Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
BMC Biol ; 21(1): 18, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36726103

RESUMEN

BACKGROUND: The loach (Misgurnus anguillicaudatus), the most widely distributed species of the family Cobitidae, displays a mud-dwelling behavior and intestinal air-breathing, inhabiting the muddy bottom of extensive freshwater habitats. However, lack of high-quality reference genome seriously limits the interpretation of the genetic basis of specialized adaptations of the loach to the adverse environments including but not limited to the extreme water temperature, hypoxic and noxious mud environment. RESULTS: This study generated a 1.10-Gb high-quality, chromosome-anchored genome assembly, with a contig N50 of 3.83 Mb. Multiple comparative genomic analyses found that proto-oncogene c-Fos (fos), a regulator of bone development, is positively selected in loach. Knockout of fos (ID: Mis0086400.1) led to severe osteopetrosis and movement difficulties, combined with the comparison results of bone mineral density, supporting the hypothesis that fos is associated with loach mud-dwelling behavior. Based on genomic and transcriptomic analysis, we identified two key elements involved in the intestinal air-breathing of loach: a novel gene (ID: mis0158000.1) and heat shock protein beta-1 (hspb1). The flavin-containing monooxygenase 5 (fmo5) genes, central to xenobiotic metabolism, undergone expansion in loach and were identified as differentially expressed genes in a drug stress trial. A fmo5-/- (ID: Mis0185930.1) loach displayed liver and intestine injury, indicating the importance of this gene to the adaptation of the loach to the noxious mud. CONCLUSIONS: Our work provides valuable insights into the genetic basis of biological adaptation to adverse environments.


Asunto(s)
Cipriniformes , Animales , Cipriniformes/genética , Cipriniformes/metabolismo , Aclimatación , Perfilación de la Expresión Génica , Cromosomas , Hipoxia/genética
2.
Angew Chem Int Ed Engl ; : e202401743, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38837598

RESUMEN

Alkali metal borohydrides present a rich source of energy dense materials of boron and hydrogen, however their potential in propellants has been hitherto untapped. Potassium borohydride is a promising fuel with high gravimetric energy density and relatively low sensitivity to air and moisture. Problems arise due to the dehydrogenation of the borohydride on heating with minimal energy release. Common methods to extract both boron and hydrogen by means of borane species involve direct reaction of boron trifluoride species with alkali borohydrides. However, these methods face storage and safety issues due to rapid release of diborane on mixing the reactants. We propose a method of diborane release through controlled release of boron trifluoride by means of a tetrafluoroborate based ionic liquid. The trifluoride is released from the ionic liquid at elevated temperatures and enables safe mixture of the reactants at room temperature. It was found that the reaction between borohydride and boron trifluoride proceeds well above room temperature with potassium borohydride releasing diborane and potassium fluoride. The reaction pathway shows a primary reaction releasing diborane and potassium fluoride and a second less energy efficient step leading to the formation of potassium tetrafluoroborate. A 3d printed propellant formulation was also tested.

3.
J Fish Biol ; 103(5): 1044-1053, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37421412

RESUMEN

Air-breathing in fish is believed to have arisen as an adaptation to aquatic hypoxia. Although air-breathing has been widely studied in numerous fish species, little is known about the obligate air-breathing African bonytongue, Heterotis niloticus. We evaluated if abiotic factors and physical activity affect air-breathing patterns in fingerlings. The air-breathing frequency (fAB ) and behavioral responses of H. niloticus fingerlings were assessed in response to environmental oxygen, temperature, and exhaustion and activity in a series of experiments. The air-breathing behavior of H. niloticus fingerlings under optimum water conditions was characterized by swift excursions lasting less than 1 s to the air-water interface to gulp air. The intervals between air-breaths were highly variable, ranging from 3 to 259 s. Body size only slightly affected fAB , while hypoxia, hyperthermia, and exercise stress significantly increased fAB . Progressive hypoxia from 17.69 to 2.17 kPa caused a ~2.5-fold increase in fAB . Increasing temperatures to 27 and 32°C, from a baseline temperature of 22°C, significantly increased fAB from 0.4 ± 0.2 to 1.3 ± 0.5 and 1.6 ± 0.4 breaths min-1 , respectively. Lastly, following exhaustive exercise, fAB increased up to 3-fold. These observations suggest that H. niloticus fingerlings are very reliant on aerial oxygen, and their air-breathing behavior is sensitive to environmental changes and activity levels.


Asunto(s)
Peces , Oxígeno , Animales , Temperatura , Peces/fisiología , Hipoxia , Agua , Respiración
4.
Angew Chem Int Ed Engl ; 62(22): e202303517, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-36973175

RESUMEN

Despite their high output voltage and safety advantages, rechargeable alkaline nickel-zinc batteries face significant challenges associated with the cathodic side reaction of oxygen evolution, which results in low energy efficiency (EE) and poor stability. Herein, we propose to leverage the side oxygen evolution reaction (OER) in nickel-zinc batteries by coupling electrocatalysts for oxygen reduction reactions (ORR) in the cathode, thus constructing an air breathing cathode. Such a novel battery (Ni-ZnAB), designed in a pouch-type cell with a lean electrolyte, exhibits an outstanding EE of 85 % and a long cycle life of 100 cycles at 2 mA cm-2 , which are significantly superior to those of traditional Ni-Zn batteries (54 %, 50 cycles). Compared to Ni-Zn, the enhanced EE of Ni-ZnAB is attributed to the contribution from ORR, while the improved cycling stability is because the stability of the anode, cathode and electrolyte are also enhanced in Ni-ZnAB. Furthermore, an ultrahigh stability of 500 cycles with an average EE of 84 % at 2 mA cm-2 was achieved using a mold cell with rich electrolyte, demonstrating the strong application potential of Ni-ZnAB.

5.
Physiology (Bethesda) ; 36(5): 307-314, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34431416

RESUMEN

Amphibious and aquatic air-breathing fishes both exchange respiratory gasses with the atmosphere, but these fishes differ in physiology, ecology, and possibly evolutionary origins. We introduce a scoring system to characterize interspecific variation in amphibiousness and use this system to highlight important unanswered questions about the evolutionary physiology of amphibious fishes.


Asunto(s)
Evolución Biológica , Peces , Animales , Humanos , Estilo de Vida
6.
Funct Integr Genomics ; 22(1): 65-76, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34839401

RESUMEN

Air-breathing has evolved independently serval times with a variety of air-breathing organs (ABOs) in fish. The physiology of the air-breathing in bimodal respiration fish has been well understood, while studies on molecular mechanisms of the character are very limited. In the present study, we first determined the gill indexes of 110 fish species including 25 and 85 kinds of bimodal respiration fishes and non-air-breathing fishes, respectively. Then combined with histological observations of gills and ABOs/non-ABOs in three bimodal respiration fishes and two non-air breathing fishes, we found that the bimodal respiration fish was always of a degeneration gill and a well-vascularized ABO. Meanwhile, a comparative transcriptome analysis of posterior intestines, namely a well vascularized ABO in Misgurnus anguillicaudatus and a non-ABO in Leptobotia elongata, was performed to expound molecular variations of the air-breathing character. A total of 5,003 orthologous genes were identified. Among them, 1,189 orthologous genes were differentially expressed, which were enriched in 14 KEGG pathways. More specially, the expressions of hemoglobin genes and various HIF/VEGF signaling pathway genes were obviously upregulated in the ABO of M. anguillicaudatus. Moreover, we found that HIF-1α, VEGFAa, and MAP2K1 were co-expressed dramatically higher in ABOs of bimodal respiration fishes than those of non-ABOs of non-air-breathing fishes. These results indicated that the HIF/VEGF pathway played an important role in ABO angiogenesis/formation to promote fish to do aerial respiration. This study will contribute to our understanding of molecular mechanisms of air-breathing in fish.


Asunto(s)
Cipriniformes , Factor 1 Inducible por Hipoxia , Neovascularización Fisiológica , Respiración , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular , Animales , Cipriniformes/genética , Cipriniformes/fisiología , Factor 1 Inducible por Hipoxia/genética , Respiración/genética , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/genética
7.
J Exp Biol ; 225(6)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35132994

RESUMEN

One of the most air-reliant obligate air-breathing fish is the South American Arapaima gigas, with substantially reduced gills impeding gas diffusion, thought to be a result of recurring aquatic hypoxia in its habitat. In normoxic water, A. gigas is reported to satisfy 70-80% of its O2 requirement from the air while excreting 60-90% of its CO2 to the water. If this pattern of gas exchange were to continue in severely hypoxic water, O2 loss at the gills would be expected. We hypothesized therefore that partitioning of CO2 would shift to the air phase in severe aquatic hypoxia, eliminating the risk of branchial O2 loss. By adapting a respirometer designed to measure aquatic MO2/MCO2, we were able to run intermittent closed respirometry on both water and air phase for both of these gasses as well as sample water for N-waste measurements (ammonia-N, urea-N) so as to calculate metabolic fuel utilization. In contrast to our prediction, we found that partitioning of CO2 excretion changed little between normoxia and severe hypoxia (83% versus 77% aquatic excretion, respectively) and at the same time there was no evidence of branchial O2 loss in hypoxia. This indicates that A. gigas can utilize distinct transfer pathways for O2 and CO2. Routine and standard MO2, N-waste excretion and metabolic fuel utilization did not change with water oxygenation. Metabolism was fuelled mostly by protein oxidation (53%), while carbohydrates and lipids accounted for 27% and 20%, respectively.


Asunto(s)
Dióxido de Carbono , Oxígeno , Animales , Peces , Gases , Hipoxia , Agua
8.
Environ Res ; 204(Pt C): 112327, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34748779

RESUMEN

Developing highly efficient catalysts with high ORR activity and H2O2 selectivity is an important challenge for producing H2O2 through 2e- oxygen reduction reaction (ORR). In this work, we tuned the reduction degree of graphene oxide by controlling reducing temperature and prepared graphite-TRGO hybrid air breathing cathodes (ABCs). The H2O2 production rate of TRGO-1100 (with highest reduction degree) modified ABC exhibits highest H2O2 generation rate of 20.4 ± 0.8 mg/cm2/h and current efficiency of 94 ± 2%. The charge transfer resistance of TRGO-1100 decreases by 2.5-fold compared with pure graphite cathode. Unreduced GO shows high H2O2 selectivity and low ORR activity, while TRGO shows lower H2O2 selectivity but higher ORR activity. Though the 2e- ORR selectivity of TRGO decreased TRGO with all reduction degrees, the H2O2 production increased in all forming electrodes. Superior performance of TRGO modified ABCs is attributed to high oxygen adsorption and low charge transfer resistance. TRGO possesses super-hydrophobicity and large surface area for oxygen adsorption. Besides, TRGO provides abundant electrochemically active sites to facilitate the electron transfer and formed more mesopores for H2O2 release. Electro-Fenton using TRGO-1100-ABC exhibited great performance for Persistent Organic Pollutants (POPs) degradation, which removed 66% of tetracycline in 5 min.


Asunto(s)
Grafito , Contaminantes Químicos del Agua , Electrodos , Grafito/química , Peróxido de Hidrógeno/química , Contaminantes Químicos del Agua/análisis
9.
Artículo en Inglés | MEDLINE | ID: mdl-35987338

RESUMEN

African lungfishes are obligatory air-breathers with exceptionally high environmental ammonia tolerance. They can lower the pH of the external medium during exposure to ammonia-loading conditions. This study aimed to demonstrate the possible involvement of branchial vacuolar-type H+-ATPase (Vha) in the ammonia-induced acidification of the external medium by the West African lungfish, Protopterus annectens, and to examine whether its capacity to acidify the medium could be augmented after exposure to 100 mmol l-1 NH4Cl for six days. Two full coding cDNA sequences of Vha subunit B (atp6v1b), atp6v1b1 and atp6v1b2, were obtained from the internal gills of P. annectens. The sequence of atp6v1b1 comprised 1548 bp, encoding 515 amino acids (57.4 kDa), while that of atp6v1b2 comprised 1536 bp, encoding 511 amino acids (56.6 kDa). Using a custom-made antibody reactive to both isoforms, immunofluorescence microscopy revealed the collective localization of Atp6v1b (atp6v1b1 and atp6v1b2) at the apical or the basolateral membrane of two different types of branchial Na+/K+-ATPase-immunoreactive ionocyte. The ionocytes labelled apically with Atp6v1b presumably expressed Atp6v1b1 containing a PDZ-binding domain, indicating that the apical Vha was positioned to transport H+ to the external medium. The expression of Atp6v1b was regulated post-transcriptionally, as the protein abundance of Atp6v1b and Vha activity increased significantly in the gills of fish exposed to 100 mmol l-1 NH4Cl for six days. Correspondingly, the fish exposed to ammonia had a greater capacity to acidify the external medium, presumably to decrease the ratio of [NH3] to [NH4+] in order to reduce the influx of exogenous NH3.


Asunto(s)
Amoníaco , ATPasas de Translocación de Protón Vacuolares , Aminoácidos/metabolismo , Amoníaco/metabolismo , Animales , Peces/fisiología , Branquias/metabolismo , Concentración de Iones de Hidrógeno , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-35331911

RESUMEN

The evolutionary and ontogenetic changes from water- to air-breathing result in major changes in the cardiorespiratory systems. However, the potential changes in hemoglobin's (Hb) oxygen binding properties during ontogenetic transitions to air-breathing remain poorly understood. Here we investigated Hb multiplicity and O2 binding in hemolysates and Hb components from juveniles and adults of the obligate air-breathing pirarucu (Arapaima gigas) that starts life as water-breathing hatchlings. Contrasting with previous electrophoresis studies that report one or two isoHbs in adults, isoelectric focusing (IEF) resolved the hemolysates from both stages into four major bands, which exhibited identical O2 binding properties (i.e. O2 affinities, cooperativity coefficients, and sensitivities to pH and the major organic phosphate effectors), also as compared to the cofactor-free hemolysates. Of note, the multiplicity pattern recurred upon reanalyses of the most-abundant fractions isolated from the juvenile and the adult stages, suggesting possible stabilization of different quaternary states with different isoelectric points during the purification procedure. The study demonstrates unchanged Hb-O2 binding properties during development, despite the pronounced differences in O2 availability between the two media, which harmonizes with findings based on a broader spectrum of interspecific comparisons. Taken together, these results disclose that obligate air-breathing in Arapaima is not contingent upon changes in Hb multiplicity and O2 binding characteristics.


Asunto(s)
Branquias , Oxígeno , Animales , Peces/fisiología , Branquias/metabolismo , Hemoglobinas/metabolismo , Oxígeno/metabolismo , Agua/metabolismo
11.
Ecotoxicol Environ Saf ; 244: 114077, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36108439

RESUMEN

Waterborne ammonia is one of the crucial issues that limited production and animal health in aquaculture. Ammonia-tolerant varieties are highly desired in intensive fish farming. Screening for the key regulatory genes of ammonia tolerance is essential for variety breeding. According to the previous hypothesis, Rh glycoproteins play an important role in ammonia excretion in teleosts. However, the ammonia defensive mechanisms are not well described at present for large-scale loach (Paramisgurnus dabryanus), a typical air-breathing and commercially important fish in East Asia. Here we show that the transcription of Rh glycoprotein-related genes was significantly affected by ammonia exposure in this species. Probit analysis showed that 96 h-LC50 of NH4Cl at 23 â„ƒ and pH 7.2 was 92.64 mmol/L. A significant increase of Rhcg expression in gills was observed after 48 h of 60 mmol/L and 36 h of 80 mmol/L NH4Cl exposure, suggesting that Rhcg present on the apical side of the branchial epithelium facilitates NH3 excretion out of gills. A high concentration of acute ammonia exposure induced elevated Rhbg transcript in the gills of large-scale loaches, while a slight change in Rhbg expression was observed in response to lower ammonia, suggesting that transcriptions of Rhbg genes are activated by a considerably high level of ambient ammonia to eliminate excessive endogenous nitrogen. The Rhag mRNA level in gills of large-scale loaches increased markedly with the prolonging of exposure time from 0 to 36 h of ammonia loading, suggesting Rhag localized in gills may be primarily associated with ammonia handling. During 7-21 days of ammonia exposure, the expression of most Rh glycoproteins-related genes in the gills decreased, indicating that the functional role of Rh glycoproteins is not primarily associated with ammonia defense over a long period (more than 7 days). Although a significant transcript of Rhbg was found in the skin of a large-scale loach, the lack of Rhcg and down-regulation of Rhag may indicate that the skin is not an essential location of ammonia excretion, at least when submerged to high levels of ammonia in the environment. In conclusion, Rh glycoproteins localized in gills as ammonia transporters play a momentous role in ammonia detoxification in this species during acute ammonia loading. However, it does not show a positive function during long-term ammonia exposure. Furthermore, the physiological function of Rh glycoproteins localized in the skin is still unclear and deserves further study.


Asunto(s)
Amoníaco , Cipriniformes , Amoníaco/metabolismo , Amoníaco/toxicidad , Animales , Cipriniformes/genética , Branquias/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Nitrógeno/metabolismo , ARN Mensajero/metabolismo
12.
Fish Physiol Biochem ; 48(2): 381-395, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35166960

RESUMEN

Heteropneustes fossilis is a facultative air-breathing freshwater catfish and inhabits ponds, ditches, swamps, marshes and rivers that dry up in summers. It possesses a pair of unique tubular accessory respiratory organ (air sac), which is a modification of the gill chamber and enables it to live in water-air transition zones. In the catfish, three vasotocin (Vt) receptor gene paralogs viz., v1a1, v1a2 and v2a were identified for Vt actions. In the present study, the receptor gene transcripts were localized in the gill and air sac by in situ hybridization, and their expression levels in relation to water and air deprivation conditions were investigated by quantitative RT-PCR. The catfish were exposed to 1 h and 2 h in gonad inactive (resting) and gonad active (prespawning) phases. The gene paralogs showed overlapping distribution in the respiratory epithelium of primary and secondary lamellae of gills and reduced lamellae of the air sacs. In water deprivation (forced aerial mode of respiration) experiment, v2a expression showed a high fold increase in the air sac, which was unchanged or inhibited in the gill. Both v1a1 and v1a2 expression was significantly upregulated in the air sac but showed varied responses in the gill. The gill v1a1 expression was unchanged in the resting phase and modestly upregulated in the prespawning phase. The gill v1a2 expression was modestly upregulated at 1 h in both phases but unchanged at 2 h. In the air deprivation experiment (forced aquatic respiration), the v2a expression in the air sac was inhibited except for a mild stimulation at 1 h in the prespawning phase. In the gill, the v2a expression was stimulated with a steep upregulation at 2 h in the prespawning phase. Both v1a1 and v1a2 expression was significantly high in the gill but only modestly increased or unchanged in the air sac. The expression patterns point to a functional distinction; the V2 type receptor expression was higher in the air sac during forced aerial respiration, and the V1 type receptor expression was highly prominent in the gill during forced aquatic respiration. Water and air deprivation treatments caused a significant increase in plasma cortisol level, and the stimulation was higher in the water deprivation fish in the resting phase but equally prominent in the water and air deprivation groups in the prespawning phase. The results indicate that the changes in the expression patterns of Vt receptor genes may be a sequel to stress (hypoxic, metabolic and osmotic), and both Vt and cortisol may interact to counter the stress responses. This study shows that Vt has a new role in the control of air sac functions.


Asunto(s)
Bagres , Sacos Aéreos/metabolismo , Animales , Bagres/metabolismo , Expresión Génica , Branquias/metabolismo , Hidrocortisona/metabolismo , Receptores de Vasopresinas , Vasotocina/genética , Agua/metabolismo
13.
Int J Mol Sci ; 22(21)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34769365

RESUMEN

Loach (Misgurnus anguillicaudatus) is well known to perform air-breathing through the posterior intestine and skin. However, we find here for the first time a unique central vascular structure in the loach barbel, with a blood-gas diffusion distance as short as that of the posterior intestine. Under acute hypoxia, the distance of loach barbels became significantly shorter. Moreover, barbel removal significantly decreased air-breathing frequency of the loach. These findings imply that the barbel is another air-breathing organ of the loach. For further investigation of loach barbel air-breathing, a transcriptome analysis of barbels with air exposure treatment was performed. A total of 2546 differentially expressed genes (DEGs) between the T-XU (air exposure) and C-XU (control) group were identified, and 13 key DEGs related to barbel air-breathing were screened out. On this foundation, sequence, expression, and location analysis results indicated an important positive role of fibronectin 1b (fn1b) in loach barbel air-breathing. We further generated an fn1b-depletion loach (MT for short) using the CRISPR/Cas9 technique. It was indicated that depletion of fn1b could weaker barbel air-breathing ability. In conclusion, due to nonlethal and regenerative characteristics, the loach barbel, a newly discovered and fn1b-related fish air-breathing organ, can be a good model for fish air-breathing research.


Asunto(s)
Cipriniformes/fisiología , Fibronectinas/metabolismo , Proteínas de Peces/metabolismo , Respiración , Transcriptoma , Animales , Fibronectinas/genética , Proteínas de Peces/genética
14.
Fish Physiol Biochem ; 47(6): 1969-1982, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34668117

RESUMEN

This study investigated the dependence of contraction from extracellular Ca2+, the presence of a functional sarcoplasmic reticulum (SR), and the effects of ß-adrenergic stimulation using isometric cardiac muscle preparations. Moreover, the expression of Ca2+-handling proteins such as SR-Ca2+-ATPase (SERCA), phospholamban (PLN), and Na+/Ca2+ exchanger (NCX) were also evaluated in the ventricular tissue of adult African sharptooth catfish, Clarias gariepinus, a facultative air-breathing fish. In summary, we observed that (1) contractility was strongly regulated by extracellular Ca2+; (2) inhibition of SR Ca2+-release by application of ryanodine reduced steady-state force production; (3) ventricular myocardium exhibited clear post-rest decay, even in the presence of ryanodine, indicating a decrease in SR Ca2+ content and NCX as the main pathway for Ca2+ extrusion; (4) a positive force-frequency relationship was observed above 60 bpm (1.0 Hz); (5) ventricular tissue was responsive to ß-adrenergic stimulation, which caused significant increases in twitch force, kept a linear force-frequency relationship from 12 to 96 bpm (0.2 to Hz), and improved the cardiac pumping capacity (CPC); and (6) African catfish myocardium exhibited similar expression patterns of NCX, SERCA, and PLN, corroborating our findings that both mechanisms for Ca2+ transport across the SR and sarcolemma contribute to Ca2+ activator. In conclusion, this fish species displays great physiological plasticity of E-C coupling, able to improve the ability to maintain cardiac performance under physiological conditions to ecological and/or adverse environmental conditions, such as hypoxic air-breathing activity.


Asunto(s)
Adrenérgicos/farmacología , Calcio , Bagres , Contracción Miocárdica , Retículo Sarcoplasmático , Animales , Calcio/metabolismo , Bagres/metabolismo , Rianodina , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Intercambiador de Sodio-Calcio
15.
Fish Physiol Biochem ; 47(2): 251-263, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33405067

RESUMEN

This aim of this study was to determine the respiratory physiology response in the gill and gut of Paramisgurnus dabryanus under different breathing treatment patterns. The experimental design included the following three conditions: a control group without any stress treatments, an inhibited group with intestinal respiration inhibited, and an air-exposed group with gill respiration inhibited. The results indicated that the total static metabolic rate in the air-exposed group (188.92 ± 13.67 mg h-1 kg-1) was much higher than that of the other group after 7 days, decreased significantly after the first day of recovery (81.64 ± 7.85 mg h-1 kg-1). The air metabolic rate in the air-exposed group increased significantly after 7 days (P < 0.05). There was no significant difference among the groups. Histological observation on the gill and hindgut of P. dabryanus showed that the gill filament area of inhibited group became larger, while the gill structure of air exposed group showed some damage. The number of capillariesin the hindgut mucosal epithelial in air-exposed group showed a rapidly increase (P < 0.05). Likewise, the gas diffusion distance (1.24 ± 0.36 µm) became significantly shorter (P < 0.05). Lactate dehydrogenase activity of gill in the air-exposed group (846.68 ± 88.78 U mg-1 protein) significantly increased after 7 days whereas succinate dehydrogenase (1.02 ± 0.21 U mg-1 protein) and Na+/K+ ATPase (0.57 ± 0.20 U mg-1 protein) activity decreased significantly (P < 0.05). However, there was no significant change in the hindgut. After recovery, there was no significant difference in lactate dehydrogenase, succinate dehydrogenase, and Na+/K+ ATPase activity in the gill or hindgut in groups. P. dabryanus had a high viability in air-exposed condition. When recovery occurred under normoxic conditions, the physical levels of respiration returned back to the normal level quickly.


Asunto(s)
Cipriniformes/fisiología , Hipoxia , Consumo de Oxígeno , Oxígeno/metabolismo , Aclimatación , Aire , Animales , Branquias/enzimología , L-Lactato Deshidrogenasa/metabolismo , Oxígeno/química , Respiración , Agua/química
16.
J Exp Biol ; 223(Pt 4)2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32001546

RESUMEN

Chitala ornata is a facultative air-breathing fish, which at low temperatures shows an arterial PCO2  (PaCO2 ) level only slightly elevated above that of water breathers. By holding fish with in-dwelling catheters at temperatures from 25 to 36°C and measuring blood gasses, we show that this animal follows the ubiquitous poikilotherm pattern of reducing arterial pH with increasing temperature. Surprisingly, the temperature increase caused an elevation of PaCO2  from 5 to 12 mmHg while the plasma bicarbonate concentration remained constant at around 8 mmol l-1 The temperature increase also gave rise to a larger fractional increase in air breathing than in gill ventilation frequency. These findings suggest that air breathing, and hence the partitioning of gas exchange, is to some extent regulated by acid-base status in air-breathing fish and that these bimodal breathers will be increasingly likely to adopt respiratory pH control as temperature rises, providing an interesting avenue for future research.


Asunto(s)
Equilibrio Ácido-Base/fisiología , Peces/fisiología , Respiración , Temperatura , Animales , Bicarbonatos/sangre , Dióxido de Carbono/sangre , Branquias/fisiología , Concentración de Iones de Hidrógeno , Intercambio Gaseoso Pulmonar
17.
J Exp Biol ; 223(Pt 21)2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33097572

RESUMEN

In some fishes, the ability to breathe air has evolved to overcome constraints in hypoxic environments but comes at a cost of increased predation. To reduce this risk, some species perform group air breathing. Temperature may also affect the frequency of air breathing in fishes, but this topic has received relatively little research attention. This study examined how acclimation temperature and acute exposure to hypoxia affected the air-breathing behaviour of a social catfish, the bronze corydoras Corydoras aeneus, and aimed to determine whether individual oxygen demand influenced the behaviour of entire groups. Groups of seven fish were observed in an arena to measure air-breathing frequency of individuals and consequent group air-breathing behaviour, under three oxygen concentrations (100%, 60% and 20% air saturation) and two acclimation temperatures (25 and 30°C). Intermittent flow respirometry was used to estimate oxygen demand of individuals. Increasingly severe hypoxia increased air breathing at the individual and group levels. Although there were minimal differences in air-breathing frequency among individuals in response to an increase in temperature, the effect of temperature that did exist manifested as an increase in group air-breathing frequency at 30°C. Groups that were more socially cohesive during routine activity took more breaths but, in most cases, air breathing among individuals was not temporally clustered. There was no association between an individual's oxygen demand and its air-breathing frequency in a group. For C.aeneus, although air-breathing frequency is influenced by hypoxia, behavioural variation among groups could explain the small overall effect of temperature on group air-breathing frequency.


Asunto(s)
Bagres , Animales , Humanos , Hipoxia , Oxígeno , Consumo de Oxígeno , Respiración , Sistema Respiratorio , Temperatura
18.
J Exp Biol ; 223(Pt 2)2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31836650

RESUMEN

Among the numerous lineages of teleost fish that have independently transitioned from obligate water breathing to facultative air breathing, evolved properties of hemoglobin (Hb)-O2 transport may have been shaped by the prevalence and severity of aquatic hypoxia (which influences the extent to which fish are compelled to switch to aerial respiration) as well as the anatomical design of air-breathing structures and the cardiovascular system. Here, we examined the structure and function of Hbs in an amphibious, facultative air-breathing fish, the blue-spotted mudskipper (Boleophthalmus pectinirostris). We also characterized the genomic organization of the globin gene clusters of the species and we integrated phylogenetic and comparative genomic analyses to unravel the duplicative history of the genes that encode the subunits of structurally distinct mudskipper Hb isoforms (isoHbs). The B. pectinirostris isoHbs exhibit high intrinsic O2 affinities, similar to those of hypoxia-tolerant, water-breathing teleosts, and remarkably large Bohr effects. Genomic analysis of conserved synteny revealed that the genes that encode the α-type subunits of the two main adult isoHbs are members of paralogous gene clusters that represent products of the teleost-specific whole-genome duplication. Experiments revealed no appreciable difference in the oxygenation properties of co-expressed isoHbs in spite of extensive amino acid divergence between the alternative α-chain subunit isoforms. It therefore appears that the ability to switch between aquatic and aerial respiration does not necessarily require a division of labor between functionally distinct isoHbs with specialized oxygenation properties.


Asunto(s)
Evolución Molecular , Peces/fisiología , Hemoglobinas/química , Respiración , Animales , Isoformas de Proteínas/química
19.
J Therm Biol ; 90: 102600, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32479395

RESUMEN

Terrestrial isopods have evolved pleopodal lungs that provide access to the rich aerial supply of oxygen. However, isopods occupy conditions with wide and unpredictable thermal and oxygen gradients, suggesting that they might have evolved adaptive developmental plasticity in their respiratory organs to help meet metabolic demand over a wide range of oxygen conditions. To explore this plasticity, we conducted an experiment in which we reared common rough woodlice (Porcellio scaber) from eggs to maturation at different temperatures (15 and 22 °C) combined with different oxygen levels (10% and 22% O2). We sampled animals during development (only females) and then examined mature adults (both sexes). We compared woodlice between treatments with respect to the area of their pleopod exopodites (our proxy of lung size) and the shape of Bertalanffy's equations (our proxy of individual growth curves). Generally, males exhibited larger lungs than females relative to body size. Woodlice also grew relatively fast but achieved a decreased asymptotic body mass in response to warm conditions; the oxygen did not affect growth. Under hypoxia, growing females developed larger lungs compared to under normoxia, but only in the late stage of development. Among mature animals, this effect was present only in males. Woodlice reared under warm conditions had relatively small lungs, in both developing females (the effect was increased in relatively large females) and among mature males and females. Our results demonstrated that woodlice exhibit phenotypic plasticity in their lung size. We suggest that this plasticity helps woodlice equilibrate their gas exchange capacity to differences in the oxygen supply and metabolic demand along environmental temperature and oxygen gradients. The complex pattern of plasticity might indicate the effects of a balance between water conservation and oxygen uptake, which would be especially pronounced in mature females that need to generate an aqueous environment inside their brood pouch.


Asunto(s)
Adaptación Fisiológica , Isópodos/crecimiento & desarrollo , Pulmón/crecimiento & desarrollo , Oxígeno , Temperatura , Animales , Femenino , Isópodos/fisiología , Pulmón/fisiología , Masculino , Tamaño de los Órganos , Intercambio Gaseoso Pulmonar
20.
Molecules ; 25(16)2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32785079

RESUMEN

Microbial Fuel Cells (MFCs) employ microbial electroactive species to convert chemical energy stored in organic matter, into electricity. The properties of MFCs have made the technology attractive for bioenergy production. However, a challenge to the mass production of MFCs is the time-consuming assembly process, which could perhaps be overcome using additive manufacturing (AM) processes. AM or 3D-printing has played an increasingly important role in advancing MFC technology, by substituting essential structural components with 3D-printed parts. This was precisely the line of work in the EVOBLISS project, which investigated materials that can be extruded from the EVOBOT platform for a monolithically printed MFC. The development of such inexpensive, eco-friendly, printable electrode material is described below. The electrode in examination (PTFE_FREE_AC), is a cathode made of alginate and activated carbon, and was tested against an off-the-shelf sintered carbon (AC_BLOCK) and a widely used activated carbon electrode (PTFE_AC). The results showed that the MFCs using PTFE_FREE_AC cathodes performed better compared to the PTFE_AC or AC_BLOCK, producing maximum power levels of 286 µW, 98 µW and 85 µW, respectively. In conclusion, this experiment demonstrated the development of an air-dried, extrudable (3D-printed) electrode material successfully incorporated in an MFC system and acting as a cathode electrode.


Asunto(s)
Fuentes de Energía Bioeléctrica , Impresión Tridimensional , Alginatos/química , Fuentes de Energía Bioeléctrica/economía , Carbono/química , Técnicas Electroquímicas , Electrodos , Diseño de Equipo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda