Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Ecol Evol ; 8(5): 2746-2751, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29531691

RESUMEN

Despite the utility of gastropod models for the study of evolutionary processes of great generality and importance, their effective population size has rarely been estimated in the field. Here, we report allele frequency variance at three allozyme-encoding loci monitored over 7 years in a population of the invasive freshwater pulmonate snail Physa acuta (Draparnaud 1805), estimating effective population size with both single-sample and two-sample approaches. Estimated Ne declined from effectively infinite in 2009 to approximately 40-50 in 2012 and then rose back to infinity in 2015, corresponding to a striking fluctuation in the apparent census size of the population. Such volatility in Ne may reflect cryptic population subdivision.

2.
Evolution ; 46(5): 1537-1548, 1992 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28568988

RESUMEN

Serpentine soils are rich in heavy metals and have a distinctive flora. Silene dioica is a member of the Scandinavian serpentine plant community but is also widespread outside serpentine soils. To study the population genetic consequences of serpentine stress and the origin and evolution of serpentine populations we analyzed the isozyme genetic structure of S. dioica. Seventeen populations located in the mountains of Västerbotten and Jämtland, central Sweden, were investigated by starch gel enzyme electrophoresis. About one half of the populations grow in serpentine soils and the rest on adjacent non-serpentine sites. Analyses of allele frequencies show that both serpentine and non-serpentine populations in the northern part of the studied area (Västerbotten) are genetically similar. Evidently serpentine does not exert strong selection acting upon isozyme loci. In the south (Jämtland), however, the serpentine populations exhibit genetic differentiation. This allozyme divergence is probably not due to direct selection but rather represents the effects of isolation and genetic drift. The results suggest that S. dioica has colonized serpentine repeatedly and that the tolerant populations have a multiple origin.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda