Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Mol Cell ; 80(6): 971-979.e7, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33248026

RESUMEN

CRISPR-Cas adaptive immune systems provide prokaryotes with defense against viruses by degradation of specific invading nucleic acids. Despite advances in the biotechnological exploitation of select systems, multiple CRISPR-Cas types remain uncharacterized. Here, we investigated the previously uncharacterized type I-D interference complex and revealed that it is a genetic and structural hybrid with similarity to both type I and type III systems. Surprisingly, formation of the functional complex required internal in-frame translation of small subunits from within the large subunit gene. We further show that internal translation to generate small subunits is widespread across diverse type I-D, I-B, and I-C systems, which account for roughly one quarter of CRISPR-Cas systems. Our work reveals the unexpected expansion of protein coding potential from within single cas genes, which has important implications for understanding CRISPR-Cas function and evolution.


Asunto(s)
Inmunidad Adaptativa/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Evolución Molecular , Proteínas Asociadas a CRISPR/inmunología , Células Procariotas/inmunología , Células Procariotas/virología , Biosíntesis de Proteínas , Virus/inmunología
2.
Mol Cell ; 69(4): 636-647.e7, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29429926

RESUMEN

The integrated stress response (ISR) facilitates cellular adaptation to stress conditions via the common target eIF2α. During ISR, the selective translation of stress-related mRNAs often relies on alternative mechanisms, such as leaky scanning or reinitiation, but the underlying mechanism remains incompletely understood. Here we report that, in response to amino acid starvation, the reinitiation of ATF4 is not only governed by the eIF2α signaling pathway, but is also subjected to regulation by mRNA methylation in the form of N6-methyladenosine (m6A). While depleting m6A demethylases represses ATF4 reinitiation, knocking down m6A methyltransferases promotes ATF4 translation. We demonstrate that m6A in the 5' UTR controls ribosome scanning and subsequent start codon selection. Global profiling of initiating ribosomes reveals widespread alternative translation events influenced by dynamic mRNA methylation. Consistently, Fto transgenic mice manifest enhanced ATF4 expression, highlighting the critical role of m6A in translational regulation of ISR at cellular and organismal levels.


Asunto(s)
Adenosina/análogos & derivados , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/fisiología , Factor 2 Eucariótico de Iniciación/metabolismo , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/genética , Ribosomas/fisiología , Estrés Fisiológico , Regiones no Traducidas 5' , Adenosina/farmacología , Animales , Células Cultivadas , Codón Iniciador , Factor 2 Eucariótico de Iniciación/genética , Fibroblastos , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Fosforilación , ARN Mensajero/metabolismo
3.
J Virol ; 98(2): e0197523, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38294249

RESUMEN

The highly pathogenic arenavirus, Junín virus (JUNV), expresses three truncated alternative isoforms of its nucleoprotein (NP), i.e., NP53kD, NP47kD, and NP40kD. While both NP47kD and NP40kD have been previously shown to be products of caspase cleavage, here, we show that expression of the third isoform NP53kD is due to alternative in-frame translation from M80. Based on this information, we were able to generate recombinant JUNVs lacking each of these isoforms. Infection with these mutants revealed that, while all three isoforms contribute to the efficient control of caspase activation, NP40kD plays the predominant role. In contrast to full-length NP (i.e., NP65kD), which is localized to inclusion bodies, where viral RNA synthesis takes place, the loss of portions of the N-terminal coiled-coil region in these isoforms leads to a diffuse cytoplasmic distribution and a loss of function in viral RNA synthesis. Nonetheless, NP53kD, NP47kD, and NP40kD all retain robust interferon antagonistic and 3'-5' exonuclease activities. We suggest that the altered localization of these NP isoforms allows them to be more efficiently targeted by activated caspases for cleavage as decoy substrates, and to be better positioned to degrade viral double-stranded (ds)RNA species that accumulate in the cytoplasm during virus infection and/or interact with cytosolic RNA sensors, thereby limiting dsRNA-mediated innate immune responses. Taken together, this work provides insight into the mechanism by which JUNV leverages apoptosis during infection to generate biologically distinct pools of NP and contributes to our understanding of the expression and biological relevance of alternative protein isoforms during virus infection.IMPORTANCEA limited coding capacity means that RNA viruses need strategies to diversify their proteome. The nucleoprotein (NP) of the highly pathogenic arenavirus Junín virus (JUNV) produces three N-terminally truncated isoforms: two (NP47kD and NP40kD) are known to be produced by caspase cleavage, while, here, we show that NP53kD is produced by alternative translation initiation. Recombinant JUNVs lacking individual NP isoforms revealed that all three isoforms contribute to inhibiting caspase activation during infection, but cleavage to generate NP40kD makes the biggest contribution. Importantly, all three isoforms retain their ability to digest double-stranded (ds)RNA and inhibit interferon promoter activation but have a diffuse cytoplasmic distribution. Given the cytoplasmic localization of both aberrant viral dsRNAs, as well as dsRNA sensors and many other cellular components of innate immune activation pathways, we suggest that the generation of NP isoforms not only contributes to evasion of apoptosis but also robust control of the antiviral response.


Asunto(s)
Caspasas , Citoplasma , Fiebre Hemorrágica Americana , Interacciones Huésped-Patógeno , Inmunidad Innata , Virus Junin , Nucleoproteínas , Biosíntesis de Proteínas , Humanos , Apoptosis , Inhibidores de Caspasas/metabolismo , Caspasas/metabolismo , Citoplasma/metabolismo , Citoplasma/virología , Activación Enzimática , Fiebre Hemorrágica Americana/inmunología , Fiebre Hemorrágica Americana/virología , Interferones/genética , Interferones/inmunología , Virus Junin/genética , Virus Junin/metabolismo , Virus Junin/patogenicidad , Nucleoproteínas/biosíntesis , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Viral/biosíntesis , ARN Viral/genética , Replicación Viral
4.
Trends Biochem Sci ; 45(4): 308-320, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32001092

RESUMEN

The collection of chemically different protein variants, or proteoforms, by far exceeds the number of protein-coding genes in the human genome. Major contributors are alternative splicing and protein modifications. In this review, we focus on those proteoforms that differ at their N termini with a molecular link to disease. We describe the main underlying mechanisms that give rise to such N-terminal proteoforms, these being splicing, initiation of protein translation, and protein modifications. Given their role in several human diseases, it is becoming increasingly clear that several of these N-terminal proteoforms may have potential as therapeutic interventions and/or for diagnosing and prognosing their associated disease.


Asunto(s)
Empalme Alternativo , Procesamiento Proteico-Postraduccional , Humanos , Biosíntesis de Proteínas
5.
Plant Biotechnol J ; 22(4): 1033-1048, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37997501

RESUMEN

Plants have intricate mechanisms that tailor their defence responses to pathogens. WRKY transcription factors play a pivotal role in plant immunity by regulating various defence signalling pathways. Many WRKY genes are transcriptionally activated upon pathogen attack, but how their functions are regulated after transcription remains elusive. Here, we show that OsWRKY7 functions as a crucial positive regulator of rice basal immunity against Xanthomonas oryzae pv. oryzae (Xoo). The activity of OsWRKY7 was regulated at both translational and post-translational levels. Two translational products of OsWRKY7 were generated by alternative initiation. The full-length OsWRKY7 protein is normally degraded by the ubiquitin-proteasome system but was accumulated following elicitor or pathogen treatment, whereas the alternate product initiated from the downstream in-frame start codon was stable. Both the full and alternate OsWRKY7 proteins have transcriptional activities in yeast and rice cells, and overexpression of each form enhanced resistance to Xoo infection. Furthermore, disruption of the main AUG in rice increased the endogenous translation of the alternate stabilized form of OsWRKY7 and enhanced bacterial blight resistance. This study provides insights into the coordination of alternative translation and protein stability in the regulation of plant growth and basal defence mediated by the OsWRKY7 transcription factor, and also suggests a promising strategy to breed disease-resistant rice by translation initiation control.


Asunto(s)
Oryza , Xanthomonas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Oryza/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Fitomejoramiento , Resistencia a la Enfermedad/genética , Inmunidad de la Planta/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Diabetologia ; 66(5): 884-896, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36884057

RESUMEN

AIMS/HYPOTHESIS: Transcriptome analyses revealed insulin-gene-derived transcripts in non-beta endocrine islet cells. We studied alternative splicing of human INS mRNA in pancreatic islets. METHODS: Alternative splicing of insulin pre-mRNA was determined by PCR analysis performed on human islet RNA and single-cell RNA-seq analysis. Antisera were generated to detect insulin variants in human pancreatic tissue using immunohistochemistry, electron microscopy and single-cell western blot to confirm the expression of insulin variants. Cytotoxic T lymphocyte (CTL) activation was determined by MIP-1ß release. RESULTS: We identified an alternatively spliced INS product. This variant encodes the complete insulin signal peptide and B chain and an alternative C-terminus that largely overlaps with a previously identified defective ribosomal product of INS. Immunohistochemical analysis revealed that the translation product of this INS-derived splice transcript was detectable in somatostatin-producing delta cells but not in beta cells; this was confirmed by light and electron microscopy. Expression of this alternatively spliced INS product activated preproinsulin-specific CTLs in vitro. The exclusive presence of this alternatively spliced INS product in delta cells may be explained by its clearance from beta cells by insulin-degrading enzyme capturing its insulin B chain fragment and a lack of insulin-degrading enzyme expression in delta cells. CONCLUSIONS/INTERPRETATION: Our data demonstrate that delta cells can express an INS product derived from alternative splicing, containing both the diabetogenic insulin signal peptide and B chain, in their secretory granules. We propose that this alternative INS product may play a role in islet autoimmunity and pathology, as well as endocrine or paracrine function or islet development and endocrine destiny, and transdifferentiation between endocrine cells. INS promoter activity is not confined to beta cells and should be used with care when assigning beta cell identity and selectivity. DATA AVAILABILITY: The full EM dataset is available via www.nanotomy.org (for review: http://www.nanotomy.org/OA/Tienhoven2021SUB/6126-368/ ). Single-cell RNA-seq data was made available by Segerstolpe et al [13] and can be found at https://sandberglab.se/pancreas . The RNA and protein sequence of INS-splice was uploaded to GenBank (BankIt2546444 INS-splice OM489474).


Asunto(s)
Insulisina , Islotes Pancreáticos , Humanos , Células Secretoras de Somatostatina/metabolismo , Insulisina/metabolismo , Insulina/genética , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , ARN , Señales de Clasificación de Proteína
7.
J Dairy Sci ; 106(6): 4158-4170, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37080792

RESUMEN

ß-lactoglobulin I (ß-LG I) is one of the most important whey proteins in donkey milk. However, to our knowledge, there has been no study focusing on the full nucleotide sequences of this gene (BLG I). Current investigation of donkey BLG I gene is very limited with only 2 variants (A and B) characterized so far at the protein level. Recently, a new ß-LG I variant, with a significantly higher mass (+1,915 Da) than known variants has been detected. In this study, we report the whole nucleotide sequence of the BLG I gene from 2 donkeys, whose milk samples are characterized by the ß-LG I SDS-PAGE band with a normal electrophoretic mobility (18,514.25 Da, ß-LG I B1 form) the first, and by the presence of a unique ß-LG I band with a higher electrophoretic mobility (20,428.5 Da, ß-LG I D form) the latter. A high genetic variability was found all over the 2 sequenced BLG I alleles. In particular, 16 polymorphic sites were found in introns, one in the 5' flanking region, 3 SNPs in the 5' untranslated region and one SNP in the coding region (g.1871G > A) located at the 40th nucleotide of exon 2 and responsible for the AA substitutions p.Asp28 > Asn in the mature protein. Two SNPs (g.920-922CAC > TGT and g.1871G/A) were genotyped in 93 donkeys of 2 Italian breeds (60 Ragusana and 33 Amiatina, respectively) and the overall frequencies of g.920-922CAC and g.1871A were 0.3065 and 0.043, respectively. Only the rare allele g.1871A was observed to be associated with the slower migrating ß-LG I. Considering this genetic diversity and those found in the database, it was possible to deduce at least 5 different alleles (BLG I A, B, B1, C, D) responsible for 4 potential ß-LG I translations. Among these alleles, B1 and D are those characterized in the present research, with the D allele of real novel identification. Haplotype data analysis suggests an evolutionary pathway of donkey BLG I gene and a possible phylogenetic map is proposed. Analyses of mRNA secondary structure showed relevant changes in the structures, as consequence of the g.1871G > A polymorphism, that might be responsible for the recognition of an alternative initiation site providing an additional signal peptide. The extension of 19 AA sequence to the mature protein, corresponding to the canonical signal peptide with an additional alanine residue, is sufficient to provide the observed molecular weight of the slower migrating ß-LG I encoded by the BLG I D allele.


Asunto(s)
Lactoglobulinas , Polimorfismo de Nucleótido Simple , Animales , Lactoglobulinas/química , Alelos , Codón Iniciador/análisis , Equidae/genética , Filogenia , Fitomejoramiento , Leche/química , Isoformas de Proteínas/metabolismo , Señales de Clasificación de Proteína/genética
8.
Plant Mol Biol ; 108(6): 531-547, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35088230

RESUMEN

KEY MESSAGE: Alternative translation initiation of the unique Arabidopsis trehalase gene allows for the production of two isoforms with different subcellular localization, providing enzyme access to both intra- and extra-cellular trehalose. The trehalose-hydrolyzing enzyme trehalase mediates drought stress tolerance in Arabidopsis thaliana by controlling ABA-induced stomatal closure. We now report the existence of two trehalase isoforms, produced from a single transcript by alternative translation initiation. The longer full-length N-glycosylated isoform (AtTRE1L) localizes in the plasma membrane with the catalytic domain in the apoplast. The shorter isoform (AtTRE1S) lacks the transmembrane domain and localizes in the cytoplasm and nucleus. The two isoforms can physically interact and this interaction affects localization of AtTRE1S. Consistent with their role in plant drought stress tolerance, both isoforms are activated by AtCPK10, a stress-induced calcium-dependent guard cell protein kinase. Transgenic plants expressing either isoform indicate that both can mediate ABA-induced stomatal closure in response to drought stress but that the short (cytoplasmic/nuclear) isoform, enriched in those conditions, is significantly more effective.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Estomas de Plantas , Plantas Modificadas Genéticamente/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrés Fisiológico/genética , Trehalasa/genética , Trehalasa/metabolismo , Trehalasa/farmacología
9.
J Gen Virol ; 103(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35349401

RESUMEN

The infectious pancreatic necrosis virus (IPNV) is responsible for significant economic losses in the aquaculture industry. It is an unenveloped virus with an icosahedral capsid. Its viral genome comprises two dsRNA segments, A and B. Segment A contains a small ORF, which encodes VP5, and a large ORF, which encodes a polyprotein that generates the structural proteins and the viral protease. Segment B encodes the RNA-dependent RNA polymerase (RdRp), called VP1 in this free form, or Vpg when it covalently attaches to the viral RNA. The viral genome does not have cap or poly(A). Instead, each 5' end is linked to the Vpg. Recently, we demonstrated that mRNA-A contains an internal ribosome entry site (IRES) to command polyprotein synthesis. However, the presence of Vpg on IPNV mRNAs and its impact on cellular translation has not been investigated. This research demonstrates that IPNV mRNAs are linked to Vpg and that this protein inhibits cap-dependent translation on infected cells. Also, it is demonstrated that Vpg interacts with eIF4E and that rapamycin treatment partially diminishes the viral protein synthesis. In addition, we determined that an IRES does not command translation of IPNV mRNA-B. We show that VPg serves as a cap substitute during the initiation of IPNV translation, contributing to understanding the replicative cycle of Birnaviruses. Our results indicate that the viral protein VP1/Vpg is multifunctional, having a significant role during IPNV RNA synthesis as the RdRp and the primer for IPNV RNA synthesis and translation as the viral protein genome, acting as a cap substitute.


Asunto(s)
Virus de la Necrosis Pancreática Infecciosa , Virus de la Necrosis Pancreática Infecciosa/genética , Sitios Internos de Entrada al Ribosoma , Poliproteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
10.
Biochem Biophys Res Commun ; 606: 75-79, 2022 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-35339755

RESUMEN

Hydroxyacyl-CoA dehydrogenase (HADH) catalyzes the third reaction of mitochondrial ß-oxidation cascade, while the regulation of its expression and function remains to be elucidated. Using the quantitative translation initiation sequencing (QTI-seq), we have identified that murine Hadh mRNA has two alternative translation start codons. We demonstrated that translation from upstream start codon encodes the mitochondrial isoform of HADH, while translation from downstream start codon produces a short isoform (HADH-S) with predominant nuclear localization. Moreover, overexpression of HADH-S inhibits the proliferation of mouse embryonic fibroblasts. Overall, our results identify a novel isoform of HADH participating in cell proliferation.


Asunto(s)
3-Hidroxiacil-CoA Deshidrogenasas , Fibroblastos , 3-Hidroxiacil-CoA Deshidrogenasas/genética , 3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , Animales , Proliferación Celular , Codón Iniciador , Fibroblastos/metabolismo , Ratones , Isoformas de Proteínas/genética
11.
Immunol Cell Biol ; 100(4): 267-284, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35201640

RESUMEN

Toll-like receptor (TLR) signaling relies on Toll/interleukin-1 receptor homology (TIR) domain-containing adaptor proteins that recruit downstream signaling molecules to generate tailored immune responses. In addition, the palmitoylated transmembrane adaptor protein family member Scimp acts as a non-TIR-containing adaptor protein in macrophages, scaffolding the Src family kinase Lyn to enable TLR phosphorylation and proinflammatory signaling responses. Here we report the existence of a smaller, naturally occurring translational variant of Scimp (Scimp TV1), which is generated through leaky scanning and translation at a downstream methionine. Scimp TV1 also scaffolds Lyn, but in contrast to full-length Scimp, it is basally rather than lipopolysaccharide (LPS)-inducibly phosphorylated. Macrophages from mice that selectively express Scimp TV1, but not full-length Scimp, have impaired sustained LPS-inducible cytokine responses. Furthermore, in granulocyte macrophage colony-stimulating factor-derived myeloid cells that express high levels of Scimp, selective overexpression of Scimp TV1 enhances CpG DNA-inducible cytokine production. Unlike full-length Scimp that localizes to the cell surface and filopodia, Scimp TV1 accumulates in intracellular compartments, particularly the Golgi. Moreover, this variant of Scimp is not inducibly phosphorylated in response to CpG DNA, suggesting that it may act via an indirect mechanism to enhance TLR9 responses. Our findings thus reveal the use of alternative translation start sites as a previously unrecognized mechanism for diversifying TLR responses in the innate immune system.


Asunto(s)
Transducción de Señal , Receptores Toll-Like , Animales , ADN/metabolismo , Macrófagos/metabolismo , Ratones , Receptores Toll-Like/metabolismo , Familia-src Quinasas/metabolismo
12.
Int J Mol Sci ; 23(2)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35054841

RESUMEN

Arrhythmogenic cardiomyopathy is a heritable heart disease associated with desmosomal mutations, especially premature termination codon (PTC) variants. It is known that PTC triggers the nonsense-mediated decay (NMD) mechanism. It is also accepted that PTC in the last exon escapes NMD; however, the mechanisms involving NMD escaping in 5'-PTC, such as reinitiation of translation, are less known. The main objective of the present study is to evaluate the likelihood that desmosomal genes carrying 5'-PTC will trigger reinitiation. HL1 cell lines were edited by CRISPR/Cas9 to generate isogenic clones carrying 5'-PTC for each of the five desmosomal genes. The genomic context of the ATG in-frame in the 5' region of desmosomal genes was evaluated by in silico predictions. The expression levels of the edited genes were assessed by Western blot and real-time PCR. Our results indicate that the 5'-PTC in PKP2, DSG2 and DSC2 acts as a null allele with no expression, whereas in the DSP and JUP gene, N-truncated protein is expressed. In concordance with this, the genomic context of the 5'-region of DSP and JUP presents an ATG in-frame with an optimal context for the reinitiation of translation. Thus, 5'-PTC triggers NMD in the PKP2, DSG2* and DSC2 genes, whereas it may escape NMD through the reinitiation of the translation in DSP and JUP genes, with no major effects on ACM-related gene expression.


Asunto(s)
Desmoplaquinas/genética , Desmoplaquinas/metabolismo , gamma Catenina/genética , gamma Catenina/metabolismo , Animales , Sistemas CRISPR-Cas , Línea Celular , Codón sin Sentido , Desmocolinas/genética , Desmogleína 2/genética , Mutación del Sistema de Lectura , Ratones , Degradación de ARNm Mediada por Codón sin Sentido , Placofilinas/genética , Biosíntesis de Proteínas
13.
Int J Mol Sci ; 22(7)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33916271

RESUMEN

The evolutionary conserved N-alpha acetyltransferase Naa40p is among the most selective N-terminal acetyltransferases (NATs) identified to date. Here we identified a conserved N-terminally truncated Naa40p proteoform named Naa40p25 or short Naa40p (Naa40S). Intriguingly, although upon ectopic expression in yeast, both Naa40p proteoforms were capable of restoring N-terminal acetylation of the characterized yeast histone H2A Naa40p substrate, the Naa40p histone H4 substrate remained N-terminally free in human haploid cells specifically deleted for canonical Naa40p27 or 237 amino acid long Naa40p (Naa40L), but expressing Naa40S. Interestingly, human Naa40L and Naa40S displayed differential expression and subcellular localization patterns by exhibiting a principal nuclear and cytoplasmic localization, respectively. Furthermore, Naa40L was shown to be N-terminally myristoylated and to interact with N-myristoyltransferase 1 (NMT1), implicating NMT1 in steering Naa40L nuclear import. Differential interactomics data obtained by biotin-dependent proximity labeling (BioID) further hints to context-dependent roles of Naa40p proteoforms. More specifically, with Naa40S representing the main co-translationally acting actor, the interactome of Naa40L was enriched for nucleolar proteins implicated in ribosome biogenesis and the assembly of ribonucleoprotein particles, overall indicating a proteoform-specific segregation of previously reported Naa40p activities. Finally, the yeast histone variant H2A.Z and the transcriptionally regulatory protein Lge1 were identified as novel Naa40p substrates, expanding the restricted substrate repertoire of Naa40p with two additional members and further confirming Lge1 as being the first redundant yNatA and yNatD substrate identified to date.


Asunto(s)
Acetiltransferasa D N-Terminal/metabolismo , Histonas/metabolismo , Humanos , Isoformas de Proteínas , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción
14.
J Biol Chem ; 294(8): 2665-2677, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30593505

RESUMEN

Tyrosyl-DNA phosphodiesterase 2 (TDP2) is a multifunctional protein that has been implicated in a myriad of cellular pathways. Although most well-known for its phosphodiesterase activity removing stalled topoisomerase 2 from DNA, TDP2 has also been shown to interact with both survival and apoptotic mitogen-activated protein kinase (MAPK) signaling cascades. Moreover, it facilitates enterovirus replication and has been genetically linked to neurological disorders ranging from Parkinson's disease to dyslexia. To accurately evaluate TDP2 as a therapeutic target, we need to understand how TDP2 performs such a wide diversity of functions. Here, we use cancer cell lines modified with CRISPR/Cas9 or stably-expressed TDP2-targeted shRNA and transfection of various TDP2 mutants to show that its expression is regulated at the translational level via an internal ribosome entry site (IRES) that initiates translation at codon 54, the second in-frame methionine of the TDP2 coding sequence. We observed that this IRES drives expression of a shorter, N-terminally truncated isoform of TDP2, ΔN-TDP2, which omits a nuclear localization sequence. Additionally, we noted that ΔN-TDP2 retains phosphodiesterase activity and is protective against etoposide-induced cell death, but co-immunoprecipitates with fewer high-molecular-weight ubiquitinated peptide species, suggesting partial loss-of-function of TDP2's ubiquitin-association domain. In summary, our findings suggest the existence of an IRES in the 5' coding sequence of TDP2 that translationally regulates expression of an N-terminally truncated, cytoplasmic isoform of TDP2. These results shed light on the regulation of this multifunctional protein and may inform the design of therapies targeting TDP2 and associated pathways.


Asunto(s)
Empalme Alternativo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Sitios Internos de Entrada al Ribosoma/genética , Neoplasias/genética , Proteínas Nucleares/genética , Ribosomas/metabolismo , Factores de Transcripción/genética , Secuencia de Aminoácidos , Proteínas de Unión al ADN , Humanos , Neoplasias/enzimología , Neoplasias/patología , Iniciación de la Cadena Peptídica Traduccional , Hidrolasas Diéster Fosfóricas , Isoformas de Proteínas , Ribosomas/genética , Homología de Secuencia , Células Tumorales Cultivadas , Ubiquitina/metabolismo
15.
Mol Cell Proteomics ; 17(12): 2402-2411, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30181344

RESUMEN

Proteogenomics and ribosome profiling concurrently show that genes may code for both a large and one or more small proteins translated from annotated coding sequences (CDSs) and unannotated alternative open reading frames (named alternative ORFs or altORFs), respectively, but the stoichiometry between large and small proteins translated from a same gene is unknown. MIEF1, a gene recently identified as a dual-coding gene, harbors a CDS and a newly annotated and actively translated altORF located in the 5'UTR. Here, we use absolute quantification with stable isotope-labeled peptides and parallel reaction monitoring to determine levels of both proteins in two human cells lines and in human colon. We report that the main MIEF1 translational product is not the canonical 463 amino acid MiD51 protein but the small 70 amino acid alternative MiD51 protein (altMiD51). These results demonstrate the inadequacy of the single CDS concept and provide a strong argument for incorporating altORFs and small proteins in functional annotations.


Asunto(s)
Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Sistemas de Lectura Abierta/genética , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Cromatografía de Afinidad , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Colon/citología , Exones , Expresión Génica , Células HeLa , Humanos , Anotación de Secuencia Molecular , Péptidos/metabolismo , Biosíntesis de Proteínas , Modificación Traduccional de las Proteínas , Proteoma , Proteómica/métodos , Espectrometría de Masas en Tándem , Secuenciación Completa del Genoma
16.
J Virol ; 92(21)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30111560

RESUMEN

The capsid mRNA transcripts of human bocavirus 1 (HBoV1) can be generated by alternative splicing from the mRNA precursor transcribed from the P5 promoter. However, the alternative translation regulation mechanism of capsid mRNA transcripts is largely unknown. Here we report that the polycistronic capsid mRNA transcripts encode VP1, VP2, and VP3 in vitro and in vivo The 5' untranslated regions (UTRs) of capsid mRNA transcripts, which consist of exons, affected not only the abundance of mRNA but also the translation pattern of capsid proteins. Further study showed that exons 2 and 3 were critical for the abundance of mRNA, while exon 4 regulated capsid translation. Alternative translation of capsid mRNA involved a leaky scan mechanism. Mutating the upstream ATGs (uATGs) located in exon 4 resulted in more mRNA transcripts polyadenylated at the proximal polyadenylation [(pA)p] site, leading to increased capsid mRNA transcripts. Moreover, uATG mutations induced more VP1 expression, while VP3 expression was decreased, which resulted in less progeny virus production. Our data show that the 5' UTR of HBoV1 plays a critical role in the modulation of mRNA abundance, alternative RNA processing, alternative translation, and progeny virus production.IMPORTANCE Alternative translation of HBoV1 capsid mRNAs is vital for the viral life cycle, as capsid proteins perform essential functions in genome packaging, assembly, and antigenicity. The 5' untranslated regions (UTRs) of capsid mRNAs are generated by alternative splicing, and they contain different exons. Our study shows that the 5' UTR not only modulates mRNA abundance but also regulates capsid expression. Two upstream ATGs (uATGs) that were upstream of the capsid translation initiation site in the 5' UTR were found to affect viral capsid mRNA polyadenylation, alternative translation, and progeny virus production. The results reveal that uATGs play an important role in the viral life cycle and represent a new layer to regulate HBoV1 RNA processing, which could be a target for gene therapy.


Asunto(s)
Regiones no Traducidas 5'/genética , Empalme Alternativo/genética , Bocavirus/genética , Proteínas de la Cápside/genética , ARN Viral/biosíntesis , Cápside/metabolismo , Proteínas de la Cápside/biosíntesis , Línea Celular , Células HEK293 , Humanos , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , ARN Viral/genética , Transcripción Genética/genética
17.
Adv Exp Med Biol ; 1157: 117-132, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31342440

RESUMEN

Throughout evolution, eukaryotic cells have devised different mechanisms to cope with stressful environments. When eukaryotic cells are exposed to stress stimuli, they activate adaptive pathways that allow them to restore cellular homeostasis. Most types of stress stimuli have been reported to induce a decrease in overall protein synthesis accompanied by induction of alternative mechanisms of mRNA translation initiation. Here, we present well-studied and recent examples of such stress responses and the alternative translation initiation mechanisms they induce, and discuss the consequences of such regulation for cell homeostasis and oncogenic transformation.


Asunto(s)
Neoplasias , Iniciación de la Cadena Peptídica Traduccional , Biosíntesis de Proteínas , Estrés Fisiológico , Humanos , Neoplasias/genética , Biosíntesis de Proteínas/genética , Procesamiento Proteico-Postraduccional , Proteómica , Estrés Fisiológico/genética
18.
Proteomics ; 18(10): e1700058, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28627015

RESUMEN

Short ORF-encoded peptides and small proteins in eukaryotes have been hiding in the shadow of large proteins for a long time. Recently, improved identifications in MS-based proteomics and ribosome profiling resulted in the detection of large numbers of small proteins. The variety of functions of small proteins is also emerging. It seems to be the right time to reflect on why small proteins remained invisible. In addition to the obvious technical challenge of detecting small proteins, they were mostly forgotten from annotations and they escaped detection because they were not sought. In this review, we identify conventions that need to be revisited, including the assumption that mature mRNAs carry only one coding sequence. The large-scale discovery of small proteins and of their functions will require changing some paradigms and undertaking the annotation of ORFs that are still largely perceived as irrelevant coding information compared to already annotated coding sequences.


Asunto(s)
Anotación de Secuencia Molecular , Sistemas de Lectura Abierta , Biosíntesis de Proteínas , Proteínas/metabolismo , Proteoma/metabolismo , ARN Mensajero/metabolismo , Genoma Humano , Genómica , Humanos , Proteínas/genética , ARN Mensajero/genética , Ribosomas
19.
Biochim Biophys Acta Biomembr ; 1860(1): 40-47, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28576298

RESUMEN

Gap Junction (GJ) channels, including the most common Connexin 43 (Cx43), have fundamental roles in excitable tissues by facilitating rapid transmission of action potentials between adjacent cells. For instance, synchronization during each heartbeat is regulated by these ion channels at the cardiomyocyte cell-cell border. Cx43 protein has a short half-life, and rapid synthesis and timely delivery of those proteins to particular subdomains are crucial for the cellular organization of gap junctions and maintenance of intracellular coupling. Impairment in gap junction trafficking contributes to dangerous complications in diseased hearts such as the arrhythmias of sudden cardiac death. Of recent interest are the protein-protein interactions with the Cx43 carboxy-terminus. These interactions have significant impact on the full length Cx43 lifecycle and also contribute to trafficking of Cx43 as well as possibly other functions. We are learning that many of the known non-canonical roles of Cx43 can be attributed to the recently identified six endogenous Cx43 truncated isoforms which are produced by internal translation. In general, alternative translation is a new leading edge for proteome expansion and therapeutic drug development. This review highlights recent mechanisms identified in the trafficking of gap junction channels, involvement of other proteins contributing to the delivery of channels to the cell-cell border, and understanding of possible roles of the newly discovered alternatively translated isoforms in Cx43 biology. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.


Asunto(s)
Arritmias Cardíacas/metabolismo , Conexina 43/metabolismo , Uniones Comunicantes/metabolismo , Canales Iónicos/metabolismo , Miocitos Cardíacos/metabolismo , Biosíntesis de Proteínas , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/patología , Conexina 43/genética , Muerte Súbita Cardíaca , Uniones Comunicantes/genética , Uniones Comunicantes/patología , Humanos , Canales Iónicos/genética , Miocitos Cardíacos/patología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas
20.
Biochem Biophys Res Commun ; 502(4): 501-507, 2018 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-29864424

RESUMEN

DHX33 has been shown to play key roles in promoting cell proliferation. We have previously found that DHX33 protein is a doublet. In this report, we discovered that DHX33 doublet is due to alternative translation initiation by two in-frame initiation codons. This is supported by studies from both cell lines and mouse models. DHX33 translation initiation from either AUG codon happens at equal efficiency. Short DHX33 protein has similar cellular location and functions with full-length DHX33. Our results suggest that leaky scanning normally occur in DHX33 mRNA translation, which may serve as a safeguard mechanism to ensure optimal DHX33 translation efficiency. This is the first report of DEAD/DEAH box proteins that can be regulated by alternative translation initiation.


Asunto(s)
Codón Iniciador , ARN Helicasas DEAD-box/biosíntesis , ARN Helicasas DEAD-box/genética , Iniciación de la Cadena Peptídica Traduccional , Animales , Células Cultivadas , ARN Helicasas DEAD-box/química , Humanos , Isoenzimas/biosíntesis , Isoenzimas/química , Isoenzimas/genética , Ratones , Ratones Noqueados , Células 3T3 NIH , ARN Guía de Kinetoplastida/genética , Sistemas de Lectura
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda