Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nanotechnology ; 34(44)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37531938

RESUMEN

Nano-polycrystalline Cu/Al2Cu/Al layered composites with different layer thicknessesdof single-crystal Al2Cu constituent are constructed. The effects ofdon the strength and fracture modes of nano-polycrystalline Cu/Al2Cu/Al layered composites are systematically investigated by molecular dynamics simulations. The uniaxial tensile results show that the ultimate strength and fracture mode of the nano-polycrystalline Cu/Al2Cu/Al layered composites do not change monotonically with the change of single crystal Al2Cu constituent layer thicknessd, the ultimate strength peaking atd= 2.44 nm, and the toughness reaching the optimum atd= 4.88 nm. The improvement of deformation incompatibility between Cu, Al and Al2Cu components increases the ultimate strength of polycrystalline Cu/Al2Cu/Al laminated composites. Due to the high activity of Cu dislocation and the uniformity of strain distribution of single crystal Al2Cu, the fracture of nano-crystalline Cu/Al2Cu/Al layered composites changes from brittleness to toughness. This study is crucial to establish the organic connection between microstructure and macroscopic properties of Cu/Al layered composites. To provide theoretical basis and technical support for the application of Cu/Al layered composites in high-end fields, such as automotive and marine, aerospace and defense industries.

2.
Acta Mater ; 2282022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36439291

RESUMEN

Tensile and compressive creep properties of a quaternary Al-Cu-Mn-Zr (ACMZ) alloy and its commercial counterpart (Al-Cu-Mn-Zr with Ni, Co and Sb additions, RR350) are investigated at 300° C. At low stresses up to 30 MPa where diffusional creep dominates, creep resistance is the same in tension and compression and RR350 deforms more slowly than ACMZ, consistent with RR350 alloy's larger linear fraction of intergranular precipitates (Al7 Cu2 (NiFe) and Al9 FeNi for RR350 vs. θ-Al2 Cu for ACMZ) and a reduced fraction of precipitate-free zones near grain boundaries. At stresses between 30 and 80 MPa, dislocation creep with a stress exponent n ~ 3 becomes rate-limiting in compression, which is expected to be controlled by θ'precipitates within the grain bulk. By contrast, in tension, enhanced creep rate and higher apparent stress exponents are measured, consistent with cavitation at intergranular precipitates becoming increasingly dominant as the stress increases. In the dislocation creep regime, RR350 alloy is again more creep resistant than ACMZ alloy, which is related to three mechanisms (i) a reduced fraction of softer precipitate-free zones, (ii) more effective load transfer to intergranular precipitates, and (iii) reduced cavitation. A model for cavitation is applied to calculate tensile creep rates from compressive creep rates and the model successfully predicts the improved tensile creep resistance of the RR350 alloy. The present investigation underscores the importance of intergranular grain boundary precipitates, in addition to strengthening θ' precipitates, in enhancing the creep resistance of Al-Cu alloys.

3.
Materials (Basel) ; 14(5)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800245

RESUMEN

The effects of anisotropic interfacial properties and heterogeneous elasticity on the growth and ripening of plate-like θ'-phase (Al2Cu) in Al-1.69 at.% Cu alloy are studied. Multi-phase-field simulations are conducted and discussed in comparison with aging experiments. The precipitate/matrix interface is considered to be anisotropic in terms of its energy and mobility. We find that the additional incorporation of an anisotropic interfacial mobility in conjunction with the elastic anisotropy result in substantially larger aspect ratios of the precipitates closer to the experimental observations. The anisotropy of the interfacial energy shows comparably small effect on the precipitate's aspect ratio but changes the interface's shape at the rim. The effect of the chemo-mechanical coupling, i.e., the composition dependence of the elastic constants, is studied as well. We show that the inverse ripening phenomenon, recently evidenced for δ' precipitates in Al-Li alloys (Park et al. Sci. Rep. 2019, 9, 3981), does not establish for the θ' precipitates. This is because of the anisotropic stress fields built around the θ' precipitates, stemming from the precipitate's shape and the interaction among different variants of the θ' precipitate, that disturb the chemo-mechanical effects. These results show that the chemo-mechanical effects on the precipitation ripening strongly depend on the degree of sphericity and elastic isotropy of the precipitate and matrix phases.

4.
ACS Appl Mater Interfaces ; 8(20): 13104-13, 2016 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-27145017

RESUMEN

Nanoenergetic materials are beginning to play an important role in part because they are being considered as energetic components for materials, chemical, and biochemical communities (e.g., microthermal sources, microactuators, in situ welding and soldering, local enhancement of chemical reactions, nanosterilization, and controlled cell apoptosis) and because their fabrication/synthesis raises fundamental challenges that are pushing the engineering and scientific frontiers. One such challenge is the development of processes to control and enhance the reactivity of materials such as energetics of nanolaminates, and the understanding of associated mechanisms. We present here a new method to substantially decrease the reaction onset temperature and in consequence the reactivity of nanolaminates based on the incorporation of a Cu nanolayer at the interfaces of Al/CuO nanolaminates. We further demonstrate that control of its thickness allows accurate tuning of both the thermal transport and energetic properties of the system. Using high resolution transmission electron microscopy, X-ray diffraction, and differential scanning calorimetry to analyze the physical, chemical and thermal characteristics of the resulting Al/CuO + interfacial Cu nanolaminates, we find that the incorporation of 5 nm Cu at both Al/CuO and CuO/Al interfaces lowers the onset temperature from 550 to 475 °C because of the lower-temperature formation of Al-Cu intermetallic phases and alloying. Cu intermixing is different in the CuO/Cu/Al and Al/Cu/CuO interfaces and independent of total Cu thickness: Cu readily penetrates into Al grains upon annealing to 300 °C, leading to Al/Cu phase transformations, while Al does not penetrate into Cu. Importantly, θ-Al2Cu nanocrystals are created below 63% wt Cu/Al, and coexist with the Al solid solution phase. These well-defined θ-Al2Cu nanocrystals seem to act as embedded Al+CuO energetic reaction triggers that lower the onset temperature. We show that ∼10 nm thick Cu at Al/CuO interfaces constitutes the optimum amount to increase both reactivity and overall heat of reaction by a factor of ∼20%. Above this amount, there is a rapid decrease of the heat of reaction.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda