Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Molecules ; 28(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38005179

RESUMEN

Persistent organic pollutants (POPs) are ubiquitous and bioaccumulative, posing potential and long-term threats to human health and the ecological environment. Quantitative structure-activity relationship (QSAR) studies play a guiding role in analyzing the toxicity and environmental fate of different organic pollutants. In the current work, five molecular descriptors are utilized to construct QSAR models for predicting the mean and maximum air half-lives of POPs, including specifically the energy of the highest occupied molecular orbital (HOMO_Energy_DMol3), a component of the dipole moment along the z-axis (Dipole_Z), fragment contribution to SAscore (SAscore_Fragments), subgraph counts (SC_3_P), and structural information content (SIC). The QSAR models were achieved through the application of three machine learning methods: partial least squares (PLS), multiple linear regression (MLR), and genetic function approximation (GFA). The determination coefficients (R2) and relative errors (RE) for the mean air half-life of each model are 0.916 and 3.489% (PLS), 0.939 and 5.048% (MLR), 0.938 and 5.131% (GFA), respectively. Similarly, the determination coefficients (R2) and RE for the maximum air half-life of each model are 0.915 and 5.629% (PLS), 0.940 and 10.090% (MLR), 0.939 and 11.172% (GFA), respectively. Furthermore, the mechanisms that elucidate the significant factors impacting the air half-lives of POPs have been explored. The three regression models show good predictive and extrapolation abilities for POPs within the application domain.

2.
Environ Technol ; 43(16): 2510-2515, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33502960

RESUMEN

The persistence of organic pollutants is an important environmental property due to the extended possibility to have an impact of corresponding substances. In many cases, the experimental values of the thousands of contaminants are missing. The object of the study is novel computational modelling for air pollutions. Quantitative structure-property relationship (QSPR) for air half-life has been built using the Monte Carlo method with applying the index of ideality of correlation (IIC). The basis of the predictive model of air half-life is the representation of the molecular structure by simplifying molecular input-line entry system (SMILES) and numerical data on the above endpoint (expressed by hours) converted to a decimal logarithm. The statistical quality of the model has been checked up with different validation metrics and is quite good. Paradoxically, the improvement of the statistical quality via the IIC for the validation set is done in detriment to the training set. The new model has performed better than those obtained previously on the same set of compounds, for the prediction of new compounds in the validation set. Some semi-quantitative indicators for the mechanistic interpretation of the model are suggested.


Asunto(s)
Contaminantes Orgánicos Persistentes , Programas Informáticos , Semivida , Método de Montecarlo , Relación Estructura-Actividad Cuantitativa
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda