

RESUMEN

Some of the most effective anticancer compounds are still derived from plants since the chemical synthesis of chiral molecules is not economically efficient. Rapid discovery of lead compounds with pronounced biological activity is essential for the successful development of novel drug candidates. This work aims to present the chemical diversity of antitumor bioactive compounds and biotechnological approaches as alternative production and sustainable plant biodiversity conservation. Astragalus spp., (Fabaceae) and Gloriosa spp. (Liliaceae) are selected as research objects within this review because they are known for their anticancer activity, because they represent two of the largest families respectively in dicots and monocots, and also because many of the medicinally important plants are rare and endangered. We summarized the ethnobotanical data concerning their anticancer application, highlighted the diversity of their secondary metabolites possessing anticancer properties such as saponins, flavonoids, and alkaloids, and revealed the potential of the in vitro cultures as an alternative way of their production. Since the natural supply is limited, it is important to explore the possibility of employing plant cell or organ in vitro cultures for the biotechnological production of these compounds as an alternative.

16.
Planta ; 256(1): 8, 2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690636

RESUMEN

MAIN CONCLUSION: Increased flavonol accumulation and enhanced drought tolerance in A4-rolB-overexpressing plants can be explained by the cooperative action of the SA and ROS signalling pathways. Clarification of function of the A4-rolB plast gene from pRiA4 of Rhizobium rhizogenes will allow a better understanding of the biological principles of the natural transformation process and its use as a tool for plant bioengineering. In the present study, we investigated whether the overexpression of A4-rolB gene could regulate two important processes, flavonoid biosynthesis and drought tolerance. In addition, we investigated some aspects of the possible machinery of the A4-rolB-induced changes in plant physiology, such as crosstalk of the major signalling systems. Based on the data obtained in this work, it can be presumed that constitutive overexpression of A4-rolB leads to the activation of the salicylic acid signalling system. An increase in flavonol accumulation and enhanced drought tolerance can be explained by the cooperative action of SA and ROS pathways.


Asunto(s)
Arabidopsis , Agrobacterium , Arabidopsis/genética , Sequías , Flavonoides/metabolismo , Flavonoles/metabolismo , Homeostasis , Hormonas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Especies Reactivas de Oxígeno/metabolismo
17.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36499423

RESUMEN

Ipomoea batatas is a vital root crop and a source of caffeoylquinic acid derivatives (CQAs) with potential health-promoting benefits. As a naturally transgenic plant, I. batatas contains cellular T-DNA (cT-DNA) sequence homologs of the Agrobacterium rhizogenes open reading frame (ORF)14, ORF17n, rooting locus (Rol)B/RolC, ORF13, and ORF18/ORF17n of unknown function. This study aimed to evaluate the effect of abiotic stresses (temperature, ultraviolet, and light) and chemical elicitors (methyl jasmonate, salicylic acid, and sodium nitroprusside) on the biosynthesis of CQAs and cT-DNA gene expression in I. batatas cell culture as a model system. Among all the applied treatments, ultraviolet irradiation, methyl jasmonate, and salicylic acid caused the maximal accumulation of secondary compounds. We also discovered that I. batatas cT-DNA genes were not expressed in cell culture, and the studied conditions weakly affected their transcriptional levels. However, the Ib-rolB/C gene expressed under the strong 35S CaMV promoter increased the CQAs content by 1.5-1.9-fold. Overall, our results show that cT-DNA-encoded transgenes are not involved in stress- and chemical elicitor-induced CQAs accumulation in cell cultures of I. batatas. Nevertheless, overaccumulation of RolB/RolC transcripts potentiates the secondary metabolism of sweet potatoes through a currently unknown mechanism. Our study provides new insights into the molecular mechanisms linked with CQAs biosynthesis in cell culture of naturally transgenic food crops, i.e., sweet potato.


Asunto(s)
Ipomoea batatas , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Metabolismo Secundario , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo , ADN/metabolismo , Técnicas de Cultivo de Célula , Regulación de la Expresión Génica de las Plantas
18.
Molecules ; 27(9)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35566390

RESUMEN

Artemisinin is an anti-malarial sesquiterpene lactone derived from Artemisia annua L. (Asteraceae family). One of the most widely used modes of treatment for malaria is an artemisinin-based combination therapy. Artemisinin and its associated compounds have a variety of pharmacological qualities that have helped achieve economic prominence in recent years. So far, research on the biosynthesis of this bioactive metabolite has revealed that it is produced in glandular trichomes and that the genes responsible for its production must be overexpressed in order to meet demand. Using biotechnological applications such as tissue culture, genetic engineering, and bioreactor-based approaches would aid in the upregulation of artemisinin yield, which is needed for the future. The current review focuses on the tissue culture aspects of propagation of A. annua and production of artemisinin from A. annua L. cell and organ cultures. The review also focuses on elicitation strategies in cell and organ cultures, as well as artemisinin biosynthesis and metabolic engineering of biosynthetic genes in Artemisia and plant model systems.


Asunto(s)
Antimaláricos , Artemisia annua , Artemisininas , Antimaláricos/metabolismo , Artemisia annua/genética , Artemisia annua/metabolismo , Artemisininas/metabolismo , Ingeniería Metabólica , Tricomas/metabolismo
19.
Plant Cell Rep ; 40(9): 1665-1678, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34052885

RESUMEN

KEY MESSAGE: Improved compact shoot architecture of Osteospermum fruticosum Ri lines obtained through Rhizobium rhizogenes transformation reduces the need for chemical growth retardants. Compactness is for many ornamental crops an important commercial trait that is usually obtained through the application of growth retardants. Here, we have adopted a genetic strategy to introduce compactness in the perennial shrub Cape daisy (Osteospermum fruticosum Norl.). To this end, O. fruticosum was transformed using six different wild type Rhizobium rhizogenes strains. The most effective R. rhizogenes strains Arqua1 and ATCC15834 were used to create hairy root cultures from six Cape daisy genotypes. These root cultures were regenerated to produce transgenic Ri lines, which were analyzed for compactness. Ri lines displayed the characteristic Ri phenotype, i.e., reduced plant height, increased branching, shortened internodes, shortened peduncles, and smaller flowers. Evaluation of the Ri lines under commercial production conditions showed that similar compactness was obtained as the original Cape daisy genotypes treated with growth retardant. The results suggest that the use of chemical growth retardants may be omitted or reduced in commercial production systems of Cape daisy through implementation of Ri lines in future breeding programs.


Asunto(s)
Agrobacterium/fisiología , Asteraceae/crecimiento & desarrollo , Brotes de la Planta/fisiología , Asteraceae/efectos de los fármacos , Asteraceae/genética , Asteraceae/microbiología , Clormequat/farmacología , Técnicas de Cocultivo , Fenotipo , Fitomejoramiento/métodos , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/efectos de los fármacos , Técnicas de Cultivo de Tejidos/métodos , Transformación Genética/fisiología
20.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34361010

RESUMEN

Biofilms are complex structures formed by a community of microbes adhering to a surface and/or to each other through the secretion of an adhesive and protective matrix. The establishment of these structures requires a coordination of action between microorganisms through powerful communication systems such as quorum-sensing. Therefore, auxiliary bacteria capable of interfering with these means of communication could be used to prevent biofilm formation and development. The phytopathogen Rhizobium rhizogenes, which causes hairy root disease and forms large biofilms in hydroponic crops, and the biocontrol agent Rhodococcus erythropolis R138 were used for this study. Changes in biofilm biovolume and structure, as well as interactions between rhizobia and rhodococci, were monitored by confocal laser scanning microscopy with appropriate fluorescent biosensors. We obtained direct visual evidence of an exchange of signals between rhizobia and the jamming of this communication by Rhodococcus within the biofilm. Signaling molecules were characterized as long chain (C14) N-acyl-homoserine lactones. The role of the Qsd quorum-quenching pathway in biofilm alteration was confirmed with an R. erythropolis mutant unable to produce the QsdA lactonase, and by expression of the qsdA gene in a heterologous host, Escherichia coli. Finally, Rhizobium biofilm formation was similarly inhibited by a purified extract of QsdA enzyme.


Asunto(s)
Agrobacterium/fisiología , Biopelículas , Percepción de Quorum , Rhodococcus/fisiología , Acil-Butirolactonas/metabolismo , Agrobacterium/genética , Agrobacterium/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda