Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Ecotoxicol Environ Saf ; 284: 116927, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39216334

RESUMEN

Compound pollution at industrial sites impedes urban development, especially when there is a lack of understanding about the spatial variations of internal pollution in industrial areas producing light-weight materials. In this study, spatial distribution and ecological risks of potentially toxic elements (PTEs), volatile organic compounds (VOCs), and petroleum hydrocarbons (C10-40) in the soil and groundwater of an Al/Cu (aluminum/copper) industrial site have been analyzed comprehensively. Results revealed the progressive clustering of pollutants in different soil layers, which indicated varying levels of penetration and migration of pollutants from the surface downward. Furthermore, severity of pollution varied according to pollutant type, with Cu (5-10,228 mg kg-1) often exceeding the background levels significantly (>40). Cd (0.03-2.60 mg kg-1) and Hg (0.01-3.73 mg kg-1) were found at elevated concentrations in deeper soil layers, suggesting distinct variations of PTEs across different soil depths. Among the more hazardous VOCS, polychlorinated biphenyls (1.80-234 µg kg-1) were particularly prevalent in the deeper layers of soil. Petroleum hydrocarbons (C10-40) were widely detected (6-582 mg kg-1), showing significant migration potential from surface to deep soil. These findings suggest that prolonged industrial activities lead to deep-seated accumulation of pollutants, which also impacts the groundwater, contributing to long-term dispersion of contaminants. Furthermore, multivariate statistical analysis indicated certain positive correlations among the distribution of Cu, Pb and petroleum hydrocarbons, indicating possible coupling of these pollutants. Severe Cu pollution caused an ecological risk in the surface soil layer (covering >20 % area of high pollution site, contributing >40 % ecological risk). While the Hg and Cd posed significant risks in the deeper soil layers, showing higher risk coefficients and mobility. The study provides crucial insights into the transformation of urban areas with a history of industrial uses into community spaces and highlights the risks posed by the remaining pollutants.


Asunto(s)
Cobre , Monitoreo del Ambiente , Agua Subterránea , Hidrocarburos , Metales Pesados , Petróleo , Contaminantes del Suelo , Compuestos Orgánicos Volátiles , Contaminantes Químicos del Agua , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Agua Subterránea/química , Compuestos Orgánicos Volátiles/análisis , Hidrocarburos/análisis , Contaminantes Químicos del Agua/análisis , Petróleo/análisis , Cobre/análisis , Suelo/química , Aluminio/análisis
2.
Acta Mater ; 2282022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36439291

RESUMEN

Tensile and compressive creep properties of a quaternary Al-Cu-Mn-Zr (ACMZ) alloy and its commercial counterpart (Al-Cu-Mn-Zr with Ni, Co and Sb additions, RR350) are investigated at 300° C. At low stresses up to 30 MPa where diffusional creep dominates, creep resistance is the same in tension and compression and RR350 deforms more slowly than ACMZ, consistent with RR350 alloy's larger linear fraction of intergranular precipitates (Al7 Cu2 (NiFe) and Al9 FeNi for RR350 vs. θ-Al2 Cu for ACMZ) and a reduced fraction of precipitate-free zones near grain boundaries. At stresses between 30 and 80 MPa, dislocation creep with a stress exponent n ~ 3 becomes rate-limiting in compression, which is expected to be controlled by θ'precipitates within the grain bulk. By contrast, in tension, enhanced creep rate and higher apparent stress exponents are measured, consistent with cavitation at intergranular precipitates becoming increasingly dominant as the stress increases. In the dislocation creep regime, RR350 alloy is again more creep resistant than ACMZ alloy, which is related to three mechanisms (i) a reduced fraction of softer precipitate-free zones, (ii) more effective load transfer to intergranular precipitates, and (iii) reduced cavitation. A model for cavitation is applied to calculate tensile creep rates from compressive creep rates and the model successfully predicts the improved tensile creep resistance of the RR350 alloy. The present investigation underscores the importance of intergranular grain boundary precipitates, in addition to strengthening θ' precipitates, in enhancing the creep resistance of Al-Cu alloys.

3.
Microsc Microanal ; : 1-8, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35440356

RESUMEN

In this study, binary as-cast Al­Cu alloys: Al25Cu (Al­25%Cu) and Al45Cu (Al­45%Cu) (in wt%) were severely plastically deformed by extrusion combined with a reversible torsion (KoBo) method to produce an ultrafine-grained structure (UFG). The binary Al­Cu alloys consist of α-Al and intermetallic Al2Cu phases. The morphology and volume fraction of α-Al and Al2Cu phases depend on the Cu content. The KoBo process was carried out using extrusion ratios of λ = 30 and λ = 98. The effect of phase refinement has been studied by means of scanning electron microscopy with electron backscattering diffraction and scanning transmission electron microscopy. The mechanical properties were assessed using compression tests. Detailed microstructural analysis shows that after the KoBo process, a large number fraction of high-angle boundaries (HABs) and a very fine grain structure (~2­4 µm) in both phases are created. An increase of λ ratio during the KoBo processing leads to a decrease in average grain size of α-Al and Al2Cu phases and an increase in fraction of HABs. UFG microstructure and high fraction of HABs provide the grain boundary sliding mechanism during KoBo deformation. UFG microstructure contributes to the enhanced mechanical properties. Compressive strength (Rc) of Al25Cu alloy increases from 172 to 340 MPa with an increase of λ. Compressive strain (Sc) for Al25Cu alloy increased from 35 to 67% with an increase of λ. High fraction of intermetallic phase in Al45Cu alloy was responsible for room temperature strengthening of alloy and low compressive strain. The deformed Al45Cu alloy with λ = 30 showed that Rc is 194 MPa and Sc is equal to 10%.

4.
Nanotechnology ; 32(23)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33631738

RESUMEN

The hard-template method belongs to an effective route for preparing porous carbon materials with ideal hierarchical pores. In this work, a kind of hierarchical porous carbon (HPC) with high gravimetric and volumetric capacitance is fabricated by the use of Al-Cu double hydroxides (Al-Cu DHs) as hard templates and polyethylene glycol-200 as carbon precursors. It is found that the Al/Cu molar ratio has a profound influence on the morphology and composition of Al-Cu DHs and the obtained hierarchical porous architecture of HPCs owing to the template and catalyst functions of both Cu and Al2O3. For Al/Cu molar ratios of 5:1 and 7:1, the prepared HPC-05 and HPC-07 display a large specific surface area and appropriate hierarchical porous architecture. They can be used as the electrode materials of supercapacitors without any activation. The HPC-05 exhibits gravimetric capacitance (296.9 F g-1) and high volumetric capacitance (183.3 F cm-3). Moreover, the capacitance retention is 105% in 1 M Na2SO4electrolyte with an ultrahigh gravimetric energy density of 16.32 W h kg-1and a volumetric energy density of 10.09 W h l-1. This paper provides a tunable double-hydroxide-template way to construct HPC materials with high gravimetric and volume capacitance.

5.
Acta Mater ; 111: 385-398, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29606898

RESUMEN

The precipitate structure and precipitation kinetics in an Al-Cu-Mg alloy (AA2024) aged at 190 °C, 208 °C, and 226 °C have been studied using ex situ Transmission Electron Microscopy (TEM) and in situ synchrotron-based, combined ultra-small angle X-ray scattering, small angle X-ray scattering (SAXS), and wide angle X-ray scattering (WAXS) across a length scale from sub-Angstrom to several micrometers. TEM brings information concerning the nature, morphology, and size of the precipitates while SAXS and WAXS provide qualitative and quantitative information concerning the time-dependent size and volume fraction evolution of the precipitates at different stages of the precipitation sequence. Within the experimental time resolution, precipitation at these ageing temperatures involves dissolution of nanometer-sized small clusters and formation of the planar S phase precipitates. Using a three-parameter scattering model constructed on the basis of TEM results, we established the temperature-dependent kinetics for the cluster-dissolution and S-phase formation processes simultaneously. These two processes are shown to have different kinetic rates, with the cluster-dissolution rate approximately double the S-phase formation rate. We identified a dissolution activation energy at (149.5 ± 14.6) kJ mol-1, which translates to (1.55 ± 0.15) eV/atom, as well as an activation energy for the formation of S precipitates at (129.2 ± 5.4) kJ mol-1, i.e. (1.33 ± 0.06) eV/atom. Importantly, the SAXS/WAXS results show the absence of an intermediate Guinier-Preston Bagaryatsky 2 (GPB2)/S″ phase in the samples under the experimental ageing conditions. These results are further validated by precipitation simulations that are based on Langer-Schwartz theory and a Kampmann-Wagner numerical method.

6.
Sci Technol Adv Mater ; 15(1): 014801, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27877642

RESUMEN

A fine layered nanocomposite with a total thickness of about 200 nm was formed on the surface of an Al63Cu25Fe12 quasicrystal (QC). The nanocomposite was found to exhibit high catalytic performance for steam reforming of methanol. The nanocomposite was formed by a self-assembly process, by leaching the Al-Cu-Fe QC using a 5 wt% Na2CO3 aqueous solution followed by calcination in air at 873 K. The quasiperiodic nature of theQC played an important role in the formation of such a structure. Its high catalytic activity originated from the presence of highly dispersed copper and iron species, which also suppressed the sintering of nanoparticles.

7.
Heliyon ; 10(4): e26329, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38404818

RESUMEN

The properties of Al-Cu bimetallic composite are investigated employing the finite element method to understand the nature of the composite materials under different loading conditions. In this regard, Al and Cu metallic sheets were implemented to analyze cold-roll bonding (CRB) and to monitor the bonding conditions. After rolling the materials were investigated for their stress distribution and bonding as well as fracture behavior. Finite element investigation was used by the ANSYS software to analyze the stress-strain distribution in the metal layers. The results indicate that the appropriate joining of Al-Al and Al-Cu can be achieved using the CRB process. The stress distribution based on the Von-Mises criterion was calculated and validated by simulation studies. For crack simulations, on the other hand, the results showed that during crack propagation, the materials showed different behaviors owing to the varying properties of Al and Cu. Also, for both the tests, stress distribution in 2D and 3D were simulated, and different stress criteria were obtained and compared. Moreover, optical and scanning electron microscopies were used to study the characteristics of the materials and to support FEM outputs.

8.
3D Print Addit Manuf ; 11(2): e731-e742, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38689899

RESUMEN

Laser powder bed fusion (LPBF) of Al-Cu alloys shows high susceptibility to cracking due to a wide solidification temperature range. In this work, 2024 alloys were manufactured by LPBF at different laser processing parameters. The effect of processing parameters on the densification behavior and mechanical properties of the LPBF-processed 2024 alloys was investigated. The results show that the porosity increases significantly with increasing laser power, while the number of cracks and lack-of-fusion defects increase distinctly with increasing scan speed. The solidification cracking susceptibility of the LPBF-processed 2024 alloys prepared at different processing parameters was analyzed based on a finite element model, which was accurately predicted by theoretical calculations. Dense and crack-free 2024 samples with a high densification of over 98.1% were manufactured at a low laser power of 200 W combined with a low laser scan speed of 100 mm/s. The LPBF-processed 2024 alloys show a high hardness of 110 ± 4 HV0.2, an ultimate tensile strength of 300 ± 15 MPa, and an elongation of ∼3%. This work can serve as reference for obtaining crack-free and high-performance Al-Cu alloys by LPBF.

9.
Ultrason Sonochem ; 109: 107001, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39068685

RESUMEN

Tailoring the phase constitutions of the interfacial reaction layers under the assistance of ultrasonic vibration is a convenient method to fabricate high-strength Al/Cu brazing joints. In this study, 1060-Al and T2-Cu dissimilar metals were ultrasonically brazed with Zn-3Al (wt. %) filler metals. Effects of ultrasonic brazing time on the microstructure and mechanical properties of joints were investigated. Results showed that the CuZn5 intermetallic compound (IMC) layer and Cu-based diffusion layer were created on the Cu substrate surface in the joint ultrasonically brazed at 400 ℃ for 2 s. However, the CuZn5 IMC layer was gradually transformed into a thin Al4.2Cu3.2Zn0.7 IMC layer by increasing the ultrasonic vibration time to 15 s. A well-matched coherent interface was formed between the Al4.2Cu3.2Zn0.7 ternary phase and the Cu-based diffusion layer. The phase transition of the Cu-side interfacial layer correlated closely with the acoustic cavitations induced super-saturation regions near the Cu substrate surface. The measured tensile strength of the Al/Zn-3Al/Cu joint ultrasonically brazed for 15 s was 89.3 MPa, which was approximately 2.5 times higher than that brazed for 2 s, and the tensile failure mainly occurred at the interface between the Al4.2Cu3.2Zn0.7 layer and the Cu-based diffusion layer.

10.
Materials (Basel) ; 17(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38998366

RESUMEN

The present study aimed to enhance the efficiency and efficacy of the Al/Cu joint production process implemented by the company VEMID Ltd., Jagodina, Serbia, by attaining sound joints within a very short welding time. For this purpose, the present study aimed at investigating the accuracy and the quality of the continuous drive friction welding (CDFW) process, as well as the optimum combination of CDFW parameters with highest joint efficiency in terms of investigated properties. The accuracy was estimated through an analysis of temperature-time curves recorded during CDFW using an infrared camera. The quality was evaluated through an investigation of the properties of Al/Cu joints produced using different friction (66.7, 88.9, and 133.3 MPa) and forging (88.9, 222.2, and 355.6 MPa) pressures and a constant total welding time (4 s) and rotational speed (2100 rpm). Thermal imaging with an infrared camera demonstrated that the actual total welding time was 15% longer compared to the nominal value. This was attributed to the slow pressure response of the pneumatic brake system. The relative changes in the maximum surface temperature (TMS) during the CDFW process corresponded to changes in welding pressures, indicating the potential of the thermal imaging method for monitoring and assessing this process. A preliminary investigation demonstrated that Al/Cu joints produced using welding pressures less than 88.9 MPa often displayed the presence of non-joined micro-regions at the Al/Cu interface and a significant thickness of interfacial Al2Cu (up to 1 µm). However, when friction pressure was set at 66.7 MPa, an increase in the forging pressure to 222.2 MPa eliminated the presence of non-joined micro-regions and reduced the thickness of Al2Cu to 0.5 µm on the average level. These Al/Cu joints achieved the highest joint efficiencies in terms of strength (100%) and ductility (61%). They exhibited an electrical conductivity higher than 92% of the theoretical value. A further increase in any welding pressure produced similar or deteriorated properties, accompanied by an increase in the consumption of raw materials and energy. Such turn of events was counterproductive to the original goal of increasing the efficiency and efficacy of the CDFW process.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda