Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 413
Filtrar
Más filtros

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(28): e2212124120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399410

RESUMEN

Agricultural expansion and intensification have boosted global food production but have come at the cost of environmental degradation and biodiversity loss. Biodiversity-friendly farming that boosts ecosystem services, such as pollination and natural pest control, is widely being advocated to maintain and improve agricultural productivity while safeguarding biodiversity. A vast body of evidence showing the agronomic benefits of enhanced ecosystem service delivery represent important incentives to adopt practices enhancing biodiversity. However, the costs of biodiversity-friendly management are rarely taken into account and may represent a major barrier impeding uptake by farmers. Whether and how biodiversity conservation, ecosystem service delivery, and farm profit can go hand in hand is unknown. Here, we quantify the ecological, agronomic, and net economic benefits of biodiversity-friendly farming in an intensive grassland-sunflower system in Southwest France. We found that reducing land-use intensity on agricultural grasslands drastically enhances flower availability and wild bee diversity, including rare species. Biodiversity-friendly management on grasslands furthermore resulted in an up to 17% higher revenue on neighboring sunflower fields through positive effects on pollination service delivery. However, the opportunity costs of reduced grassland forage yields consistently exceeded the economic benefits of enhanced sunflower pollination. Our results highlight that profitability is often a key constraint hampering adoption of biodiversity-based farming and uptake critically depends on society's willingness to pay for associated delivery of public goods such as biodiversity.


Asunto(s)
Ecosistema , Polinización , Abejas , Animales , Granjas , Biodiversidad , Agricultura/métodos , Productos Agrícolas , Conservación de los Recursos Naturales
2.
Proc Natl Acad Sci U S A ; 119(38): e2203385119, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36095174

RESUMEN

Managing agricultural landscapes to support biodiversity conservation requires profound structural changes worldwide. Often, discussions are centered on management at the field level. However, a wide and growing body of evidence calls for zooming out and targeting agricultural policies, research, and interventions at the landscape level to halt and reverse the decline in biodiversity, increase biodiversity-mediated ecosystem services in agricultural landscapes, and improve the resilience and adaptability of these ecosystems. We conducted the most comprehensive assessment to date on landscape complexity effects on nondomesticated terrestrial biodiversity through a meta-analysis of 1,134 effect sizes from 157 peer-reviewed articles. Increasing landscape complexity through changes in composition, configuration, or heterogeneity significatively and positively affects biodiversity. More complex landscapes host more biodiversity (richness, abundance, and evenness) with potential benefits to sustainable agricultural production and conservation, and effects are likely underestimated. The few articles that assessed the combined contribution of linear (e.g., hedgerows) and areal (e.g., woodlots) elements resulted in a near-doubling of the effect sizes (i.e., biodiversity level) compared to the dominant number of studies measuring these elements separately. Similarly, positive effects on biodiversity are stronger in articles monitoring biodiversity for at least 2 y compared to the dominant 1-y monitoring efforts. Besides, positive and stronger effects exist when monitoring occurs in nonoverlapping landscapes, highlighting the need for long-term and robustly designed monitoring efforts. Living in harmony with nature will require shifting paradigms toward valuing and promoting multifunctional agriculture at the farm and landscape levels with a research agenda that untangles complex agricultural landscapes' contributions to people and nature under current and future conditions.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Granjas , Conservación de los Recursos Naturales/métodos
3.
Proc Natl Acad Sci U S A ; 119(37): e2208813119, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36067287

RESUMEN

Increasing diversity on farms can enhance many key ecosystem services to and from agriculture, and natural control of arthropod pests is often presumed to be among them. The expectation that increasing the size of monocultural crop plantings exacerbates the impact of pests is common throughout the agroecological literature. However, the theoretical basis for this expectation is uncertain; mechanistic mathematical models suggest instead that increasing field size can have positive, negative, neutral, or even nonlinear effects on arthropod pest densities. Here, we report a broad survey of crop field-size effects: across 14 pest species, 5 crops, and 20,000 field years of observations, we quantify the impact of field size on pest densities, pesticide applications, and crop yield. We find no evidence that larger fields cause consistently worse pest impacts. The most common outcome (9 of 14 species) was for pest severity to be independent of field size; larger fields resulted in less severe pest problems for four species, and only one species exhibited the expected trend of larger fields worsening pest severity. Importantly, pest responses to field size strongly correlated with their responses to the fraction of the surrounding landscape planted to the focal crop, suggesting that shared ecological processes produce parallel responses to crop simplification across spatial scales. We conclude that the idea that larger field sizes consistently disrupt natural pest control services is without foundation in either the theoretical or empirical record.


Asunto(s)
Protección de Cultivos , Productos Agrícolas , Control de Insectos , Insectos , Control Biológico de Vectores , Animales , Productos Agrícolas/parasitología , Ecosistema
4.
Ecol Lett ; 27(3): e14412, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38549269

RESUMEN

Agricultural intensification not only increases food production but also drives widespread biodiversity decline. Increasing landscape heterogeneity has been suggested to increase biodiversity across habitats, while increasing crop heterogeneity may support biodiversity within agroecosystems. These spatial heterogeneity effects can be partitioned into compositional (land-cover type diversity) and configurational heterogeneity (land-cover type arrangement), measured either for the crop mosaic or across the landscape for both crops and semi-natural habitats. However, studies have reported mixed responses of biodiversity to increases in these heterogeneity components across taxa and contexts. Our meta-analysis covering 6397 fields across 122 studies conducted in Asia, Europe, North and South America reveals consistently positive effects of crop and landscape heterogeneity, as well as compositional and configurational heterogeneity for plant, invertebrate, vertebrate, pollinator and predator biodiversity. Vertebrates and plants benefit more from landscape heterogeneity, while invertebrates derive similar benefits from both crop and landscape heterogeneity. Pollinators benefit more from configurational heterogeneity, but predators favour compositional heterogeneity. These positive effects are consistent for invertebrates and vertebrates in both tropical/subtropical and temperate agroecosystems, and in annual and perennial cropping systems, and at small to large spatial scales. Our results suggest that promoting increased landscape heterogeneity by diversifying crops and semi-natural habitats, as suggested in the current UN Decade on Ecosystem Restoration, is key for restoring biodiversity in agricultural landscapes.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Europa (Continente) , Productos Agrícolas , Agricultura/métodos
5.
New Phytol ; 242(6): 2888-2899, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38622779

RESUMEN

Plant pollen is rich in protein, sterols and lipids, providing crucial nutrition for many pollinators. However, we know very little about the quantity, quality and timing of pollen availability in real landscapes, limiting our ability to improve food supply for pollinators. We quantify the floral longevity and pollen production of a whole plant community for the first time, enabling us to calculate daily pollen availability. We combine these data with floral abundance and nectar measures from UK farmland to quantify pollen and nectar production at the landscape scale throughout the year. Pollen and nectar production were significantly correlated at the floral unit, and landscape level. The species providing the highest quantity of pollen on farmland were Salix spp. (38%), Filipendula ulmaria (14%), Rubus fruticosus (10%) and Taraxacum officinale (9%). Hedgerows were the most pollen-rich habitats, but permanent pasture provided the majority of pollen at the landscape scale, because of its large area. Pollen and nectar were closely associated in their phenology, with both peaking in late April, before declining steeply in June and remaining low throughout the year. Our data provide a starting point for including pollen in floral resource assessments and ensuring the nutritional requirements of pollinators are met in farmland landscapes.


Asunto(s)
Néctar de las Plantas , Polen , Polen/fisiología , Granjas , Flores/fisiología , Estaciones del Año , Polinización/fisiología , Ecosistema
6.
Glob Chang Biol ; 30(1): e17034, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273527

RESUMEN

Redesigning agrosystems to include more ecological regulations can help feed a growing human population, preserve soils for future productivity, limit dependency on synthetic fertilizers, and reduce agriculture contribution to global changes such as eutrophication and warming. However, guidelines for redesigning cropping systems from natural systems to make them more sustainable remain limited. Synthetizing the knowledge on biogeochemical cycles in natural ecosystems, we outline four ecological systems that synchronize the supply of soluble nutrients by soil biota with the fluctuating nutrient demand of plants. This synchrony limits deficiencies and excesses of soluble nutrients, which usually penalize both production and regulating services of agrosystems such as nutrient retention and soil carbon storage. In the ecological systems outlined, synchrony emerges from plant-soil and plant-plant interactions, eco-physiological processes, soil physicochemical processes, and the dynamics of various nutrient reservoirs, including soil organic matter, soil minerals, atmosphere, and a common market. We discuss the relative importance of these ecological systems in regulating nutrient cycles depending on the pedoclimatic context and on the functional diversity of plants and microbes. We offer ideas about how these systems could be stimulated within agrosystems to improve their sustainability. A review of the latest advances in agronomy shows that some of the practices suggested to promote synchrony (e.g., reduced tillage, rotation with perennial plant cover, crop diversification) have already been tested and shown to be effective in reducing nutrient losses, fertilizer use, and N2 O emissions and/or improving biomass production and soil carbon storage. Our framework also highlights new management strategies and defines the conditions for the success of these nature-based practices allowing for site-specific modifications. This new synthetized knowledge should help practitioners to improve the long-term productivity of agrosystems while reducing the negative impact of agriculture on the environment and the climate.


Asunto(s)
Ecosistema , Suelo , Humanos , Agricultura , Plantas , Carbono
7.
Ecol Appl ; 34(3): e2956, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38426805

RESUMEN

Gastrointestinal helminth parasites undergo part of their life cycle outside their host, such that developmental stages interact with the soil and dung fauna. These interactions are capable of affecting parasite transmission on pastures yet are generally ignored in current models, empirical studies and practical management. Dominant methods of parasite control, which rely on anthelmintic medications for livestock, are becoming increasingly ineffective due to the emergence of drug-resistant parasite populations. Furthermore, consumer and regulatory pressure on decreased chemical use in agriculture and the consequential disruption of biological processes in the dung through nontarget effects exacerbates issues with anthelmintic reliance. This presents a need for the application and enhancement of nature-based solutions and biocontrol methods. However, successfully harnessing these options relies on advanced understanding of the ecological system and interacting effects among biotic factors and with immature parasite stages. Here, we develop a framework linking three key groups of dung and soil fauna-fungi, earthworms, and dung beetles-with each other and developmental stages of helminths parasitic in farmed cattle, sheep, and goats in temperate grazing systems. We populate this framework from existing published studies and highlight the interplay between faunal groups and documented ecological outcomes. Of 1756 papers addressing abiotic drivers of populations of these organisms and helminth parasites, only 112 considered interactions between taxa and 36 presented data on interactions between more than two taxonomic groups. Results suggest that fungi reduce parasite abundance and earthworms may enhance fungal communities, while competition between dung taxa may reduce their individual effect on parasite transmission. Dung beetles were found to impact fungal populations and parasite transmission variably, possibly tied to the prevailing climate within a specific ecological context. By exploring combinations of biotic factors, we consider how interactions between species may be fundamental to the ecological consequences of biocontrol strategies and nontarget impacts of anthelmintics on dung and soil fauna and how pasture management alterations to promote invertebrates might help limit parasite transmission. With further development and parameterization the framework could be applied quantitatively to guide, prioritize, and interpret hypothesis-driven experiments and integrate biotic factors into established models of parasite transmission dynamics.


Asunto(s)
Antihelmínticos , Escarabajos , Parásitos , Animales , Bovinos , Ovinos , Suelo/química , Heces , Rumiantes
8.
Ecol Appl ; 34(2): e2938, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38071736

RESUMEN

The simplification and fragmentation of agricultural landscapes generate effects on insects at multiple spatial scales. As each functional group perceives and uses the habitat differently, the response of pest insects and their associated natural enemies to environmental changes varies. Therefore, landscape structure may have consequences on gene flow among pest populations in space. This study aimed to evaluate the effects of local and landscape factors, at multiple scales, on the local infestation, gene flow and broad dispersion dynamics of the pest insect Bemisia tabaci (Genn.) Middle East-Asia Minor 1 (MEAM-1, former biotype B) (Hemiptera: Aleyrodidae) and its associated natural enemies in a tropical agroecosystem. We evaluated the abundance of B. tabaci populations and their natural enemy community in 20 tomato farms in Brazil and the gene flow between farms from 2019 to 2021. Landscapes dominated by agriculture resulted in larger B. tabaci populations and higher gene flow, especially in conventional farms. A higher density of native vegetation patches disfavored pest populations, regardless of the management system. The results revealed that whitefly responds to intermediate spatial scales and that landscape factors interact with management systems to modulate whitefly populations on focal farms. Conversely, whitefly natural enemies benefited from higher amounts of natural vegetation at small spatial scales, while the connectivity between natural habitat patches was beneficial for natural enemies regardless of the distance from the focal farm. The resulting dispersion model predicts that the movement of whiteflies between farms increases as the amount of natural vegetation decreases. Our findings demonstrate that landscape features, notably landscape configuration, can mediate infestation episodes, as they affect pest insects and natural enemies in opposite ways. We also showed that landscape features interact with farm traits, which highlights the need for management strategies at multiple spatial scales. In conclusion, we demonstrated the importance of the conservation of natural areas as a key strategy for area-wide ecological pest management and the relevance of organic farming to benefit natural enemy communities in tropical agroecosystems.


Asunto(s)
Agricultura , Flujo Génico , Granjas , Brasil , Movimiento
9.
J Anim Ecol ; 93(7): 943-957, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38801060

RESUMEN

The temporal dynamics of insect populations in agroecosystems are influenced by numerous biotic and abiotic interactions, including trophic interactions in complex food webs. Predicting the regulation of herbivorous insect pests by arthropod predators and parasitoids would allow for rendering crop production less dependent on chemical pesticides. Curtsdotter et al. (2019) developed a food-web model simulating the influences of naturally occurring arthropod predators on aphid population dynamics in cereal crop fields. The use of an allometric hypothesis based on the relative body masses of the prey and various predator guilds reduced the number of estimated parameters to just five, albeit field-specific. Here, we extend this model and test its applicability and predictive capacity. We first parameterized the original model with a dataset with the dynamic arthropod community compositions in 54 fields in six regions in France. We then integrated three additional biological functions to the model: parasitism, aphid carrying capacity and suboptimal high temperatures that reduce aphid growth rates. We developed a multi-field calibration approach to estimate a single set of generic allometric parameters for a given group of fields, which would increase model generality needed for predictions. The original and revised models, when using field-specific parameterization, achieved quantitatively good fits to observed aphid population dynamics for 59% and 53% of the fields, respectively, with pseudo-R2 up to 0.99. But the multi-field calibration showed that increased model generality came at the cost of reduced model reliability (goodness-of-fit). Our study highlights the need to further improve our understanding of how body size and other traits affect trophic interactions in food webs. It also points up the need to acquire high-resolution data to use this type of modelling approach. We propose that a hypothesis-driven strategy of model improvement based on the integration of additional biological functions and additional functional traits beyond body size (e.g., predator space search or prey defences) into the food-web matrix can improve model reliability.


Asunto(s)
Áfidos , Cadena Alimentaria , Modelos Biológicos , Dinámica Poblacional , Conducta Predatoria , Animales , Áfidos/fisiología , Francia , Grano Comestible , Artrópodos/fisiología
10.
J Chem Ecol ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470529

RESUMEN

The cabbage aphid (Brevicoryne brassicae) is a major pest of kale (Brassica oleraceae var. acephala), an important vegetable that is grown worldwide due to its high nutritional and economic value. Brevicoryne brassicae poses a great challenge to B. oleraceae var. acephala production, causing significant direct and indirect yield losses. Farmers overly rely on synthetic insecticides to manage the pest with limited success owing to its high reproductive behavior and development of resistance. This necessitates a search for sustainable alternatives to mitigate these challenges. This study assessed behavioral responses of B. brassicae to odors from rosemary (Rosmarinus officinalis) and B. oleraceae var. acephala headspace volatiles in a Perspex four-arm olfactometer. We identified and quantified volatiles emitted by each of the two plants and those eliciting antennal response using coupled gas chromatography-mass spectrometry (GC-MS) and GC-electroantennograhic detection(GC-EAD), respectively. Our findings revealed that B. brassicae spent more time in the arms of the olfactometer that contained B. oleraceae var. acephala volatiles compared to the arm that held R. officinalis volatiles. Additionally, B. brassicae spent more time in the olfactometer arms with B. oleracea var. acephala compared to the arms holding B. oleracea var. acephala and R. officinalis enclosed together and clean air. GC-MS analysis revealed diverse and higher quantities of volatile compounds in R. officinalis compared to B. oleraceae var. acephala. GC-EAD analysis showed that antennae of B. brassicae detected Linalool, α-Terpineol, Verbenone, Geraniol, Camphor, and Borneol from the volatiles of R. officinalis, and Sabinene, γ-Terpinene, and ß-Caryophyllene from B. oleraceae var. acephala volatiles. Our findings demonstrate the potential of R. officinalis as a repellent plant against B. brassicae and could be utilized as a 'push' plant in an intercropping strategy against this pest.

11.
BMC Vet Res ; 20(1): 197, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741097

RESUMEN

The occurrence of trematodes among ruminants and their snail vectors is a major concern across various agro-ecological regions of Ethiopia. Trematodes pose significant threats to animals, causing considerable economic losses and impacting public health. In this study, we have investigated 784 ruminant fecal samples, and 520 abattoir samples, alongside the collection and identification of snail vectors from various agro-ecological regions. Fecal examinations revealed Fasciola, Paramphistomum and Schistosoma species infected 20.5% (95% CI: 17.6, 23.8), 11.7% (95% CI: 9.6, 14.2), and 6.3% (95% CI: 4.1, 9.1) of the animals, respectively. The overall prevalence of trematodes among ruminants was 28.8% (95% CI: 25.7, 32.1%), with 6.0% (95% CI: 4.3, 7.7) showing mixed infections. Fasciola was more prevalent in Asela (26%) compared to Batu (19%) and Hawassa (11.5%), while a higher proportion of animals in Batu were infected with Paramphistomum. Schistosoma eggs were detected only in Batu (12.5%), but not in other areas. Sheep and cattle exhibited higher infection rates with Fasciola, Paramphistoma, and Schistosoma compared to goats. Significant associations were observed between trematode infections and risk factors including agro-ecology, animal species, body condition score, and deworming practices. About 20.8% and 22.7% of the slaughtered animals harbored Fasciola and Paramphistomum flukes, respectively, with a higher prevalence in Asela and Hawassa abattoirs compared to Batu abattoir. Additionally, a total of 278 snails were collected from the study areas and identified as lymnae natalensis, lymnae trancatula, Biomphalaria pffiferi, Biomphlaria sudanica, and Bulinus globosus. In conclusion, the study highlights the widespread occurrence of trematode infections, emphasizing the need for feasible control measures to mitigate their economic and public health impacts.


Asunto(s)
Heces , Caracoles , Infecciones por Trematodos , Animales , Etiopía/epidemiología , Infecciones por Trematodos/veterinaria , Infecciones por Trematodos/epidemiología , Infecciones por Trematodos/parasitología , Heces/parasitología , Prevalencia , Caracoles/parasitología , Ovinos , Enfermedades de las Ovejas/epidemiología , Enfermedades de las Ovejas/parasitología , Enfermedades de las Cabras/epidemiología , Enfermedades de las Cabras/parasitología , Cabras , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/parasitología , Bovinos , Trematodos/aislamiento & purificación , Trematodos/clasificación , Mataderos , Fasciola/aislamiento & purificación , Paramphistomatidae/aislamiento & purificación , Rumiantes/parasitología
12.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38999990

RESUMEN

Phytopathogenic fungi are responsible for diseases in commercially important crops and cause major supply problems in the global food chain. Plants were able to protect themselves from disease before humans played an active role in protecting plants. They are known to synthesize a variety of secondary metabolites (SMs), such as terpenes, alkaloids, and phenolic compounds, which can be extracted using conventional and unconventional techniques to formulate biofungicides; plant extracts have antifungal activity and various mechanisms of action against these organisms. In addition, they are considered non-phytotoxic and potentially effective in disease control. They are a sustainable and economically viable alternative for use in agriculture, which is why biofungicides are increasingly recognized as an attractive option to solve the problems caused by synthetic fungicides. Currently, organic farming continues to grow, highlighting the importance of developing environmentally friendly alternatives for crop production. This review provides a compilation of the literature on biosynthesis, mechanisms of action of secondary metabolites against phytopathogens, extraction techniques and formulation of biofungicides, biological activity of plant extracts on phytopathogenic fungi, regulation, advantages, disadvantages and an overview of the current use of biofungicides in agriculture.


Asunto(s)
Agricultura Orgánica , Extractos Vegetales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Agricultura Orgánica/métodos , Hongos/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Productos Agrícolas/microbiología , Antifúngicos/farmacología , Antifúngicos/química , Metabolismo Secundario , Fungicidas Industriales/farmacología , Fungicidas Industriales/química
13.
J Environ Manage ; 359: 120934, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38714031

RESUMEN

This study offers a first-of-its-kind investigation into the spatial and temporal transformation of agricultural land use and expansion in crops and livestock at national scale during the middle and latter half of the 19th century. We introduce an innovative methodological framework that combines historical data with advanced spatial analysis to trace and map the evolution of frontiers of agricultural land use changes, illustrating Denmark's agricultural evolution towards the modern era. Our research uncovers critical shifts in cropland, grazing land, and livestock density offering unprecedented insights into the mechanisms driving agricultural expansion and intensification. The mechanisms driving this expansion and their potential impact on contemporary agroecological challenges linked to land use intensification are explored. Our results point to a significant broadening and shifting of land use frontiers offering a historical perspective on agricultural land use. This sets the stage for promoting the analysis of drivers of change and gaining insights into how landscape development could be steered into an environmentally and societally more desirable and sustainable direction tackling present-day agroecological challenges.


Asunto(s)
Agricultura , Productos Agrícolas , Dinamarca , Conservación de los Recursos Naturales , Animales , Ganado
14.
J Environ Manage ; 351: 119653, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38070421

RESUMEN

Agricultural lands are integrated into and interact with natural areas. Such is the case of Emek HaMa'ayanot, northern Israel, comprising a springs-rich area characterized by multiple land-uses, including spring-water-based aquaculture, recreational springs, and nature reserves. Aquacultural farms suffer from pest snails that carry fish disease; in the study region, these species are invasive (Thiara scabra, Tarebia granifera, Pseudosuccinea columella) and outbreak endemic (Melanoides tuberculata). Previous snail control efforts have focused on individual fishponds without considering management on larger environmental scales in the waterways from the source springs to the fish farms. To broaden our understanding of the status of the pest snail problem in the study area prior to suggesting environmental managerial solutions, we quantified changes in the community composition of snail species along the springs-to-fishponds gradients in a spatially explicit system. We found a remarkable increase in pest snail abundances along these gradients, indicating that pest snails might be invading upstream towards the springs. There were always nearly 100% pest snails in the endpoint sites for water tracks that ended in fishponds. Moreover, pest snails dominated the site when it was used as a fishpond, even though the site was also a spring. In contrast, in a water track that does not end in a fish farm, the relative abundances of non-pest snail species was similar between the source spring and the downstream endpoint, in spite of an increase in pest snail abundance at a midpoint site. These results suggest that invasive pest snails are actively moving upstream and that the fishponds have a marked upstream effect on the ability of non-pest snails to resist pest species invasions. We suggest further investigation of possible strategies for biocontrol of the observed invasion of the snails into natural areas as a basis for environmental management efforts. Finally, the observations made during this study could have practical global implications for snail management in aquaculture and agriculture, and for the control of snails and snail vectors implicated in animal and human diseases.


Asunto(s)
Acuicultura , Explotaciones Pesqueras , Animales , Humanos , Alimentos , Agua , Israel
15.
Trop Anim Health Prod ; 56(7): 234, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096464

RESUMEN

The present study investigated the biochemical polymorphism of hemoglobin (Hb) and its relationship with performance traits of Ethiopian indigenous and Sasso chicken breeds. A total of 284 chickens reared in three agro-ecologies were examined for genetic diversity and associations with productive traits at Hb locus using agarose gel electrophoresis. The results showed that the HbA allele was dominant in both breeds, and a higher proportion of male chickens were HbAA genotypes, while females were predominantly HbBB types. In the highland agro-ecology, chickens with the HbAA genotype were the most dominant, whereas in mid- and low-land agro-ecologies, chickens with HbBB and HbAB genotypes were found to be more frequent. A moderate level of expected heterozygosity was obtained with 0.47 and 0.445 for indigenous and Sasso chickens, respectively, with an average effective number of alleles per locus of 1.89 and 1.80. Moreover, chickens with HbAA genotypes showed significantly (p ≤ 0.05) higher body weight and linear body measurements than those of HbAB and HbBB genotypes. However, for appendage body structures (comb and wattle dimensions), chickens with the HbAB and HbBB genotypes had higher mean values. Additionally, clutch size (14.2 ± 0.4), clutch length (21.8 ± 0.7), and eight-month egg production (84.1 ± 1.2) were significantly (p ≤ 0.05) higher for hens with HbBB genotypes, followed by those with HbAB-types. Therefore, the considerable hemoglobin variability and significant associations of Hb variants with the performance traits can be sought as guiding information for further genetic improvement interventions in the chicken breeds under investigation. Further microsatellite marker-based genotyping is recommended to validate the higher morphometric values for HbAA genotypes and the better egg production for HbBB and HbAB genotypes.


Asunto(s)
Pollos , Genotipo , Hemoglobinas , Polimorfismo Genético , Animales , Pollos/genética , Pollos/fisiología , Femenino , Etiopía , Hemoglobinas/análisis , Masculino , Huevos/análisis , Cruzamiento
16.
Ecol Appl ; 33(5): e2860, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37093639

RESUMEN

Intensive agricultural landscapes pose a challenge to wildlife managers, policymakers, and landowners hoping to increase the diversity of desired wildlife species, such as grassland birds, which require urgent conservation action. In intensive agricultural landscapes, like those of the Midwestern United States, most land area is privately owned and operated and managed primarily for production. Thus, conducting ecological research in intensive agricultural landscapes requires collaborative approaches aimed at farm owners and operators. Recent advances in acoustic data collection and high-resolution habitat mapping, including low-cost acoustic recorders and satellite remote sensing, may be well positioned to address this challenge by enabling expanded assessments and monitoring of wildlife populations and habitats across regions. This study examined fine-grained habitat characteristics and their relationship with avian biodiversity in intensive agricultural landscapes at 44 agricultural sites across the state of Iowa. Passive acoustic monitoring and manual identification of bird species allowed for measurement of vocalizing bird richness. High-resolution mapping of noncrop vegetation provided detailed information on small noncrop vegetation habitat complexes within row-crop agriculture. Measures of image texture provided characterizations of compositional heterogeneity within noncrop vegetation. General linear Poisson modeling demonstrated robust associations between noncrop vegetation and vocalizing bird richness, yet variation in grassland bird richness was not well predicted by noncrop vegetation. Noncrop vegetation texture demonstrated potential as a predictor of vocalizing bird richness, though not better than or when combined with noncrop vegetated area, indicating it may not be an independent measure of habitat quality. Passive acoustic monitoring resulted in useful data at 44 out of 60 originally selected sites, with some lost to failed recorders and/or collaboration issues. Challenges remain in detecting habitat characteristics that promote grassland birds in row crop landscapes. Working toward probabilistic research design across privately owned working landscapes and incorporating more detailed management practice information would improve the transferability of this approach to farmland management and policy.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Agricultura , Animales Salvajes , Aves
17.
Microb Ecol ; 86(2): 959-972, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36520176

RESUMEN

Mature composts and their water-based extracts, known as aerated compost teas (ACTs), are biofertilizers that share bioactive effects like soil restoration and plant health promotion, widely used for sustainable agriculture. Bioactive effects of compost and ACTs could be associated with their physicochemical and biological characteristics, like carbon/nitrogen (C/N) ratio and microbiota structure respectively. In our study, we elaborated ACTs using mature homemade compost, wheat bran, and grass clippings, following the C/N ratio criteria. Irrigation of tomato plantlets with ACT whose C/N ratio was close to the expected C/N ratio for mature compost evidenced plant growth promotion. Exploring the bacterial microbiota of elaborated ACTs and origin compost revealed significant structural differences, including phyla involved in N mineralization and free-living N-fixing bacteria. Therefore, ACTs harbor diverse bacterial microbiota involved in the N cycle, which would enrich plant and soil bacterial communities at the taxonomic and functional levels. Furthermore, ACTs are considered a part of agroecological and circular economy approaches.


Asunto(s)
Compostaje , Microbiota , Solanum lycopersicum , Suelo/química , Bacterias , Nitrógeno , Microbiología del Suelo
18.
J Environ Manage ; 331: 117306, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36657198

RESUMEN

Agricultural land covers a significant portion of the earths land surface. Although the predominant function of agricultural land is food production, environmental public goods, such as biodiversity or soil maintenance, are also essential for long-term sustainability. In arable farms the type of cropping system used has a major impact on delivery of these environmental goods. Low input, integrated and regenerative cropping systems aim to improve environmental outcomes of arable farming, with the goal of reducing external inputs by supporting internal regulation of system processes. However, the production of environmental goods does not have an immediate market value to the farmer, and often comes at a cost, particularly in the early stages of transition to a more sustainable system. We estimate the on-farm costs and benefits of an integrated cropping system during the first six years of transition from intensive conventional management at the Centre for Sustainable Cropping in north east Scotland. Although integrated cropping had better environmental outcomes, all crops had higher financial margins in the conventional system compared to the integrated system, which suffered a loss of over £500 per ha per year across the full rotation. This indicates that financial incentives are likely to be important to allow farmers to transition towards a more environmentally friendly cropping system.


Asunto(s)
Agricultura , Conservación de los Recursos Naturales , Análisis Costo-Beneficio , Suelo , Granjas
19.
Environ Manage ; 72(2): 333-342, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37004534

RESUMEN

A critical question is whether agroecology can promote climate change mitigation and adaptation outcomes without compromising food security. We assessed the outcomes of smallholder agricultural systems and practices in low- and middle-income countries (LMICs) against 35 mitigation, adaptation, and yield indicators by reviewing 50 articles with 77 cases of agroecological treatments relative to a baseline of conventional practices. Crop yields were higher for 63% of cases reporting yields. Crop diversity, income diversity, net income, reduced income variability, nutrient regulation, and reduced pest infestation, indicators of adaptative capacity, were associated with 70% or more of cases. Limited information on climate change mitigation, such as greenhouse gas emissions and carbon sequestration impacts, was available. Overall, the evidence indicates that use of organic nutrient sources, diversifying systems with legumes and integrated pest management lead to climate change adaptation in multiple contexts. Landscape mosaics, biological control (e.g., enhancement of beneficial organisms) and field sanitation measures do not yet have sufficient evidence based on this review. Widespread adoption of agroecological practices and system transformations shows promise to contribute to climate change services and food security in LMICs. Gaps in adaptation and mitigation strategies and areas for policy and research interventions are finally discussed.


Asunto(s)
Cambio Climático , Gases de Efecto Invernadero , Agricultura , Adaptación Fisiológica , Nutrientes
20.
Environ Geochem Health ; 45(11): 7979-7997, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37515727

RESUMEN

Nutrient management in resource conservation practices influence the structural and functional microbial diversities and thereby affect biological processes and biochemical properties in soil. We studied the long-term effects of resource conservation technologies on functional microbial diversity and their interactions with soil biochemical properties and enzymatic activities in tropical rice-green gram cropping system. The experiment includes seven treatments viz., conventional practice (CC), brown manuring (BM), green manuring (GM), wet direct drum sowing, zero tillage, green manuring-customized leaf colour chart based-N application (GM-CLCC-N) and biochar (BC) application. The result of the present study revealed that microbial biomass nitrogen (N), carbon (C) and phosphorus (P) in GM practice were increased by 23.3, 37.7 and 35.1%, respectively than CC. GM, BM and GM-CLCC-N treatments provide higher yields than conventional practice. The average well color development value, Shannon index and McIntosh index were significantly higher by 26.6%, 86.9% and 29.2% in GM as compared to control treatment. So, from this study we can conclude that resource conservation practices like GM, GM-CLCC N and BM in combination with chemical fertilizers provide easily decomposable carbon source to support the microbial growth. Moreover, dominance of microbial activity in biomass amended treatments (GM, GM-CLCC N and BM) indicated that these treatments could supply good amount of labile C sources on real time basis for microbial growth that may protect the stable C fraction in soil, hence could support higher yield and soil organic carbon build-up in long run under rice-green gram soil.


Asunto(s)
Oryza , Suelo , Suelo/química , Carbono/análisis , Biomarcadores Ambientales , Indicadores de Calidad de la Atención de Salud , Agricultura/métodos , Fertilizantes , Nitrógeno/análisis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda